Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms

Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid production in these systems while minimizing the invasion of non-target algae (competitors) and grazers (predators) will improve the economic viabil...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomass & bioenergy Ročník 54; číslo 2013; s. 83 - 88
Hlavní autori: Bartley, Meridith L., Boeing, Wiebke J., Corcoran, Alina A., Holguin, F. Omar, Schaub, Tanner
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.07.2013
Elsevier
Predmet:
ISSN:0961-9534, 1873-2909
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid production in these systems while minimizing the invasion of non-target algae (competitors) and grazers (predators) will improve the economic viability of algal biofuel. In this study, we manipulate a basic environmental parameter, salinity, to promote algal growth and limit invading organisms. We monitor the growth of marine microalga Nannochloropsis salina and invasion of algal competitors and predators in open cultures grown at different salinities ranging from brackish to hypersaline. Algal growth and biomass was greatest at salinities of 22 and 34 PSU, whereas the density of invading organisms was lowest at 22 PSU. To determine if lipid accumulation could be maximized by salinity stress, we grew N. salina at 22 PSU until the populations were at stationary phase and then increased salinity to 34, 46, and 58 PSU. Gravimetrically determined lipid content increased significantly at these higher salinities, and was highest at 34 PSU (36% dry tissue mass). Analysis of Folch extracts by FT-ICR mass spectrometry showed a monotonic increase in triglyceride content and decreased membrane lipid content with increased salinity. Together, this work demonstrates an ecological approach to overcome the current limitations of cultivation strategies. •Marine microalgae Nannochloropsis salina can be grown for biofuel production.•We evaluate effects of salinity on algae growth, lipids and invading organisms.•N. salina growth fastest at salinities of 22–34 PSU.•Invading organisms are limited at 22 PSU.•Highest lipid accumulation is observed when salinity is changed from 22 to 34 PSU.
AbstractList Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid production in these systems while minimizing the invasion of non-target algae (competitors) and grazers (predators) will improve the economic viability of algal biofuel. In this study, we manipulate a basic environmental parameter, salinity, to promote algal growth and limit invading organisms. We monitor the growth of marine microalga Nannochloropsis salina and invasion of algal competitors and predators in open cultures grown at different salinities ranging from brackish to hypersaline. Algal growth and biomass was greatest at salinities of 22 and 34 PSU, whereas the density of invading organisms was lowest at 22 PSU. To determine if lipid accumulation could be maximized by salinity stress, we grew N. salina at 22 PSU until the populations were at stationary phase and then increased salinity to 34, 46, and 58 PSU. Gravimetrically determined lipid content increased significantly at these higher salinities, and was highest at 34 PSU (36% dry tissue mass). Analysis of Folch extracts by FT-ICR mass spectrometry showed a monotonic increase in triglyceride content and decreased membrane lipid content with increased salinity. Together, this work demonstrates an ecological approach to overcome the current limitations of cultivation strategies.
Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid production in these systems while minimizing the invasion of non-target algae (competitors) and grazers (predators) will improve the economic viability of algal biofuel. In this study, we manipulate a basic environmental parameter, salinity, to promote algal growth and limit invading organisms. We monitor the growth of marine microalga Nannochloropsis salina and invasion of algal competitors and predators in open cultures grown at different salinities ranging from brackish to hypersaline. Algal growth and biomass was greatest at salinities of 22 and 34 PSU, whereas the density of invading organisms was lowest at 22 PSU. To determine if lipid accumulation could be maximized by salinity stress, we grew N. salina at 22 PSU until the populations were at stationary phase and then increased salinity to 34, 46, and 58 PSU. Gravimetrically determined lipid content increased significantly at these higher salinities, and was highest at 34 PSU (36% dry tissue mass). Analysis of Folch extracts by FT-ICR mass spectrometry showed a monotonic increase in triglyceride content and decreased membrane lipid content with increased salinity. Together, this work demonstrates an ecological approach to overcome the current limitations of cultivation strategies. •Marine microalgae Nannochloropsis salina can be grown for biofuel production.•We evaluate effects of salinity on algae growth, lipids and invading organisms.•N. salina growth fastest at salinities of 22–34 PSU.•Invading organisms are limited at 22 PSU.•Highest lipid accumulation is observed when salinity is changed from 22 to 34 PSU.
Fundamental research as part of the National Alliance for Advanced Biofuels and Bioproducts for the advancement of technology for algal based biofuel products.
Author Boeing, Wiebke J.
Bartley, Meridith L.
Holguin, F. Omar
Schaub, Tanner
Corcoran, Alina A.
Author_xml – sequence: 1
  givenname: Meridith L.
  surname: Bartley
  fullname: Bartley, Meridith L.
  organization: Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA
– sequence: 2
  givenname: Wiebke J.
  surname: Boeing
  fullname: Boeing, Wiebke J.
  email: wboeing@nmsu.edu
  organization: Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA
– sequence: 3
  givenname: Alina A.
  surname: Corcoran
  fullname: Corcoran, Alina A.
  organization: Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA
– sequence: 4
  givenname: F. Omar
  surname: Holguin
  fullname: Holguin, F. Omar
  organization: Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM 88003, USA
– sequence: 5
  givenname: Tanner
  surname: Schaub
  fullname: Schaub, Tanner
  organization: Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM 88003, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27469160$$DView record in Pascal Francis
https://www.osti.gov/biblio/1096408$$D View this record in Osti.gov
BookMark eNqFkU9r3DAQxUVJoZu0X6GYQqEXb0eyLVvQQ0tI_0BoL7kLrTzanUWWtpI3Id--2jjtoZeFETro956Y9y7ZRYgBGXvLYc2By4_79YbiVA6uBfBmDWWEfMFWfOibWihQF2wFSvJadU37il3mvAfgLbR8xR5unEM75yq6KhtPgebHKoZqm-LDvKtMGCtPBxorY-1xOnozU3ktcPnPHdFXE9kUjd-a6qcJIdqdjykeMuXFzjxZULg3I4VtFdPWBMpTfs1eOuMzvnm-r9jd15u76-_17a9vP66_3Na2Az7X2CirGiE3HfLRgRo2jRigsyCt5a5HaFyrFAiw2GOvzMhxMwhnhMS2F6q5Yu8W25hn0tnSjHZnYwhlZ81LKC0MBfqwQIcUfx8xz3qibNF7EzAes-ZykD1XTavOox3AAJx3oqDvn1GTrfEumWAp60OiyaRHLfpWKi6hcHLhSo45J3T_EA76VLDe678F61PBGsoIWYSf_hOW9Z76mZMhf17-eZFjif-eMJ3iwWBxpHRKZ4x0zuIPcIvJSA
CitedBy_id crossref_primary_10_12677_isl_2024_83050
crossref_primary_10_1016_j_biortech_2017_04_074
crossref_primary_10_1016_j_rser_2018_07_050
crossref_primary_10_1016_j_ibiod_2014_06_022
crossref_primary_10_1016_j_biortech_2015_10_068
crossref_primary_10_3389_fpls_2025_1568423
crossref_primary_10_3390_w12092351
crossref_primary_10_26634_jme_4_1_2576
crossref_primary_10_1016_j_rser_2016_12_120
crossref_primary_10_1080_10643389_2019_1656510
crossref_primary_10_1002_cjce_22407
crossref_primary_10_1016_j_nexus_2022_100054
crossref_primary_10_1002_jctb_7229
crossref_primary_10_1016_j_rser_2018_04_086
crossref_primary_10_1016_j_jes_2014_08_007
crossref_primary_10_1088_1755_1315_82_1_012008
crossref_primary_10_1016_j_biortech_2017_12_065
crossref_primary_10_1016_j_biortech_2016_04_101
crossref_primary_10_1007_s10811_020_02241_x
crossref_primary_10_1088_1755_1315_1260_1_012007
crossref_primary_10_1016_j_algal_2018_07_010
crossref_primary_10_1007_s11738_019_2813_1
crossref_primary_10_1080_09593330_2024_2374027
crossref_primary_10_1016_j_algal_2019_101772
crossref_primary_10_1016_j_biortech_2017_12_102
crossref_primary_10_1016_j_enconman_2016_05_041
crossref_primary_10_17341_gazimmfd_337627
crossref_primary_10_1016_j_algal_2024_103751
crossref_primary_10_1007_s10811_017_1308_y
crossref_primary_10_1016_j_algal_2020_102074
crossref_primary_10_1016_j_algal_2022_102703
crossref_primary_10_1007_s13399_022_03434_9
crossref_primary_10_1016_j_algal_2015_02_028
crossref_primary_10_1016_j_algal_2018_02_002
crossref_primary_10_1016_j_biteb_2022_101321
crossref_primary_10_1089_ees_2014_0219
crossref_primary_10_1016_j_biortech_2015_07_101
crossref_primary_10_1186_s13068_018_1064_5
crossref_primary_10_1002_elsc_201500125
crossref_primary_10_1016_j_fuproc_2016_06_039
crossref_primary_10_1590_0102_33062017abb0059
crossref_primary_10_1007_s12155_025_10851_x
crossref_primary_10_1016_j_algal_2023_102996
crossref_primary_10_1016_j_chemosphere_2017_04_055
crossref_primary_10_1016_j_biortech_2015_03_125
crossref_primary_10_3390_microorganisms11081875
crossref_primary_10_1016_j_biortech_2014_05_055
crossref_primary_10_3389_fmicb_2016_00546
crossref_primary_10_1016_j_algal_2015_09_020
crossref_primary_10_1016_j_rser_2019_03_026
crossref_primary_10_1016_j_biortech_2016_11_004
crossref_primary_10_1007_s10811_017_1377_y
crossref_primary_10_1007_s10811_018_1437_y
crossref_primary_10_1016_j_ijhydene_2014_11_110
crossref_primary_10_1002_bit_27528
crossref_primary_10_1016_j_rser_2018_08_027
crossref_primary_10_1016_j_anifeedsci_2020_114761
crossref_primary_10_1016_j_phytochem_2016_06_001
crossref_primary_10_1016_j_algal_2019_101599
crossref_primary_10_1186_s13068_025_02656_z
crossref_primary_10_1088_1755_1315_744_1_012045
crossref_primary_10_1016_j_biombioe_2014_04_005
crossref_primary_10_3389_fpls_2025_1616863
crossref_primary_10_3390_foods11020215
crossref_primary_10_1007_s11356_017_0274_x
crossref_primary_10_1016_j_algal_2025_104194
crossref_primary_10_1007_s10811_020_02258_2
crossref_primary_10_1016_j_bcab_2023_102660
crossref_primary_10_1186_s12944_016_0375_4
crossref_primary_10_1016_j_biortech_2018_01_062
crossref_primary_10_1016_j_biortech_2020_123747
crossref_primary_10_1016_j_biortech_2014_07_008
crossref_primary_10_1016_j_biortech_2015_12_032
crossref_primary_10_1016_j_biortech_2017_07_008
crossref_primary_10_1016_j_rser_2017_10_038
crossref_primary_10_1016_j_algal_2022_102734
crossref_primary_10_1016_j_algal_2016_08_003
crossref_primary_10_1016_j_ecolind_2016_06_039
crossref_primary_10_3390_en14238112
crossref_primary_10_3390_md12041891
crossref_primary_10_5004_dwt_2021_26848
crossref_primary_10_3389_fmicb_2025_1601691
crossref_primary_10_1016_j_biteb_2022_101252
crossref_primary_10_1007_s13399_022_03033_8
crossref_primary_10_1186_s12934_019_1228_4
crossref_primary_10_1007_s13205_021_02851_3
crossref_primary_10_3390_plants12193372
crossref_primary_10_1039_D2SE00574C
crossref_primary_10_3390_en14227687
crossref_primary_10_3390_plants12193495
crossref_primary_10_1016_j_ecoenv_2019_01_089
crossref_primary_10_3390_plants10071289
crossref_primary_10_1016_j_biortech_2020_123462
crossref_primary_10_1111_raq_12592
crossref_primary_10_1016_j_algal_2016_11_021
crossref_primary_10_1016_j_jclepro_2016_08_068
crossref_primary_10_1002_jctb_6746
crossref_primary_10_1007_s10811_015_0567_8
crossref_primary_10_1007_s10811_017_1112_8
crossref_primary_10_1186_s13068_021_01970_6
crossref_primary_10_1016_j_biortech_2022_127691
crossref_primary_10_1016_j_enconman_2016_08_045
crossref_primary_10_1016_j_gca_2022_12_021
crossref_primary_10_1007_s11099_017_0731_2
crossref_primary_10_1016_j_biombioe_2021_106108
crossref_primary_10_1016_j_biortech_2015_05_019
crossref_primary_10_1007_s10811_018_1388_3
crossref_primary_10_1016_j_jclepro_2021_127295
crossref_primary_10_1080_09593330_2013_831487
crossref_primary_10_1080_09670262_2021_1970234
crossref_primary_10_1007_s10811_017_1150_2
crossref_primary_10_1016_j_algal_2018_101406
crossref_primary_10_1016_j_biortech_2025_133261
crossref_primary_10_36899_JAPS_2023_6_0682
crossref_primary_10_1007_s10811_013_0177_2
crossref_primary_10_1016_j_chemosphere_2022_135164
crossref_primary_10_1016_j_biotechadv_2014_09_002
crossref_primary_10_3389_fmicb_2017_00515
crossref_primary_10_1007_s10668_021_01910_2
crossref_primary_10_1007_s43393_023_00195_y
crossref_primary_10_1016_j_biombioe_2014_03_019
crossref_primary_10_1016_j_biombioe_2024_107257
crossref_primary_10_3390_md14040061
crossref_primary_10_1186_s13068_022_02249_0
crossref_primary_10_1007_s10811_019_01836_3
crossref_primary_10_1016_j_algal_2017_05_025
crossref_primary_10_1016_j_algal_2020_101883
crossref_primary_10_1007_s12155_021_10349_2
crossref_primary_10_1186_1754_6834_7_97
crossref_primary_10_1080_09593330_2016_1158867
crossref_primary_10_1007_s11814_015_0089_8
crossref_primary_10_1007_s10811_025_03624_8
crossref_primary_10_1002_bbb_2137
crossref_primary_10_1016_j_rser_2018_11_040
crossref_primary_10_3389_fmicb_2019_01895
crossref_primary_10_1016_j_rser_2017_04_110
crossref_primary_10_1007_s10811_021_02520_1
crossref_primary_10_1016_j_joei_2015_03_008
crossref_primary_10_1089_ees_2017_0521
Cites_doi 10.1002/bit.22033
10.3354/meps110293
10.1016/S1389-0344(03)00061-3
10.1023/A:1008165606234
10.1016/j.biotechadv.2007.02.001
10.1111/j.0022-3646.1990.00393.x
10.1016/0144-4565(87)90006-0
10.1016/j.rser.2009.10.009
10.1023/A:1003725626504
10.1016/S0168-1656(00)00353-9
10.1586/14789450.2.2.253
10.1007/s10529-006-9026-6
10.1023/A:1023830707022
10.1016/j.biombioe.2012.01.046
10.1007/BF02181949
10.1007/s10811-008-9392-7
10.1016/j.rser.2009.07.020
10.1128/EC.00272-09
10.1016/j.biombioe.2011.02.021
10.1093/plankt/16.4.375
10.1016/S0044-8486(00)00533-0
10.1007/s00253-011-3170-1
10.1016/S1389-0344(03)00063-7
10.1016/S0021-9258(18)64849-5
10.1016/j.plipres.2006.01.001
10.1021/jf0010376
10.1139/m62-029
10.1016/j.algal.2012.11.005
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
CorporateAuthor New Mexico State Univ., Las Cruces, NM (United States)
CorporateAuthor_xml – name: New Mexico State Univ., Las Cruces, NM (United States)
DBID AAYXX
CITATION
IQODW
7QO
7ST
7U6
8FD
C1K
FR3
M7N
P64
7S9
L.6
OTOTI
DOI 10.1016/j.biombioe.2013.03.026
DatabaseName CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Sustainability Science Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Biotechnology Research Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2909
EndPage 88
ExternalDocumentID 1096408
27469160
10_1016_j_biombioe_2013_03_026
S0961953413001633
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSJ
SSR
SSZ
T5K
VH1
WUQ
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7QO
7ST
7U6
8FD
C1K
FR3
M7N
P64
7S9
L.6
OTOTI
ID FETCH-LOGICAL-c501t-e39c9326b5e1df098b32805c06cc1f7e03f499020ce7e79ad1eb82fa26e47293
ISICitedReferencesCount 154
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321595800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0961-9534
IngestDate Tue Jun 25 16:20:48 EDT 2024
Sun Sep 28 03:19:14 EDT 2025
Tue Oct 07 09:44:47 EDT 2025
Wed Apr 02 07:26:15 EDT 2025
Tue Nov 18 22:36:59 EST 2025
Sat Nov 29 07:07:56 EST 2025
Fri Feb 23 02:34:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2013
Keywords Lipid profile
Lipid accumulation
Micro-algae biodiesel
Invasive organisms
Invaders
Salinity
Growth rate
Algae
Lipids
Biomass
Heterokontophyta
Invasive species
Plankton
Alga
Biological accumulation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c501t-e39c9326b5e1df098b32805c06cc1f7e03f499020ce7e79ad1eb82fa26e47293
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
EE0003046
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE-DANF-0003046-K2
PQID 1500801152
PQPubID 23462
PageCount 6
ParticipantIDs osti_scitechconnect_1096408
proquest_miscellaneous_1686719349
proquest_miscellaneous_1500801152
pascalfrancis_primary_27469160
crossref_primary_10_1016_j_biombioe_2013_03_026
crossref_citationtrail_10_1016_j_biombioe_2013_03_026
elsevier_sciencedirect_doi_10_1016_j_biombioe_2013_03_026
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Biomass & bioenergy
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Rebolloso-Fuentes, Navarro-Pérez, García-Camacho, Ramos-Miras, Guil-Guerrero (bib11) 2001; 49
Rodolfi, Chini Zittelli, Barsanti, Rosati, Tredici (bib15) 2003; 20
Boussiba, Vonshak, Cohen, Avissar, Richmond (bib21) 1987; 12
Leakey, Burkill, Sleigh (bib23) 1994; 16
Cheng-Wu, Zmora, Kopel, Richmond (bib10) 2001; 195
Chini Zittelli, Rodolfi, Tredici (bib12) 2003; 15
Wang, Ullrich, Joo, Waffenschmidt, Goodenough (bib19) 2009; 8
Hu, Gao (bib28) 2006; 28
Folch, Lees, Stanley (bib25) 1957; 226
Doan, Sivaloganathan, Obbard (bib6) 2011; 35
Guillard, Ryther (bib22) 1962; 8
Chini Zittelli, Pastorelli, Tredici (bib13) 2000; 12
Abu-Rezq, Al-Musallam, Al-Shimmari, Dias (bib17) 1999; 403
Richmond, Cheng-Wu (bib14) 2001; 85
Guschina, Harwood (bib18) 2006; 45
Renaud, Parry (bib20) 1994; 6
Mata, Martins, Caetano (bib4) 2010; 14
Holguin, Schaub (bib26) 2013; 2
Roessler (bib8) 1990; 26
Griffiths, Harrison (bib16) 2009; 21
British Petroleum (bib1) 2011
Sheehan, Dunahay, Benemann, Roessler (bib30) 1998 July
Rocha, Garcia, Henriques (bib9) 2003; 20
Han, Gross (bib27) 2005; 2
Rodolfi, Chini Zittelli, Bassi, Padovani, Biondi, Bonini (bib5) 2008; 102
Stoecker, Gifford, Putt (bib24) 1994; 110
Chisti (bib3) 2007; 25
Moazami, Ashori, Ranjbar, Tangestani, Eghtesadi, Nejad (bib7) 2012; 39
Pal, Khozin-Goldberg, Cohen, Boussiba (bib29) 2011; 90
Brennan, Owende (bib2) 2010; 14
Cheng-Wu (10.1016/j.biombioe.2013.03.026_bib10) 2001; 195
Chini Zittelli (10.1016/j.biombioe.2013.03.026_bib13) 2000; 12
Chini Zittelli (10.1016/j.biombioe.2013.03.026_bib12) 2003; 15
Rocha (10.1016/j.biombioe.2013.03.026_bib9) 2003; 20
Wang (10.1016/j.biombioe.2013.03.026_bib19) 2009; 8
Richmond (10.1016/j.biombioe.2013.03.026_bib14) 2001; 85
Guschina (10.1016/j.biombioe.2013.03.026_bib18) 2006; 45
Moazami (10.1016/j.biombioe.2013.03.026_bib7) 2012; 39
Doan (10.1016/j.biombioe.2013.03.026_bib6) 2011; 35
Roessler (10.1016/j.biombioe.2013.03.026_bib8) 1990; 26
Han (10.1016/j.biombioe.2013.03.026_bib27) 2005; 2
Boussiba (10.1016/j.biombioe.2013.03.026_bib21) 1987; 12
Hu (10.1016/j.biombioe.2013.03.026_bib28) 2006; 28
Griffiths (10.1016/j.biombioe.2013.03.026_bib16) 2009; 21
Mata (10.1016/j.biombioe.2013.03.026_bib4) 2010; 14
Abu-Rezq (10.1016/j.biombioe.2013.03.026_bib17) 1999; 403
Renaud (10.1016/j.biombioe.2013.03.026_bib20) 1994; 6
Chisti (10.1016/j.biombioe.2013.03.026_bib3) 2007; 25
Rodolfi (10.1016/j.biombioe.2013.03.026_bib5) 2008; 102
Folch (10.1016/j.biombioe.2013.03.026_bib25) 1957; 226
Sheehan (10.1016/j.biombioe.2013.03.026_bib30) 1998
Pal (10.1016/j.biombioe.2013.03.026_bib29) 2011; 90
Rodolfi (10.1016/j.biombioe.2013.03.026_bib15) 2003; 20
Brennan (10.1016/j.biombioe.2013.03.026_bib2) 2010; 14
Rebolloso-Fuentes (10.1016/j.biombioe.2013.03.026_bib11) 2001; 49
Stoecker (10.1016/j.biombioe.2013.03.026_bib24) 1994; 110
Holguin (10.1016/j.biombioe.2013.03.026_bib26) 2013; 2
Leakey (10.1016/j.biombioe.2013.03.026_bib23) 1994; 16
Guillard (10.1016/j.biombioe.2013.03.026_bib22) 1962; 8
British Petroleum (10.1016/j.biombioe.2013.03.026_bib1) 2011
References_xml – volume: 12
  start-page: 521
  year: 2000
  end-page: 526
  ident: bib13
  article-title: A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of
  publication-title: J Appl Phycol
– volume: 21
  start-page: 493
  year: 2009
  end-page: 507
  ident: bib16
  article-title: Lipid productivity as a key characteristic for choosing algal species for biodiesel production
  publication-title: J Appl Phycol
– volume: 110
  start-page: 293
  year: 1994
  end-page: 299
  ident: bib24
  article-title: Preservation of marine planktonic ciliates–losses and cell shrinkage during fixation
  publication-title: Mar Ecol Prog Ser
– volume: 39
  start-page: 449
  year: 2012
  end-page: 453
  ident: bib7
  article-title: Large-scale biodiesel production using microalgae biomass of
  publication-title: Biomass Bioenerg
– volume: 16
  start-page: 375
  year: 1994
  end-page: 389
  ident: bib23
  article-title: A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations
  publication-title: J Plankton Res
– volume: 35
  start-page: 2534
  year: 2011
  end-page: 2544
  ident: bib6
  article-title: Screening of marine microalgae for biodiesel feedstock
  publication-title: Biomass Bioenerg
– volume: 49
  start-page: 2966
  year: 2001
  end-page: 2972
  ident: bib11
  article-title: Biomass nutrient profiles of the microalga
  publication-title: J Agric Food Chem
– volume: 226
  start-page: 497
  year: 1957
  end-page: 509
  ident: bib25
  article-title: A simple method for the isolation and purification of total lipids from animal tissues
  publication-title: J Biol Chem
– volume: 403
  start-page: 97
  year: 1999
  end-page: 107
  ident: bib17
  article-title: Optimum production conditions for different high-quality marine algae
  publication-title: Hydrobiologia
– year: 2011
  ident: bib1
  article-title: BP statistical review of World energy
– volume: 20
  start-page: 237
  year: 2003
  end-page: 242
  ident: bib9
  article-title: Growth aspects of the marine microalga
  publication-title: Biomol Eng
– volume: 195
  start-page: 35
  year: 2001
  end-page: 49
  ident: bib10
  article-title: An industrial-size flat plate glass reactor for mass production of
  publication-title: Aquaculture
– volume: 8
  start-page: 1856
  year: 2009
  end-page: 1868
  ident: bib19
  article-title: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless
  publication-title: Eukaryot Cell
– volume: 28
  start-page: 987
  year: 2006
  end-page: 992
  ident: bib28
  article-title: Response of growth and fatty acid compositions of
  publication-title: Biotechnol Lett
– volume: 90
  start-page: 1429
  year: 2011
  end-page: 1441
  ident: bib29
  article-title: The effect of light, salinity, and nitrogen availability on lipid production by
  publication-title: Appl Microbiol Biotechnol
– volume: 15
  start-page: 107
  year: 2003
  end-page: 114
  ident: bib12
  article-title: Mass cultivation of
  publication-title: J Appl Phycol
– volume: 25
  start-page: 294
  year: 2007
  end-page: 306
  ident: bib3
  article-title: Biodiesel from microalgae
  publication-title: Biotechnol Adv
– volume: 8
  start-page: 229
  year: 1962
  end-page: 239
  ident: bib22
  article-title: Studies of marine planktonic diatoms. I.
  publication-title: Can J Microbiol
– volume: 2
  start-page: 43
  year: 2013
  end-page: 50
  ident: bib26
  article-title: Characterization of microalgal lipid feedstocks by direct infusion FT-ICR mass spectrometry
  publication-title: Algal Res
– volume: 26
  start-page: 393
  year: 1990
  end-page: 399
  ident: bib8
  article-title: Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions
  publication-title: J Phycol
– volume: 12
  start-page: 37
  year: 1987
  end-page: 47
  ident: bib21
  article-title: Lipid and biomass production by the halotolerant microalgae
  publication-title: Biomass
– volume: 102
  start-page: 100
  year: 2008
  end-page: 112
  ident: bib5
  article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor
  publication-title: Biotechnol Bioeng
– volume: 6
  start-page: 347
  year: 1994
  end-page: 356
  ident: bib20
  article-title: Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae
  publication-title: J Appl Phycol
– start-page: 328
  year: 1998 July
  ident: bib30
  article-title: A look back at the U.S. Department of Energy's aquatic species program–biodiesel from algae
– volume: 14
  start-page: 557
  year: 2010
  end-page: 577
  ident: bib2
  article-title: Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products
  publication-title: Renew Sust Energ Rev
– volume: 85
  start-page: 259
  year: 2001
  end-page: 269
  ident: bib14
  article-title: Optimization of a flat plate glass reactor for mass production of
  publication-title: J Biotechnol
– volume: 2
  start-page: 253
  year: 2005
  end-page: 264
  ident: bib27
  article-title: Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes
  publication-title: Expert Rev Proteomic
– volume: 45
  start-page: 160
  year: 2006
  end-page: 186
  ident: bib18
  article-title: Lipids and lipid metabolism in eukaryotic algae
  publication-title: Prog Lipid Res
– volume: 20
  start-page: 243
  year: 2003
  end-page: 248
  ident: bib15
  article-title: Growth medium recycling in
  publication-title: Biomol Eng
– volume: 14
  start-page: 217
  year: 2010
  end-page: 232
  ident: bib4
  article-title: Microalgae for biodiesel production and other applications: a review
  publication-title: Renew Sust Energ Rev
– volume: 102
  start-page: 100
  issue: 1
  year: 2008
  ident: 10.1016/j.biombioe.2013.03.026_bib5
  article-title: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22033
– volume: 110
  start-page: 293
  issue: 2–3
  year: 1994
  ident: 10.1016/j.biombioe.2013.03.026_bib24
  article-title: Preservation of marine planktonic ciliates–losses and cell shrinkage during fixation
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps110293
– volume: 20
  start-page: 237
  issue: 4
  year: 2003
  ident: 10.1016/j.biombioe.2013.03.026_bib9
  article-title: Growth aspects of the marine microalga Nannochloropsis gaditana
  publication-title: Biomol Eng
  doi: 10.1016/S1389-0344(03)00061-3
– volume: 12
  start-page: 521
  issue: 3–5
  year: 2000
  ident: 10.1016/j.biombioe.2013.03.026_bib13
  article-title: A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination
  publication-title: J Appl Phycol
  doi: 10.1023/A:1008165606234
– volume: 25
  start-page: 294
  issue: 3
  year: 2007
  ident: 10.1016/j.biombioe.2013.03.026_bib3
  article-title: Biodiesel from microalgae
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.02.001
– volume: 26
  start-page: 393
  issue: 3
  year: 1990
  ident: 10.1016/j.biombioe.2013.03.026_bib8
  article-title: Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions
  publication-title: J Phycol
  doi: 10.1111/j.0022-3646.1990.00393.x
– volume: 12
  start-page: 37
  issue: 1
  year: 1987
  ident: 10.1016/j.biombioe.2013.03.026_bib21
  article-title: Lipid and biomass production by the halotolerant microalgae Nannochloropsis salina
  publication-title: Biomass
  doi: 10.1016/0144-4565(87)90006-0
– volume: 14
  start-page: 557
  issue: 2
  year: 2010
  ident: 10.1016/j.biombioe.2013.03.026_bib2
  article-title: Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2009.10.009
– volume: 403
  start-page: 97
  issue: 0
  year: 1999
  ident: 10.1016/j.biombioe.2013.03.026_bib17
  article-title: Optimum production conditions for different high-quality marine algae
  publication-title: Hydrobiologia
  doi: 10.1023/A:1003725626504
– volume: 85
  start-page: 259
  issue: 3
  year: 2001
  ident: 10.1016/j.biombioe.2013.03.026_bib14
  article-title: Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors
  publication-title: J Biotechnol
  doi: 10.1016/S0168-1656(00)00353-9
– volume: 2
  start-page: 253
  issue: 2
  year: 2005
  ident: 10.1016/j.biombioe.2013.03.026_bib27
  article-title: Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes
  publication-title: Expert Rev Proteomic
  doi: 10.1586/14789450.2.2.253
– volume: 28
  start-page: 987
  issue: 3
  year: 2006
  ident: 10.1016/j.biombioe.2013.03.026_bib28
  article-title: Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-006-9026-6
– volume: 15
  start-page: 107
  issue: 2–3
  year: 2003
  ident: 10.1016/j.biombioe.2013.03.026_bib12
  article-title: Mass cultivation of Nannochloropsis sp. in annular reactors
  publication-title: J Appl Phycol
  doi: 10.1023/A:1023830707022
– volume: 39
  start-page: 449
  year: 2012
  ident: 10.1016/j.biombioe.2013.03.026_bib7
  article-title: Large-scale biodiesel production using microalgae biomass of Nannochloropsis
  publication-title: Biomass Bioenerg
  doi: 10.1016/j.biombioe.2012.01.046
– volume: 6
  start-page: 347
  issue: 3
  year: 1994
  ident: 10.1016/j.biombioe.2013.03.026_bib20
  article-title: Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae
  publication-title: J Appl Phycol
  doi: 10.1007/BF02181949
– volume: 21
  start-page: 493
  issue: 5
  year: 2009
  ident: 10.1016/j.biombioe.2013.03.026_bib16
  article-title: Lipid productivity as a key characteristic for choosing algal species for biodiesel production
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-008-9392-7
– volume: 14
  start-page: 217
  issue: 1
  year: 2010
  ident: 10.1016/j.biombioe.2013.03.026_bib4
  article-title: Microalgae for biodiesel production and other applications: a review
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2009.07.020
– volume: 8
  start-page: 1856
  issue: 12
  year: 2009
  ident: 10.1016/j.biombioe.2013.03.026_bib19
  article-title: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00272-09
– volume: 35
  start-page: 2534
  issue: 7
  year: 2011
  ident: 10.1016/j.biombioe.2013.03.026_bib6
  article-title: Screening of marine microalgae for biodiesel feedstock
  publication-title: Biomass Bioenerg
  doi: 10.1016/j.biombioe.2011.02.021
– volume: 16
  start-page: 375
  issue: 4
  year: 1994
  ident: 10.1016/j.biombioe.2013.03.026_bib23
  article-title: A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations
  publication-title: J Plankton Res
  doi: 10.1093/plankt/16.4.375
– volume: 195
  start-page: 35
  issue: 1–2
  year: 2001
  ident: 10.1016/j.biombioe.2013.03.026_bib10
  article-title: An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae)
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(00)00533-0
– volume: 90
  start-page: 1429
  issue: 4
  year: 2011
  ident: 10.1016/j.biombioe.2013.03.026_bib29
  article-title: The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-011-3170-1
– year: 2011
  ident: 10.1016/j.biombioe.2013.03.026_bib1
– volume: 20
  start-page: 243
  issue: 4–6
  year: 2003
  ident: 10.1016/j.biombioe.2013.03.026_bib15
  article-title: Growth medium recycling in Nannochloropsis sp. mass cultivation
  publication-title: Biomol Eng
  doi: 10.1016/S1389-0344(03)00063-7
– volume: 226
  start-page: 497
  issue: 1
  year: 1957
  ident: 10.1016/j.biombioe.2013.03.026_bib25
  article-title: A simple method for the isolation and purification of total lipids from animal tissues
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)64849-5
– volume: 45
  start-page: 160
  issue: 2
  year: 2006
  ident: 10.1016/j.biombioe.2013.03.026_bib18
  article-title: Lipids and lipid metabolism in eukaryotic algae
  publication-title: Prog Lipid Res
  doi: 10.1016/j.plipres.2006.01.001
– volume: 49
  start-page: 2966
  issue: 6
  year: 2001
  ident: 10.1016/j.biombioe.2013.03.026_bib11
  article-title: Biomass nutrient profiles of the microalga Nannochloropsis
  publication-title: J Agric Food Chem
  doi: 10.1021/jf0010376
– volume: 8
  start-page: 229
  issue: 2
  year: 1962
  ident: 10.1016/j.biombioe.2013.03.026_bib22
  article-title: Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve
  publication-title: Can J Microbiol
  doi: 10.1139/m62-029
– start-page: 328
  year: 1998
  ident: 10.1016/j.biombioe.2013.03.026_bib30
– volume: 2
  start-page: 43
  issue: 1
  year: 2013
  ident: 10.1016/j.biombioe.2013.03.026_bib26
  article-title: Characterization of microalgal lipid feedstocks by direct infusion FT-ICR mass spectrometry
  publication-title: Algal Res
  doi: 10.1016/j.algal.2012.11.005
SSID ssj0014041
Score 2.484794
Snippet Mass production of microalgae is currently limited by existing cultivation strategies, which rely heavily on open cultivation systems. Increasing lipid...
Fundamental research as part of the National Alliance for Advanced Biofuels and Bioproducts for the advancement of technology for algal based biofuel products.
SourceID osti
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms 09 BIOMASS FUELS
Algal Biofuels
Algal culture (microalgae)
biofuels
Biological and medical sciences
biomass
Biotechnology
economic sustainability
Fundamental and applied biological sciences. Psychology
Invaders
Invasive organisms
Lipid accumulation
lipid content
Lipid profile
mass spectrometry
Methods. Procedures. Technologies
Micro-algae biodiesel
microalgae
Nannochloropsis
Nannochloropsis salina
predators
production technology
Salinity
salt stress
triacylglycerols
Title Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms
URI https://dx.doi.org/10.1016/j.biombioe.2013.03.026
https://www.proquest.com/docview/1500801152
https://www.proquest.com/docview/1686719349
https://www.osti.gov/biblio/1096408
Volume 54
WOSCitedRecordID wos000321595800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2909
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014041
  issn: 0961-9534
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcKihUpIVqkegpMti7fu0xKokAhcAhiNwse71uXVI7xEno3-AfM2OvHQOBlgNSZEXO7sT2fJ6dmZ0HIS9Ao4ilYp6hGI8MO3S5ETkqNnxluzE3I8FU2bVk7E0m_mwmPnY63-tcmM3cyzL_-los_iur4RwwG1Nn_4HdDVE4Ad-B6XAEtsPxVowfbiM0ihDzHjHmIuufg72t09jm6SKN-6GU6yvdvAsHR2merNW8f4UhepjhgZI3y-UFWPT5AuuWlORCXa9pUwbf665Qha55Xu8Opxh1VJSwArKqzC_c-kyXK-0ofw_PA5NCmp9ypVusfE5V9KXB3Fm-BCO5ctUO5rrht06oOF9XVRBGbf8F9pLwav-FdkS6Fm4i222Z7NgtoVp1uqmXZ3-n4K98EJcvsWgB3hgG7fGyfC3bUWl78iEYfRqPg-lwNj3lo8VXA9uQ4Xb9KX9dQeIO2WOeI0BQ7g3eDmfvmq0p2yzboTaX3Uo73_33f9J4ujkIcYzFDQt4HZOqj8pvKkGp50wfkH1toNBBBayHpKOyA3K_VbbygBwOt9mRMFQvD8Uj8k1jj-YJrbFH84xW2KMAHFpij7axh4M19miDPfoL9ipyYUmixh5tsPeYTEfD6dkbQ3f2MKRjWitDcSHRcACxYMWJKfyIM990pOlKaSWeMnkCljhYMlJ5yhNhbKnIZ0nIXGWDNcgPSTfLM_WEULCgQeMWFgyVdsxjX3jcT6wktBhIIZX0iFM__EDqqvfYfGUe1OGNl0HNtACZFpjwYW6PvGrmLaq6LzfOEDVvA629VlppABi9ce4xggHnYelmiTFuMNECkNmm3yMnP2GkuSC4RRfMO7NHntegCWB1wC2_MFP5ugjA3AOTEKw-9pcxLta4FNwWR7egc0zubd_ip6S7Wq7VM3JXblZpsTzRL8sPsG_vGw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+salinity+on+growth+and+lipid+accumulation+of+biofuel+microalga+Nannochloropsis+salina+and+invading+organisms&rft.jtitle=Biomass+%26+bioenergy&rft.au=Bartley%2C+Meridith&rft.au=Boeing%2C+Wiebke&rft.au=Corcoran%2C+Alina&rft.au=Holguin%2C+F&rft.date=2013-07-01&rft.issn=0961-9534&rft.volume=54&rft.spage=83&rft.epage=88&rft_id=info:doi/10.1016%2Fj.biombioe.2013.03.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon