Sparse Visual-Inertial Measurement Units Placement for Gait Kinematics Assessment
This study investigates the possibility of estimating lower-limb joint kinematics and meaningful performance indexes for physiotherapists, during gait on a treadmill based on data collected from a sparse placement of new Visual Inertial Measurement Units (VIMU) and the use of an Extended Kalman Filt...
Saved in:
| Published in: | IEEE Transactions on Neural Systems and Rehabilitation Engineering Vol. 29; pp. 1300 - 1311 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2021
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study investigates the possibility of estimating lower-limb joint kinematics and meaningful performance indexes for physiotherapists, during gait on a treadmill based on data collected from a sparse placement of new Visual Inertial Measurement Units (VIMU) and the use of an Extended Kalman Filter (EKF). The proposed EKF takes advantage of the biomechanics of the human body and of the investigated task to reduce sensor inaccuracies. Two state-vector formulations, one based on the use of constant acceleration model and one based on Fourier series, and the tuning of their corresponding parameters were analyzed. The constant acceleration model, due to its inherent inconsistency for human motion, required a cumbersome optimisation process and needed the a-priori knowledge of reference joint trajectories for EKF parameters tuning. On the other hand, the Fourier series formulation could be used without a specific parameters tuning process. In both cases, the average root mean square difference and correlation coefficient between the estimated joint angles and those reconstructed with a reference stereophotogrammetric system was 3.5deg and 0.70, respectively. Moreover, the stride lengths were estimated with a normalized root mean square difference inferior to 2% when using the forward kinematics model receiving as input the estimated joint angles. The popular gait deviation index was also estimated and showed similar results very close to 100, using both the proposed method and the reference stereophotogrammetric system. Such consistency was obtained using only three wireless and affordable VIMU located at the pelvis and both heels and tracked using two affordable RGB cameras. Being further easy-to-use and suitable for applications taking place outside of the laboratory, the proposed method thus represents a good compromise between accurate reference stereophotogrammetric systems and markerless ones for which accuracy is still under debate. |
|---|---|
| AbstractList | This study investigates the possibility of estimating lower-limb joint kinematics and meaningful performance indexes for physiotherapists, during gait on a treadmill based on data collected from a sparse placement of new Visual Inertial Measurement Units (VIMU) and the use of an Extended Kalman Filter (EKF). The proposed EKF takes advantage of the biomechanics of the human body and of the investigated task to reduce sensor inaccuracies. Two state-vector formulations, one based on the use of constant acceleration model and one based on Fourier series, and the tuning of their corresponding parameters were analyzed. The constant acceleration model, due to its inherent inconsistency for human motion, required a cumbersome optimisation process and needed the a-priori knowledge of reference joint trajectories for EKF parameters tuning. On the other hand, the Fourier series formulation could be used without a specific parameters tuning process. In both cases, the average root mean square difference and correlation coefficient between the estimated joint angles and those reconstructed with a reference stereophotogrammetric system was 3.5deg and 0.70, respectively. Moreover, the stride lengths were estimated with a normalized root mean square difference inferior to 2% when using the forward kinematics model receiving as input the estimated joint angles. The popular gait deviation index was also estimated and showed similar results very close to 100, using both the proposed method and the reference stereophotogrammetric system. Such consistency was obtained using only three wireless and affordable VIMU located at the pelvis and both heels and tracked using two affordable RGB cameras. Being further easy-to-use and suitable for applications taking place outside of the laboratory, the proposed method thus represents a good compromise between accurate reference stereophotogrammetric systems and markerless ones for which accuracy is still under debate. This study investigates the possibility of estimating lower-limb joint kinematics and meaningful performance indexes for physiotherapists, during gait on a treadmill based on data collected from a sparse placement of new Visual Inertial Measurement Units (VIMU) and the use of an Extended Kalman Filter (EKF). The proposed EKF takes advantage of the biomechanics of the human body and of the investigated task to reduce sensor inaccuracies. Two state-vector formulations, one based on the use of constant acceleration model and one based on Fourier series, and the tuning of their corresponding parameters were analyzed. The constant acceleration model, due to its inherent inconsistency for human motion, required a cumbersome optimisation process and needed the a-priori knowledge of reference joint trajectories for EKF parameters tuning. On the other hand, the Fourier series formulation could be used without a specific parameters tuning process. In both cases, the average root mean square difference and correlation coefficient between the estimated joint angles and those reconstructed with a reference stereophotogrammetric system was 3.5deg and 0.70, respectively. Moreover, the stride lengths were estimated with a normalized root mean square difference inferior to 2% when using the forward kinematics model receiving as input the estimated joint angles. The popular gait deviation index was also estimated and showed similar results very close to 100, using both the proposed method and the reference stereophotogrammetric system. Such consistency was obtained using only three wireless and affordable VIMU located at the pelvis and both heels and tracked using two affordable RGB cameras. Being further easy-to-use and suitable for applications taking place outside of the laboratory, the proposed method thus represents a good compromise between accurate reference stereophotogrammetric systems and markerless ones for which accuracy is still under debate.This study investigates the possibility of estimating lower-limb joint kinematics and meaningful performance indexes for physiotherapists, during gait on a treadmill based on data collected from a sparse placement of new Visual Inertial Measurement Units (VIMU) and the use of an Extended Kalman Filter (EKF). The proposed EKF takes advantage of the biomechanics of the human body and of the investigated task to reduce sensor inaccuracies. Two state-vector formulations, one based on the use of constant acceleration model and one based on Fourier series, and the tuning of their corresponding parameters were analyzed. The constant acceleration model, due to its inherent inconsistency for human motion, required a cumbersome optimisation process and needed the a-priori knowledge of reference joint trajectories for EKF parameters tuning. On the other hand, the Fourier series formulation could be used without a specific parameters tuning process. In both cases, the average root mean square difference and correlation coefficient between the estimated joint angles and those reconstructed with a reference stereophotogrammetric system was 3.5deg and 0.70, respectively. Moreover, the stride lengths were estimated with a normalized root mean square difference inferior to 2% when using the forward kinematics model receiving as input the estimated joint angles. The popular gait deviation index was also estimated and showed similar results very close to 100, using both the proposed method and the reference stereophotogrammetric system. Such consistency was obtained using only three wireless and affordable VIMU located at the pelvis and both heels and tracked using two affordable RGB cameras. Being further easy-to-use and suitable for applications taking place outside of the laboratory, the proposed method thus represents a good compromise between accurate reference stereophotogrammetric systems and markerless ones for which accuracy is still under debate. |
| Author | Venture, Gentiane Dumas, Raphael Adjel, Mohamed Mohammed, Samer Mallat, Randa Bonnet, Vincent Khalil, Mohamad |
| Author_xml | – sequence: 1 givenname: Randa surname: Mallat fullname: Mallat, Randa organization: LISSI, Université Paris-Est Créteil Val de Marne, Vitry-sur-Seine, France – sequence: 2 givenname: Vincent orcidid: 0000-0001-5367-711X surname: Bonnet fullname: Bonnet, Vincent email: vincent.bonnet@u-pec.fr organization: LISSI, Université Paris-Est Créteil Val de Marne, Vitry-sur-Seine, France – sequence: 3 givenname: Raphael orcidid: 0000-0002-0368-8248 surname: Dumas fullname: Dumas, Raphael organization: LBMC, UMR T9406, Université de Lyon, Université Gustave Eiffel, Lyon, France – sequence: 4 givenname: Mohamed surname: Adjel fullname: Adjel, Mohamed organization: LISSI, Université Paris-Est Créteil Val de Marne, Vitry-sur-Seine, France – sequence: 5 givenname: Gentiane orcidid: 0000-0001-7767-4765 surname: Venture fullname: Venture, Gentiane organization: Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 6 givenname: Mohamad orcidid: 0000-0002-9814-1949 surname: Khalil fullname: Khalil, Mohamad organization: Azm Center, Faculty of Engineering, Lebanese University, Beirut, Lebanon – sequence: 7 givenname: Samer orcidid: 0000-0001-6738-4529 surname: Mohammed fullname: Mohammed, Samer organization: LISSI, Université Paris-Est Créteil Val de Marne, Vitry-sur-Seine, France |
| BackLink | https://cir.nii.ac.jp/crid/1871428067571437312$$DView record in CiNii https://hal.science/hal-03313483$$DView record in HAL |
| BookMark | eNp9kU1v1DAQhi1URD_gD8AlEhzKIYvHY8fe46oqbcXy2Zar5Xhnhauss9gJUv89DikceuBiz4yfd-zxe8wOYh-JsZfAFwB8-e7m0_W384XgAhbIzdJofMKOQClTlxI_mGKUtUTBD9lxznecg26UfsYOUQIaDXDEvl7vXcpUfQ95dF19FSkNwXXVR3J5TLSjOFS3MQy5-tI5P-fbPlUXLgzVhxBp54bgc7XKmXKejp-zp1vXZXrxsJ-w2_fnN2eX9frzxdXZal17xWGot-i83HApW0mNFkZhoyW25IyRCk27dGqzBdiI1nulfUumhVY1VCY1CM0GT9jbue8P19l9CjuX7m3vgr1cre1U44iA0uAvKOzpzO5T_3OkPNhdyJ66zkXqx2yFkigLqnVBXz9C7_oxxTJJoRRgIxRMDc1M-dTnnGhrfRjKT_RxSC50FridLLJ_LLKTRfbBoiIVj6R_H_9f0ZtZFEMoV00rFAOlMLzRqgSoEUTBXs1YIKJ_fZdSaSEl_gYx1KVi |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1109_TIM_2023_3286000 crossref_primary_10_1109_JSEN_2024_3408464 crossref_primary_10_1145_3749551 crossref_primary_10_3389_fbioe_2024_1386874 |
| Cites_doi | 10.1007/978-3-642-38398-4_8 10.1109/TBME.2019.2907322 10.3390/s140406891 10.1017/S0962492900002841 10.3390/s18072216 10.1371/journal.pone.0212319 10.1016/0167-9457(89)90020-1 10.1109/TBME.2006.875664 10.1016/j.jbiomech.2016.12.027 10.1016/j.jbiomech.2008.09.035 10.3390/s20102848 10.1007/s11042-015-3177-1 10.1109/ICRA.2014.6907297 10.1007/BF02344878 10.1115/1.4038741 10.1186/1743-0003-9-9 10.1186/s12938-015-0103-8 10.1109/TASE.2020.3024033 10.1016/0268-0033(95)91394-T 10.1109/TBME.2015.2403368 10.1016/j.gaitpost.2008.05.001 10.1016/j.imavis.2018.05.004 10.1016/j.medengphy.2020.08.009 10.1016/S0021-9290(01)00186-5 10.1109/ICRA.2018.8460871 10.1016/j.gaitpost.2007.07.007 10.1016/j.gaitpost.2019.04.015 10.1016/j.gaitpost.2017.08.003 10.1016/0021-9290(93)90098-Y 10.1016/j.humov.2019.102528 10.1109/TBME.2020.3026464 10.1109/TNSRE.2015.2457511 10.1016/0021-9290(91)90175-M 10.1007/978-1-4757-1895-9_26 10.1016/j.jbiomech.2020.109718 10.1109/TNSRE.2020.2990824 10.1186/1743-0003-3-4 10.1109/TNSRE.2017.2659730 10.1109/CVPR.2019.00884 |
| ContentType | Journal Article |
| Contributor | SIRIUS ; Laboratoire Images, Signaux et Systèmes Intelligents (LISSI) ; Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1) ; Université Fé |
| Contributor_xml | – sequence: 1 fullname: Laboratoire Images, Signaux et Systèmes Intelligents (LISSI) ; Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) – sequence: 2 fullname: Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) – sequence: 3 fullname: Institut Universitaire de Technologie - Paul Sabatier (IUT Paul Sabatier) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT) – sequence: 4 fullname: Laboratoire de Biomécanique et Mécanique des Chocs (LBMC UMR T9406) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Université Gustave Eiffel – sequence: 5 fullname: Tokyo University of Agriculture and Technology (TUAT) – sequence: 6 fullname: الجامعة اللبنانية [بيروت] = Lebanese University [Beirut] = Université libanaise [Beyrouth] (LU / ULB) – sequence: 7 fullname: SIRIUS ; Laboratoire Images, Signaux et Systèmes Intelligents (LISSI) ; Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) – sequence: 8 fullname: Cadic, Ifsttar – sequence: 9 fullname: Amirat, Yacine – sequence: 10 fullname: Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées – sequence: 11 fullname: Laboratoire de Biomécanique et Mécanique des Chocs (LBMC UMR T9406 ) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Université Gustave Eiffel – sequence: 12 fullname: Lebanese University [Beirut] (LU) – sequence: 13 fullname: Laboratoire de Biomécanique et Mécanique des Chocs (LBMC UMR T9406 ) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Université Gustave Eiffel – sequence: 14 fullname: Laboratoire Images, Signaux et Systèmes Intelligents (LISSI) – sequence: 15 fullname: Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) – sequence: 16 fullname: Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO) – sequence: 17 fullname: Laboratoire d'analyse et d'architecture des systèmes (LAAS) – sequence: 18 fullname: Université Toulouse Capitole (UT Capitole) – sequence: 19 fullname: Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) – sequence: 20 fullname: Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J) – sequence: 21 fullname: Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) – sequence: 22 fullname: Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) – sequence: 23 fullname: Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) – sequence: 24 fullname: Université de Toulouse (UT) – sequence: 25 fullname: Laboratoire de Biomécanique et Mécanique des Chocs (LBMC UMR T9406 ) – sequence: 26 fullname: Université Claude Bernard Lyon 1 (UCBL) – sequence: 27 fullname: Université de Lyon-Université de Lyon-Université Gustave Eiffel – sequence: 28 fullname: Lebanese University Beirut (LU) |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E ESBDL RIA RIE RYH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| DOI | 10.1109/TNSRE.2021.3089873 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CiNii Complete CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation Physics |
| EISSN | 1558-0210 |
| EndPage | 1311 |
| ExternalDocumentID | oai:HAL:hal-03313483v1 10_1109_TNSRE_2021_3089873 9457244 |
| Genre | orig-research |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS RYH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c501t-f3ac4d044b4e6728536743bea884538b9a5df11d2bcc57cbe8b1b56e3088316d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673474500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Sat Oct 25 06:44:50 EDT 2025 Fri Jul 11 15:36:04 EDT 2025 Fri Jul 25 02:35:02 EDT 2025 Sat Nov 29 01:47:12 EST 2025 Tue Nov 18 22:17:44 EST 2025 Mon Nov 10 09:09:45 EST 2025 Wed Aug 27 02:40:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | EXTENDED KALMAN FILTER (EKF) GAIT REHABILITATION AUGMENTED REALITY MARKERS INERTIAL MEASUREMENT UNIT |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c501t-f3ac4d044b4e6728536743bea884538b9a5df11d2bcc57cbe8b1b56e3088316d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9814-1949 0000-0001-6738-4529 0000-0001-5367-711X 0000-0001-7767-4765 0000-0002-0368-8248 0009-0009-6174-0313 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9457244 |
| PMID | 34138711 |
| PQID | 2551362511 |
| PQPubID | 85423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2021_3089873 hal_primary_oai_HAL_hal_03313483v1 nii_cinii_1871428067571437312 proquest_journals_2551362511 crossref_primary_10_1109_TNSRE_2021_3089873 ieee_primary_9457244 proquest_miscellaneous_2543448377 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationYear | 2021 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: IEEE Institute of Electrical and Electronics Engineers |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 yu (ref45) 2015; 41 ref11 ref10 ref2 ref17 ref38 ref19 ref18 rose (ref30) 2006 diebel (ref25) 2006; 58 supakkul (ref39) 2017 baker (ref1) 2006; 3 bradski (ref36) 2000 aravkin (ref32) 2014 ref46 ref24 ref23 ref26 feng (ref20) 2014 ref42 ref41 kose (ref43) 2012; 9 ref22 ref44 ref21 zarchan (ref33) 2000 colombel (ref16) 2020; 20 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – year: 2000 ident: ref36 article-title: The OpenCV library publication-title: Dr Dobb's J Softw Tools – start-page: 237 year: 2014 ident: ref32 article-title: Optimization viewpoint on Kalman smoothing with applications to robust and sparse estimation publication-title: Compressed Sensing & Sparse Filtering doi: 10.1007/978-3-642-38398-4_8 – ident: ref42 doi: 10.1109/TBME.2019.2907322 – ident: ref9 doi: 10.3390/s140406891 – ident: ref34 doi: 10.1017/S0962492900002841 – ident: ref17 doi: 10.3390/s18072216 – ident: ref18 doi: 10.1371/journal.pone.0212319 – ident: ref29 doi: 10.1016/0167-9457(89)90020-1 – ident: ref6 doi: 10.1109/TBME.2006.875664 – start-page: 1 year: 2014 ident: ref20 article-title: Fusing kinect sensor and inertial sensors with multi-rate Kalman filter publication-title: Proc IET Conf Data Fusion Target Tracking Algorithms Appl – ident: ref35 doi: 10.1016/j.jbiomech.2016.12.027 – ident: ref23 doi: 10.1016/j.jbiomech.2008.09.035 – volume: 20 start-page: 2848 year: 2020 ident: ref16 article-title: Physically consistent whole-body kinematics assessment based on an RGB-D sensor. Application to simple rehabilitation exercises publication-title: SENSORS doi: 10.3390/s20102848 – ident: ref19 doi: 10.1007/s11042-015-3177-1 – ident: ref27 doi: 10.1109/ICRA.2014.6907297 – ident: ref41 doi: 10.1007/BF02344878 – ident: ref24 doi: 10.1115/1.4038741 – volume: 9 start-page: 9 year: 2012 ident: ref43 article-title: Bilateral step length estimation using a single inertial measurement unit attached to the pelvis publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-9-9 – ident: ref13 doi: 10.1186/s12938-015-0103-8 – volume: 41 start-page: 763 year: 2015 ident: ref45 article-title: The KneeKG system: A review of the literature publication-title: Gait Posture – ident: ref22 doi: 10.1109/TASE.2020.3024033 – ident: ref26 doi: 10.1016/0268-0033(95)91394-T – ident: ref7 doi: 10.1109/TBME.2015.2403368 – ident: ref3 doi: 10.1016/j.gaitpost.2008.05.001 – ident: ref46 doi: 10.1016/j.imavis.2018.05.004 – ident: ref12 doi: 10.1016/j.medengphy.2020.08.009 – year: 2006 ident: ref30 publication-title: Human Walking – ident: ref4 doi: 10.1016/S0021-9290(01)00186-5 – ident: ref21 doi: 10.1109/ICRA.2018.8460871 – ident: ref38 doi: 10.1016/j.gaitpost.2007.07.007 – ident: ref37 doi: 10.1016/j.gaitpost.2019.04.015 – ident: ref2 doi: 10.1016/j.gaitpost.2017.08.003 – volume: 58 start-page: 15 year: 2006 ident: ref25 article-title: Representing attitude: Euler angles, unit quaternions, and rotation vectors publication-title: Matrix – ident: ref28 doi: 10.1016/0021-9290(93)90098-Y – year: 2000 ident: ref33 publication-title: Fundamentals of Kalman Filtering A Practical Approach – ident: ref11 doi: 10.1016/j.humov.2019.102528 – ident: ref8 doi: 10.1109/TBME.2020.3026464 – ident: ref5 doi: 10.1109/TNSRE.2015.2457511 – year: 2017 ident: ref39 article-title: Using positional heel-marker data to more accurately calculate stride length for treadmill walking: A step length approach publication-title: arXiv 1710 09030 – ident: ref31 doi: 10.1016/0021-9290(91)90175-M – ident: ref40 doi: 10.1007/978-1-4757-1895-9_26 – ident: ref14 doi: 10.1016/j.jbiomech.2020.109718 – ident: ref44 doi: 10.1109/TNSRE.2020.2990824 – volume: 3 start-page: 1 year: 2006 ident: ref1 article-title: Gait analysis methods in rehabilitation publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-3-4 – ident: ref10 doi: 10.1109/TNSRE.2017.2659730 – ident: ref15 doi: 10.1109/CVPR.2019.00884 |
| SSID | ssj0017657 ssib051452264 ssib000287065 ssib006552221 ssib053393623 ssib019020932 ssib000316684 ssib012866466 |
| Score | 2.3678534 |
| Snippet | This study investigates the possibility of estimating lower-limb joint kinematics and meaningful performance indexes for physiotherapists, during gait on a... |
| SourceID | hal proquest crossref nii ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1300 |
| SubjectTerms | [INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] [PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] Acceleration AUGMENTED REALITY MARKERS Biomechanical Phenomena Biomechanics Calibration Cameras Correlation coefficient Correlation coefficients Extended Kalman Filter EXTENDED KALMAN FILTER (EKF) Fourier series Gait GAIT REHABILITATION Human motion Humans INERTIAL MEASUREMENT UNIT Inertial platforms Kalman filters Kinematics Mathematical models Mechanics Motion Motion segmentation Optimization Pelvis Performance indices Photogrammetry Physics Placement Process parameters State vectors Three-dimensional displays Treadmills Tuning |
| Title | Sparse Visual-Inertial Measurement Units Placement for Gait Kinematics Assessment |
| URI | https://ieeexplore.ieee.org/document/9457244 https://cir.nii.ac.jp/crid/1871428067571437312 https://www.proquest.com/docview/2551362511 https://www.proquest.com/docview/2543448377 https://hal.science/hal-03313483 |
| Volume | 29 |
| WOSCitedRecordID | wos000673474500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051452264 issn: 1534-4320 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-tEw-8AGMgAltlEPAC2eLYiZ3HCm0MMaqxFdS3yHYcLdKUTmu7v393ThqYQEi8RPmwFdtn-758vwN4a7WvUNDlcVpZgQqKt7HVNo-FTVXtUUDnLmQtOVXTqZ7Pi7Mt-DjEwnjvw-Ezf0C3wZdfLdyaTGWHhcwUsqMRjJTKu1itwWOg8oDqiQtYxlKkySZAJikOZ9OL8yNUBVN-IBKNSjYlz6HdG5UFfo8fjS7pNGRIs4IPbdP8sUMHtnP8-P8a_AQe9eIlm3TzYQe2fPsU3v0OJcxmHY4Ae8_O76F078L3i2tUcz372SzX5ir-0tKZa6zx7ZcdkZGMumRnZHwPzyjzss-mWbGvKK4G-Nclmwxon8_gx_HR7NNJ3KdciF2W8FVcC-NklUhppc9VirycghSsN1pL3BptYbKq5rxKrXOZctZry22WexxXLXheieew3S5a_wJYKk2SeyecqYW0Wlup6tqqyhgU0urCRMA3A1-6vqeUFuOqDHpJUpSBbiXRrezpFsGHoc51h8bxz9JvkJ5DQQLSPpmclvQuEYILqcUtj2CX6DaU6kkWwT6SHxtGV44TRZILWmWULl4Jnkawt5kYZb_ql2VK2XJyUtoieD18xvVKThjT-sWaykghCcZfvfz7n1_BQ-pEZ-bZg-3VzdrvwwN3u2qWN2Oc-nM9DpaDcVgAd_Nh--8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BQkuvAoi0IJBwAXSxrETO8cVatmq21VpF9RbZDuOiFRlq2a3v58ZbzZQgZC4RHmMFdvj8TxsfwPwzmpfoaHL47SyAh0Ub2OrbR4Lm6rao4HOXchaMlHTqb64KE434NNwFsZ7Hzaf-T26DWv51dwtKVS2X8hMoTrahDuZlGmyOq01rBmoPOB6ogjLWIo0WR-RSYr92fT87ACdwZTviUSjm03pc2j-RneB39JImz9oP2RItIIPbdP8MUcHxXP48P-q_Age9AYmG61GxGPY8O0TeP87mDCbrZAE2Ad2dgunexu-nl-ho-vZ96Zbmsv4qKVd11ji5FckkZGV2rFTCr-HZ7R62RfTLNgxGqwBALZjowHv8yl8OzyYfR7HfdKF2GUJX8S1ME5WiZRW-lylqM3pmIL1RmuJk6MtTFbVnFepdS5Tznptuc1yj_2qBc8r8Qy22nnrnwNLpUly74QztZBWaytVXVtVGYNmWl2YCPi640vXt5QSY1yWwTNJijLwrSS-lT3fIvg4lLla4XH8k_ot8nMgJCjt8WhS0rtECC6kFjc8gm3i20DVsyyCXWQ_VoyuHAeKpEVolVHCeCV4GsHOemCUvdx3ZUr5cnJy2yJ4M3xGiaVlGNP6-ZJopJAE5K9e_P3Pr-HeeHYyKSdH0-OXcJ8atAr67MDW4nrpd-Guu1k03fWrIAA_AVgS_Vk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Visual-Inertial+Measurement+Units+Placement+for+Gait+Kinematics+Assessment&rft.jtitle=IEEE+Transactions+on+Neural+Systems+and+Rehabilitation+Engineering&rft.au=Randa+Mallat&rft.au=Vincent+Bonnet&rft.au=Raphael+Dumas&rft.au=Mohamed+Adjel&rft.date=2021-01-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers+%28IEEE%29&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=29&rft.spage=1300&rft.epage=1311&rft_id=info:doi/10.1109%2Ftnsre.2021.3089873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |