Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms
Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid production in these systems while minimizing the invasion of non-target algae (competitors) and grazers (predators) will improve the economic viabil...
Uložené v:
| Vydané v: | Biomass & bioenergy Ročník 54; číslo 2013; s. 83 - 88 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
01.07.2013
Elsevier |
| Predmet: | |
| ISSN: | 0961-9534, 1873-2909 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid production in these systems while minimizing the invasion of non-target algae (competitors) and grazers (predators) will improve the economic viability of algal biofuel. In this study, we manipulate a basic environmental parameter, salinity, to promote algal growth and limit invading organisms. We monitor the growth of marine microalga Nannochloropsis salina and invasion of algal competitors and predators in open cultures grown at different salinities ranging from brackish to hypersaline. Algal growth and biomass was greatest at salinities of 22 and 34 PSU, whereas the density of invading organisms was lowest at 22 PSU. To determine if lipid accumulation could be maximized by salinity stress, we grew N. salina at 22 PSU until the populations were at stationary phase and then increased salinity to 34, 46, and 58 PSU. Gravimetrically determined lipid content increased significantly at these higher salinities, and was highest at 34 PSU (36% dry tissue mass). Analysis of Folch extracts by FT-ICR mass spectrometry showed a monotonic increase in triglyceride content and decreased membrane lipid content with increased salinity. Together, this work demonstrates an ecological approach to overcome the current limitations of cultivation strategies.
•Marine microalgae Nannochloropsis salina can be grown for biofuel production.•We evaluate effects of salinity on algae growth, lipids and invading organisms.•N. salina growth fastest at salinities of 22–34 PSU.•Invading organisms are limited at 22 PSU.•Highest lipid accumulation is observed when salinity is changed from 22 to 34 PSU. |
|---|---|
| AbstractList | Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid production in these systems while minimizing the invasion of non-target algae (competitors) and grazers (predators) will improve the economic viability of algal biofuel. In this study, we manipulate a basic environmental parameter, salinity, to promote algal growth and limit invading organisms. We monitor the growth of marine microalga Nannochloropsis salina and invasion of algal competitors and predators in open cultures grown at different salinities ranging from brackish to hypersaline. Algal growth and biomass was greatest at salinities of 22 and 34 PSU, whereas the density of invading organisms was lowest at 22 PSU. To determine if lipid accumulation could be maximized by salinity stress, we grew N. salina at 22 PSU until the populations were at stationary phase and then increased salinity to 34, 46, and 58 PSU. Gravimetrically determined lipid content increased significantly at these higher salinities, and was highest at 34 PSU (36% dry tissue mass). Analysis of Folch extracts by FT-ICR mass spectrometry showed a monotonic increase in triglyceride content and decreased membrane lipid content with increased salinity. Together, this work demonstrates an ecological approach to overcome the current limitations of cultivation strategies. Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid production in these systems while minimizing the invasion of non-target algae (competitors) and grazers (predators) will improve the economic viability of algal biofuel. In this study, we manipulate a basic environmental parameter, salinity, to promote algal growth and limit invading organisms. We monitor the growth of marine microalga Nannochloropsis salina and invasion of algal competitors and predators in open cultures grown at different salinities ranging from brackish to hypersaline. Algal growth and biomass was greatest at salinities of 22 and 34 PSU, whereas the density of invading organisms was lowest at 22 PSU. To determine if lipid accumulation could be maximized by salinity stress, we grew N. salina at 22 PSU until the populations were at stationary phase and then increased salinity to 34, 46, and 58 PSU. Gravimetrically determined lipid content increased significantly at these higher salinities, and was highest at 34 PSU (36% dry tissue mass). Analysis of Folch extracts by FT-ICR mass spectrometry showed a monotonic increase in triglyceride content and decreased membrane lipid content with increased salinity. Together, this work demonstrates an ecological approach to overcome the current limitations of cultivation strategies. •Marine microalgae Nannochloropsis salina can be grown for biofuel production.•We evaluate effects of salinity on algae growth, lipids and invading organisms.•N. salina growth fastest at salinities of 22–34 PSU.•Invading organisms are limited at 22 PSU.•Highest lipid accumulation is observed when salinity is changed from 22 to 34 PSU. Fundamental research as part of the National Alliance for Advanced Biofuels and Bioproducts for the advancement of technology for algal based biofuel products. |
| Author | Boeing, Wiebke J. Bartley, Meridith L. Holguin, F. Omar Schaub, Tanner Corcoran, Alina A. |
| Author_xml | – sequence: 1 givenname: Meridith L. surname: Bartley fullname: Bartley, Meridith L. organization: Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA – sequence: 2 givenname: Wiebke J. surname: Boeing fullname: Boeing, Wiebke J. email: wboeing@nmsu.edu organization: Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA – sequence: 3 givenname: Alina A. surname: Corcoran fullname: Corcoran, Alina A. organization: Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA – sequence: 4 givenname: F. Omar surname: Holguin fullname: Holguin, F. Omar organization: Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM 88003, USA – sequence: 5 givenname: Tanner surname: Schaub fullname: Schaub, Tanner organization: Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM 88003, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27469160$$DView record in Pascal Francis https://www.osti.gov/biblio/1096408$$D View this record in Osti.gov |
| BookMark | eNqFkU9r3DAQxUVJoZu0X6GYQqEXb0eyLVvQQ0tI_0BoL7kLrTzanUWWtpI3Id--2jjtoZeFETro956Y9y7ZRYgBGXvLYc2By4_79YbiVA6uBfBmDWWEfMFWfOibWihQF2wFSvJadU37il3mvAfgLbR8xR5unEM75yq6KhtPgebHKoZqm-LDvKtMGCtPBxorY-1xOnozU3ktcPnPHdFXE9kUjd-a6qcJIdqdjykeMuXFzjxZULg3I4VtFdPWBMpTfs1eOuMzvnm-r9jd15u76-_17a9vP66_3Na2Az7X2CirGiE3HfLRgRo2jRigsyCt5a5HaFyrFAiw2GOvzMhxMwhnhMS2F6q5Yu8W25hn0tnSjHZnYwhlZ81LKC0MBfqwQIcUfx8xz3qibNF7EzAes-ZykD1XTavOox3AAJx3oqDvn1GTrfEumWAp60OiyaRHLfpWKi6hcHLhSo45J3T_EA76VLDe678F61PBGsoIWYSf_hOW9Z76mZMhf17-eZFjif-eMJ3iwWBxpHRKZ4x0zuIPcIvJSA |
| CitedBy_id | crossref_primary_10_12677_isl_2024_83050 crossref_primary_10_1016_j_biortech_2017_04_074 crossref_primary_10_1016_j_rser_2018_07_050 crossref_primary_10_1016_j_ibiod_2014_06_022 crossref_primary_10_1016_j_biortech_2015_10_068 crossref_primary_10_3389_fpls_2025_1568423 crossref_primary_10_3390_w12092351 crossref_primary_10_26634_jme_4_1_2576 crossref_primary_10_1016_j_rser_2016_12_120 crossref_primary_10_1080_10643389_2019_1656510 crossref_primary_10_1002_cjce_22407 crossref_primary_10_1016_j_nexus_2022_100054 crossref_primary_10_1002_jctb_7229 crossref_primary_10_1016_j_rser_2018_04_086 crossref_primary_10_1016_j_jes_2014_08_007 crossref_primary_10_1088_1755_1315_82_1_012008 crossref_primary_10_1016_j_biortech_2017_12_065 crossref_primary_10_1016_j_biortech_2016_04_101 crossref_primary_10_1007_s10811_020_02241_x crossref_primary_10_1088_1755_1315_1260_1_012007 crossref_primary_10_1016_j_algal_2018_07_010 crossref_primary_10_1007_s11738_019_2813_1 crossref_primary_10_1080_09593330_2024_2374027 crossref_primary_10_1016_j_algal_2019_101772 crossref_primary_10_1016_j_biortech_2017_12_102 crossref_primary_10_1016_j_enconman_2016_05_041 crossref_primary_10_17341_gazimmfd_337627 crossref_primary_10_1016_j_algal_2024_103751 crossref_primary_10_1007_s10811_017_1308_y crossref_primary_10_1016_j_algal_2020_102074 crossref_primary_10_1016_j_algal_2022_102703 crossref_primary_10_1007_s13399_022_03434_9 crossref_primary_10_1016_j_algal_2015_02_028 crossref_primary_10_1016_j_algal_2018_02_002 crossref_primary_10_1016_j_biteb_2022_101321 crossref_primary_10_1089_ees_2014_0219 crossref_primary_10_1016_j_biortech_2015_07_101 crossref_primary_10_1186_s13068_018_1064_5 crossref_primary_10_1002_elsc_201500125 crossref_primary_10_1016_j_fuproc_2016_06_039 crossref_primary_10_1590_0102_33062017abb0059 crossref_primary_10_1007_s12155_025_10851_x crossref_primary_10_1016_j_algal_2023_102996 crossref_primary_10_1016_j_chemosphere_2017_04_055 crossref_primary_10_1016_j_biortech_2015_03_125 crossref_primary_10_3390_microorganisms11081875 crossref_primary_10_1016_j_biortech_2014_05_055 crossref_primary_10_3389_fmicb_2016_00546 crossref_primary_10_1016_j_algal_2015_09_020 crossref_primary_10_1016_j_rser_2019_03_026 crossref_primary_10_1016_j_biortech_2016_11_004 crossref_primary_10_1007_s10811_017_1377_y crossref_primary_10_1007_s10811_018_1437_y crossref_primary_10_1016_j_ijhydene_2014_11_110 crossref_primary_10_1002_bit_27528 crossref_primary_10_1016_j_rser_2018_08_027 crossref_primary_10_1016_j_anifeedsci_2020_114761 crossref_primary_10_1016_j_phytochem_2016_06_001 crossref_primary_10_1016_j_algal_2019_101599 crossref_primary_10_1186_s13068_025_02656_z crossref_primary_10_1088_1755_1315_744_1_012045 crossref_primary_10_1016_j_biombioe_2014_04_005 crossref_primary_10_3389_fpls_2025_1616863 crossref_primary_10_3390_foods11020215 crossref_primary_10_1007_s11356_017_0274_x crossref_primary_10_1016_j_algal_2025_104194 crossref_primary_10_1007_s10811_020_02258_2 crossref_primary_10_1016_j_bcab_2023_102660 crossref_primary_10_1186_s12944_016_0375_4 crossref_primary_10_1016_j_biortech_2018_01_062 crossref_primary_10_1016_j_biortech_2020_123747 crossref_primary_10_1016_j_biortech_2014_07_008 crossref_primary_10_1016_j_biortech_2015_12_032 crossref_primary_10_1016_j_biortech_2017_07_008 crossref_primary_10_1016_j_rser_2017_10_038 crossref_primary_10_1016_j_algal_2022_102734 crossref_primary_10_1016_j_algal_2016_08_003 crossref_primary_10_1016_j_ecolind_2016_06_039 crossref_primary_10_3390_en14238112 crossref_primary_10_3390_md12041891 crossref_primary_10_5004_dwt_2021_26848 crossref_primary_10_3389_fmicb_2025_1601691 crossref_primary_10_1016_j_biteb_2022_101252 crossref_primary_10_1007_s13399_022_03033_8 crossref_primary_10_1186_s12934_019_1228_4 crossref_primary_10_1007_s13205_021_02851_3 crossref_primary_10_3390_plants12193372 crossref_primary_10_1039_D2SE00574C crossref_primary_10_3390_en14227687 crossref_primary_10_3390_plants12193495 crossref_primary_10_1016_j_ecoenv_2019_01_089 crossref_primary_10_3390_plants10071289 crossref_primary_10_1016_j_biortech_2020_123462 crossref_primary_10_1111_raq_12592 crossref_primary_10_1016_j_algal_2016_11_021 crossref_primary_10_1016_j_jclepro_2016_08_068 crossref_primary_10_1002_jctb_6746 crossref_primary_10_1007_s10811_015_0567_8 crossref_primary_10_1007_s10811_017_1112_8 crossref_primary_10_1186_s13068_021_01970_6 crossref_primary_10_1016_j_biortech_2022_127691 crossref_primary_10_1016_j_enconman_2016_08_045 crossref_primary_10_1016_j_gca_2022_12_021 crossref_primary_10_1007_s11099_017_0731_2 crossref_primary_10_1016_j_biombioe_2021_106108 crossref_primary_10_1016_j_biortech_2015_05_019 crossref_primary_10_1007_s10811_018_1388_3 crossref_primary_10_1016_j_jclepro_2021_127295 crossref_primary_10_1080_09593330_2013_831487 crossref_primary_10_1080_09670262_2021_1970234 crossref_primary_10_1007_s10811_017_1150_2 crossref_primary_10_1016_j_algal_2018_101406 crossref_primary_10_1016_j_biortech_2025_133261 crossref_primary_10_36899_JAPS_2023_6_0682 crossref_primary_10_1007_s10811_013_0177_2 crossref_primary_10_1016_j_chemosphere_2022_135164 crossref_primary_10_1016_j_biotechadv_2014_09_002 crossref_primary_10_3389_fmicb_2017_00515 crossref_primary_10_1007_s10668_021_01910_2 crossref_primary_10_1007_s43393_023_00195_y crossref_primary_10_1016_j_biombioe_2014_03_019 crossref_primary_10_1016_j_biombioe_2024_107257 crossref_primary_10_3390_md14040061 crossref_primary_10_1186_s13068_022_02249_0 crossref_primary_10_1007_s10811_019_01836_3 crossref_primary_10_1016_j_algal_2017_05_025 crossref_primary_10_1016_j_algal_2020_101883 crossref_primary_10_1007_s12155_021_10349_2 crossref_primary_10_1186_1754_6834_7_97 crossref_primary_10_1080_09593330_2016_1158867 crossref_primary_10_1007_s11814_015_0089_8 crossref_primary_10_1007_s10811_025_03624_8 crossref_primary_10_1002_bbb_2137 crossref_primary_10_1016_j_rser_2018_11_040 crossref_primary_10_3389_fmicb_2019_01895 crossref_primary_10_1016_j_rser_2017_04_110 crossref_primary_10_1007_s10811_021_02520_1 crossref_primary_10_1016_j_joei_2015_03_008 crossref_primary_10_1089_ees_2017_0521 |
| Cites_doi | 10.1002/bit.22033 10.3354/meps110293 10.1016/S1389-0344(03)00061-3 10.1023/A:1008165606234 10.1016/j.biotechadv.2007.02.001 10.1111/j.0022-3646.1990.00393.x 10.1016/0144-4565(87)90006-0 10.1016/j.rser.2009.10.009 10.1023/A:1003725626504 10.1016/S0168-1656(00)00353-9 10.1586/14789450.2.2.253 10.1007/s10529-006-9026-6 10.1023/A:1023830707022 10.1016/j.biombioe.2012.01.046 10.1007/BF02181949 10.1007/s10811-008-9392-7 10.1016/j.rser.2009.07.020 10.1128/EC.00272-09 10.1016/j.biombioe.2011.02.021 10.1093/plankt/16.4.375 10.1016/S0044-8486(00)00533-0 10.1007/s00253-011-3170-1 10.1016/S1389-0344(03)00063-7 10.1016/S0021-9258(18)64849-5 10.1016/j.plipres.2006.01.001 10.1021/jf0010376 10.1139/m62-029 10.1016/j.algal.2012.11.005 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
| CorporateAuthor | New Mexico State Univ., Las Cruces, NM (United States) |
| CorporateAuthor_xml | – name: New Mexico State Univ., Las Cruces, NM (United States) |
| DBID | AAYXX CITATION IQODW 7QO 7ST 7U6 8FD C1K FR3 M7N P64 7S9 L.6 OTOTI |
| DOI | 10.1016/j.biombioe.2013.03.026 |
| DatabaseName | CrossRef Pascal-Francis Biotechnology Research Abstracts Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic OSTI.GOV |
| DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Sustainability Science Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Biotechnology Research Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1873-2909 |
| EndPage | 88 |
| ExternalDocumentID | 1096408 27469160 10_1016_j_biombioe_2013_03_026 S0961953413001633 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7QO 7ST 7U6 8FD C1K FR3 M7N P64 7S9 L.6 OTOTI |
| ID | FETCH-LOGICAL-c501t-e39c9326b5e1df098b32805c06cc1f7e03f499020ce7e79ad1eb82fa26e47293 |
| ISICitedReferencesCount | 154 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321595800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0961-9534 |
| IngestDate | Tue Jun 25 16:20:48 EDT 2024 Sun Sep 28 03:19:14 EDT 2025 Tue Oct 07 09:44:47 EDT 2025 Wed Apr 02 07:26:15 EDT 2025 Tue Nov 18 22:36:59 EST 2025 Sat Nov 29 07:07:56 EST 2025 Fri Feb 23 02:34:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2013 |
| Keywords | Lipid profile Lipid accumulation Micro-algae biodiesel Invasive organisms Invaders Salinity Growth rate Algae Lipids Biomass Heterokontophyta Invasive species Plankton Alga Biological accumulation |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c501t-e39c9326b5e1df098b32805c06cc1f7e03f499020ce7e79ad1eb82fa26e47293 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 EE0003046 USDOE Office of Energy Efficiency and Renewable Energy (EERE) DOE-DANF-0003046-K2 |
| PQID | 1500801152 |
| PQPubID | 23462 |
| PageCount | 6 |
| ParticipantIDs | osti_scitechconnect_1096408 proquest_miscellaneous_1686719349 proquest_miscellaneous_1500801152 pascalfrancis_primary_27469160 crossref_primary_10_1016_j_biombioe_2013_03_026 crossref_citationtrail_10_1016_j_biombioe_2013_03_026 elsevier_sciencedirect_doi_10_1016_j_biombioe_2013_03_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: United States |
| PublicationTitle | Biomass & bioenergy |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Rebolloso-Fuentes, Navarro-Pérez, García-Camacho, Ramos-Miras, Guil-Guerrero (bib11) 2001; 49 Rodolfi, Chini Zittelli, Barsanti, Rosati, Tredici (bib15) 2003; 20 Boussiba, Vonshak, Cohen, Avissar, Richmond (bib21) 1987; 12 Leakey, Burkill, Sleigh (bib23) 1994; 16 Cheng-Wu, Zmora, Kopel, Richmond (bib10) 2001; 195 Chini Zittelli, Rodolfi, Tredici (bib12) 2003; 15 Wang, Ullrich, Joo, Waffenschmidt, Goodenough (bib19) 2009; 8 Hu, Gao (bib28) 2006; 28 Folch, Lees, Stanley (bib25) 1957; 226 Doan, Sivaloganathan, Obbard (bib6) 2011; 35 Guillard, Ryther (bib22) 1962; 8 Chini Zittelli, Pastorelli, Tredici (bib13) 2000; 12 Abu-Rezq, Al-Musallam, Al-Shimmari, Dias (bib17) 1999; 403 Richmond, Cheng-Wu (bib14) 2001; 85 Guschina, Harwood (bib18) 2006; 45 Renaud, Parry (bib20) 1994; 6 Mata, Martins, Caetano (bib4) 2010; 14 Holguin, Schaub (bib26) 2013; 2 Roessler (bib8) 1990; 26 Griffiths, Harrison (bib16) 2009; 21 British Petroleum (bib1) 2011 Sheehan, Dunahay, Benemann, Roessler (bib30) 1998 July Rocha, Garcia, Henriques (bib9) 2003; 20 Han, Gross (bib27) 2005; 2 Rodolfi, Chini Zittelli, Bassi, Padovani, Biondi, Bonini (bib5) 2008; 102 Stoecker, Gifford, Putt (bib24) 1994; 110 Chisti (bib3) 2007; 25 Moazami, Ashori, Ranjbar, Tangestani, Eghtesadi, Nejad (bib7) 2012; 39 Pal, Khozin-Goldberg, Cohen, Boussiba (bib29) 2011; 90 Brennan, Owende (bib2) 2010; 14 Cheng-Wu (10.1016/j.biombioe.2013.03.026_bib10) 2001; 195 Chini Zittelli (10.1016/j.biombioe.2013.03.026_bib13) 2000; 12 Chini Zittelli (10.1016/j.biombioe.2013.03.026_bib12) 2003; 15 Rocha (10.1016/j.biombioe.2013.03.026_bib9) 2003; 20 Wang (10.1016/j.biombioe.2013.03.026_bib19) 2009; 8 Richmond (10.1016/j.biombioe.2013.03.026_bib14) 2001; 85 Guschina (10.1016/j.biombioe.2013.03.026_bib18) 2006; 45 Moazami (10.1016/j.biombioe.2013.03.026_bib7) 2012; 39 Doan (10.1016/j.biombioe.2013.03.026_bib6) 2011; 35 Roessler (10.1016/j.biombioe.2013.03.026_bib8) 1990; 26 Han (10.1016/j.biombioe.2013.03.026_bib27) 2005; 2 Boussiba (10.1016/j.biombioe.2013.03.026_bib21) 1987; 12 Hu (10.1016/j.biombioe.2013.03.026_bib28) 2006; 28 Griffiths (10.1016/j.biombioe.2013.03.026_bib16) 2009; 21 Mata (10.1016/j.biombioe.2013.03.026_bib4) 2010; 14 Abu-Rezq (10.1016/j.biombioe.2013.03.026_bib17) 1999; 403 Renaud (10.1016/j.biombioe.2013.03.026_bib20) 1994; 6 Chisti (10.1016/j.biombioe.2013.03.026_bib3) 2007; 25 Rodolfi (10.1016/j.biombioe.2013.03.026_bib5) 2008; 102 Folch (10.1016/j.biombioe.2013.03.026_bib25) 1957; 226 Sheehan (10.1016/j.biombioe.2013.03.026_bib30) 1998 Pal (10.1016/j.biombioe.2013.03.026_bib29) 2011; 90 Rodolfi (10.1016/j.biombioe.2013.03.026_bib15) 2003; 20 Brennan (10.1016/j.biombioe.2013.03.026_bib2) 2010; 14 Rebolloso-Fuentes (10.1016/j.biombioe.2013.03.026_bib11) 2001; 49 Stoecker (10.1016/j.biombioe.2013.03.026_bib24) 1994; 110 Holguin (10.1016/j.biombioe.2013.03.026_bib26) 2013; 2 Leakey (10.1016/j.biombioe.2013.03.026_bib23) 1994; 16 Guillard (10.1016/j.biombioe.2013.03.026_bib22) 1962; 8 British Petroleum (10.1016/j.biombioe.2013.03.026_bib1) 2011 |
| References_xml | – volume: 12 start-page: 521 year: 2000 end-page: 526 ident: bib13 article-title: A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of publication-title: J Appl Phycol – volume: 21 start-page: 493 year: 2009 end-page: 507 ident: bib16 article-title: Lipid productivity as a key characteristic for choosing algal species for biodiesel production publication-title: J Appl Phycol – volume: 110 start-page: 293 year: 1994 end-page: 299 ident: bib24 article-title: Preservation of marine planktonic ciliates–losses and cell shrinkage during fixation publication-title: Mar Ecol Prog Ser – volume: 39 start-page: 449 year: 2012 end-page: 453 ident: bib7 article-title: Large-scale biodiesel production using microalgae biomass of publication-title: Biomass Bioenerg – volume: 16 start-page: 375 year: 1994 end-page: 389 ident: bib23 article-title: A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations publication-title: J Plankton Res – volume: 35 start-page: 2534 year: 2011 end-page: 2544 ident: bib6 article-title: Screening of marine microalgae for biodiesel feedstock publication-title: Biomass Bioenerg – volume: 49 start-page: 2966 year: 2001 end-page: 2972 ident: bib11 article-title: Biomass nutrient profiles of the microalga publication-title: J Agric Food Chem – volume: 226 start-page: 497 year: 1957 end-page: 509 ident: bib25 article-title: A simple method for the isolation and purification of total lipids from animal tissues publication-title: J Biol Chem – volume: 403 start-page: 97 year: 1999 end-page: 107 ident: bib17 article-title: Optimum production conditions for different high-quality marine algae publication-title: Hydrobiologia – year: 2011 ident: bib1 article-title: BP statistical review of World energy – volume: 20 start-page: 237 year: 2003 end-page: 242 ident: bib9 article-title: Growth aspects of the marine microalga publication-title: Biomol Eng – volume: 195 start-page: 35 year: 2001 end-page: 49 ident: bib10 article-title: An industrial-size flat plate glass reactor for mass production of publication-title: Aquaculture – volume: 8 start-page: 1856 year: 2009 end-page: 1868 ident: bib19 article-title: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless publication-title: Eukaryot Cell – volume: 28 start-page: 987 year: 2006 end-page: 992 ident: bib28 article-title: Response of growth and fatty acid compositions of publication-title: Biotechnol Lett – volume: 90 start-page: 1429 year: 2011 end-page: 1441 ident: bib29 article-title: The effect of light, salinity, and nitrogen availability on lipid production by publication-title: Appl Microbiol Biotechnol – volume: 15 start-page: 107 year: 2003 end-page: 114 ident: bib12 article-title: Mass cultivation of publication-title: J Appl Phycol – volume: 25 start-page: 294 year: 2007 end-page: 306 ident: bib3 article-title: Biodiesel from microalgae publication-title: Biotechnol Adv – volume: 8 start-page: 229 year: 1962 end-page: 239 ident: bib22 article-title: Studies of marine planktonic diatoms. I. publication-title: Can J Microbiol – volume: 2 start-page: 43 year: 2013 end-page: 50 ident: bib26 article-title: Characterization of microalgal lipid feedstocks by direct infusion FT-ICR mass spectrometry publication-title: Algal Res – volume: 26 start-page: 393 year: 1990 end-page: 399 ident: bib8 article-title: Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions publication-title: J Phycol – volume: 12 start-page: 37 year: 1987 end-page: 47 ident: bib21 article-title: Lipid and biomass production by the halotolerant microalgae publication-title: Biomass – volume: 102 start-page: 100 year: 2008 end-page: 112 ident: bib5 article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor publication-title: Biotechnol Bioeng – volume: 6 start-page: 347 year: 1994 end-page: 356 ident: bib20 article-title: Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae publication-title: J Appl Phycol – start-page: 328 year: 1998 July ident: bib30 article-title: A look back at the U.S. Department of Energy's aquatic species program–biodiesel from algae – volume: 14 start-page: 557 year: 2010 end-page: 577 ident: bib2 article-title: Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renew Sust Energ Rev – volume: 85 start-page: 259 year: 2001 end-page: 269 ident: bib14 article-title: Optimization of a flat plate glass reactor for mass production of publication-title: J Biotechnol – volume: 2 start-page: 253 year: 2005 end-page: 264 ident: bib27 article-title: Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes publication-title: Expert Rev Proteomic – volume: 45 start-page: 160 year: 2006 end-page: 186 ident: bib18 article-title: Lipids and lipid metabolism in eukaryotic algae publication-title: Prog Lipid Res – volume: 20 start-page: 243 year: 2003 end-page: 248 ident: bib15 article-title: Growth medium recycling in publication-title: Biomol Eng – volume: 14 start-page: 217 year: 2010 end-page: 232 ident: bib4 article-title: Microalgae for biodiesel production and other applications: a review publication-title: Renew Sust Energ Rev – volume: 102 start-page: 100 issue: 1 year: 2008 ident: 10.1016/j.biombioe.2013.03.026_bib5 article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor publication-title: Biotechnol Bioeng doi: 10.1002/bit.22033 – volume: 110 start-page: 293 issue: 2–3 year: 1994 ident: 10.1016/j.biombioe.2013.03.026_bib24 article-title: Preservation of marine planktonic ciliates–losses and cell shrinkage during fixation publication-title: Mar Ecol Prog Ser doi: 10.3354/meps110293 – volume: 20 start-page: 237 issue: 4 year: 2003 ident: 10.1016/j.biombioe.2013.03.026_bib9 article-title: Growth aspects of the marine microalga Nannochloropsis gaditana publication-title: Biomol Eng doi: 10.1016/S1389-0344(03)00061-3 – volume: 12 start-page: 521 issue: 3–5 year: 2000 ident: 10.1016/j.biombioe.2013.03.026_bib13 article-title: A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination publication-title: J Appl Phycol doi: 10.1023/A:1008165606234 – volume: 25 start-page: 294 issue: 3 year: 2007 ident: 10.1016/j.biombioe.2013.03.026_bib3 article-title: Biodiesel from microalgae publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2007.02.001 – volume: 26 start-page: 393 issue: 3 year: 1990 ident: 10.1016/j.biombioe.2013.03.026_bib8 article-title: Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions publication-title: J Phycol doi: 10.1111/j.0022-3646.1990.00393.x – volume: 12 start-page: 37 issue: 1 year: 1987 ident: 10.1016/j.biombioe.2013.03.026_bib21 article-title: Lipid and biomass production by the halotolerant microalgae Nannochloropsis salina publication-title: Biomass doi: 10.1016/0144-4565(87)90006-0 – volume: 14 start-page: 557 issue: 2 year: 2010 ident: 10.1016/j.biombioe.2013.03.026_bib2 article-title: Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.10.009 – volume: 403 start-page: 97 issue: 0 year: 1999 ident: 10.1016/j.biombioe.2013.03.026_bib17 article-title: Optimum production conditions for different high-quality marine algae publication-title: Hydrobiologia doi: 10.1023/A:1003725626504 – volume: 85 start-page: 259 issue: 3 year: 2001 ident: 10.1016/j.biombioe.2013.03.026_bib14 article-title: Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors publication-title: J Biotechnol doi: 10.1016/S0168-1656(00)00353-9 – volume: 2 start-page: 253 issue: 2 year: 2005 ident: 10.1016/j.biombioe.2013.03.026_bib27 article-title: Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes publication-title: Expert Rev Proteomic doi: 10.1586/14789450.2.2.253 – volume: 28 start-page: 987 issue: 3 year: 2006 ident: 10.1016/j.biombioe.2013.03.026_bib28 article-title: Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration publication-title: Biotechnol Lett doi: 10.1007/s10529-006-9026-6 – volume: 15 start-page: 107 issue: 2–3 year: 2003 ident: 10.1016/j.biombioe.2013.03.026_bib12 article-title: Mass cultivation of Nannochloropsis sp. in annular reactors publication-title: J Appl Phycol doi: 10.1023/A:1023830707022 – volume: 39 start-page: 449 year: 2012 ident: 10.1016/j.biombioe.2013.03.026_bib7 article-title: Large-scale biodiesel production using microalgae biomass of Nannochloropsis publication-title: Biomass Bioenerg doi: 10.1016/j.biombioe.2012.01.046 – volume: 6 start-page: 347 issue: 3 year: 1994 ident: 10.1016/j.biombioe.2013.03.026_bib20 article-title: Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae publication-title: J Appl Phycol doi: 10.1007/BF02181949 – volume: 21 start-page: 493 issue: 5 year: 2009 ident: 10.1016/j.biombioe.2013.03.026_bib16 article-title: Lipid productivity as a key characteristic for choosing algal species for biodiesel production publication-title: J Appl Phycol doi: 10.1007/s10811-008-9392-7 – volume: 14 start-page: 217 issue: 1 year: 2010 ident: 10.1016/j.biombioe.2013.03.026_bib4 article-title: Microalgae for biodiesel production and other applications: a review publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.07.020 – volume: 8 start-page: 1856 issue: 12 year: 2009 ident: 10.1016/j.biombioe.2013.03.026_bib19 article-title: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii publication-title: Eukaryot Cell doi: 10.1128/EC.00272-09 – volume: 35 start-page: 2534 issue: 7 year: 2011 ident: 10.1016/j.biombioe.2013.03.026_bib6 article-title: Screening of marine microalgae for biodiesel feedstock publication-title: Biomass Bioenerg doi: 10.1016/j.biombioe.2011.02.021 – volume: 16 start-page: 375 issue: 4 year: 1994 ident: 10.1016/j.biombioe.2013.03.026_bib23 article-title: A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations publication-title: J Plankton Res doi: 10.1093/plankt/16.4.375 – volume: 195 start-page: 35 issue: 1–2 year: 2001 ident: 10.1016/j.biombioe.2013.03.026_bib10 article-title: An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae) publication-title: Aquaculture doi: 10.1016/S0044-8486(00)00533-0 – volume: 90 start-page: 1429 issue: 4 year: 2011 ident: 10.1016/j.biombioe.2013.03.026_bib29 article-title: The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3170-1 – year: 2011 ident: 10.1016/j.biombioe.2013.03.026_bib1 – volume: 20 start-page: 243 issue: 4–6 year: 2003 ident: 10.1016/j.biombioe.2013.03.026_bib15 article-title: Growth medium recycling in Nannochloropsis sp. mass cultivation publication-title: Biomol Eng doi: 10.1016/S1389-0344(03)00063-7 – volume: 226 start-page: 497 issue: 1 year: 1957 ident: 10.1016/j.biombioe.2013.03.026_bib25 article-title: A simple method for the isolation and purification of total lipids from animal tissues publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)64849-5 – volume: 45 start-page: 160 issue: 2 year: 2006 ident: 10.1016/j.biombioe.2013.03.026_bib18 article-title: Lipids and lipid metabolism in eukaryotic algae publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2006.01.001 – volume: 49 start-page: 2966 issue: 6 year: 2001 ident: 10.1016/j.biombioe.2013.03.026_bib11 article-title: Biomass nutrient profiles of the microalga Nannochloropsis publication-title: J Agric Food Chem doi: 10.1021/jf0010376 – volume: 8 start-page: 229 issue: 2 year: 1962 ident: 10.1016/j.biombioe.2013.03.026_bib22 article-title: Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve publication-title: Can J Microbiol doi: 10.1139/m62-029 – start-page: 328 year: 1998 ident: 10.1016/j.biombioe.2013.03.026_bib30 – volume: 2 start-page: 43 issue: 1 year: 2013 ident: 10.1016/j.biombioe.2013.03.026_bib26 article-title: Characterization of microalgal lipid feedstocks by direct infusion FT-ICR mass spectrometry publication-title: Algal Res doi: 10.1016/j.algal.2012.11.005 |
| SSID | ssj0014041 |
| Score | 2.484794 |
| Snippet | Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid... Fundamental research as part of the National Alliance for Advanced Biofuels and Bioproducts for the advancement of technology for algal based biofuel products. |
| SourceID | osti proquest pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 83 |
| SubjectTerms | 09 BIOMASS FUELS Algal Biofuels Algal culture (microalgae) biofuels Biological and medical sciences biomass Biotechnology economic sustainability Fundamental and applied biological sciences. Psychology Invaders Invasive organisms Lipid accumulation lipid content Lipid profile mass spectrometry Methods. Procedures. Technologies Micro-algae biodiesel microalgae Nannochloropsis Nannochloropsis salina predators production technology Salinity salt stress triacylglycerols |
| Title | Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms |
| URI | https://dx.doi.org/10.1016/j.biombioe.2013.03.026 https://www.proquest.com/docview/1500801152 https://www.proquest.com/docview/1686719349 https://www.osti.gov/biblio/1096408 |
| Volume | 54 |
| WOSCitedRecordID | wos000321595800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2909 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014041 issn: 0961-9534 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcKihUpIVqkegpMti7fu0xKokAhcAhiNwse71uXVI7xEno3-AfM2OvHQOBlgNSZEXO7sT2fJ6dmZ0HIS9Ao4ilYp6hGI8MO3S5ETkqNnxluzE3I8FU2bVk7E0m_mwmPnY63-tcmM3cyzL_-los_iur4RwwG1Nn_4HdDVE4Ad-B6XAEtsPxVowfbiM0ihDzHjHmIuufg72t09jm6SKN-6GU6yvdvAsHR2merNW8f4UhepjhgZI3y-UFWPT5AuuWlORCXa9pUwbf665Qha55Xu8Opxh1VJSwArKqzC_c-kyXK-0ofw_PA5NCmp9ypVusfE5V9KXB3Fm-BCO5ctUO5rrht06oOF9XVRBGbf8F9pLwav-FdkS6Fm4i222Z7NgtoVp1uqmXZ3-n4K98EJcvsWgB3hgG7fGyfC3bUWl78iEYfRqPg-lwNj3lo8VXA9uQ4Xb9KX9dQeIO2WOeI0BQ7g3eDmfvmq0p2yzboTaX3Uo73_33f9J4ujkIcYzFDQt4HZOqj8pvKkGp50wfkH1toNBBBayHpKOyA3K_VbbygBwOt9mRMFQvD8Uj8k1jj-YJrbFH84xW2KMAHFpij7axh4M19miDPfoL9ipyYUmixh5tsPeYTEfD6dkbQ3f2MKRjWitDcSHRcACxYMWJKfyIM990pOlKaSWeMnkCljhYMlJ5yhNhbKnIZ0nIXGWDNcgPSTfLM_WEULCgQeMWFgyVdsxjX3jcT6wktBhIIZX0iFM__EDqqvfYfGUe1OGNl0HNtACZFpjwYW6PvGrmLaq6LzfOEDVvA629VlppABi9ce4xggHnYelmiTFuMNECkNmm3yMnP2GkuSC4RRfMO7NHntegCWB1wC2_MFP5ugjA3AOTEKw-9pcxLta4FNwWR7egc0zubd_ip6S7Wq7VM3JXblZpsTzRL8sPsG_vGw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+salinity+on+growth+and+lipid+accumulation+of+biofuel+microalga+Nannochloropsis+salina+and+invading+organisms&rft.jtitle=Biomass+%26+bioenergy&rft.au=Bartley%2C+Meridith&rft.au=Boeing%2C+Wiebke&rft.au=Corcoran%2C+Alina&rft.au=Holguin%2C+F&rft.date=2013-07-01&rft.issn=0961-9534&rft.volume=54&rft.spage=83&rft.epage=88&rft_id=info:doi/10.1016%2Fj.biombioe.2013.03.026&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |