Telemetry Data Compression Algorithm Using Balanced Recurrent Neural Network and Deep Learning

Telemetric information is great in size, requiring extra room and transmission time. There is a significant obstruction of storing or sending telemetric information. Lossless data compression (LDC) algorithms have evolved to process telemetric data effectively and efficiently with a high compression...

Full description

Saved in:
Bibliographic Details
Published in:Computational Intelligence and Neuroscience Vol. 2022; pp. 1 - 10
Main Authors: Ramalingam, Parameshwaran, Mehbodniya, Abolfazl, Webber, Julian L., Shabaz, Mohammad, Gopalakrishnan, Lakshminarayanan
Format: Journal Article
Language:English
Published: United States Hindawi 10.01.2022
Hindawi Limited
John Wiley & Sons, Inc
Subjects:
ISSN:1687-5265, 1687-5273, 1687-5273
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Telemetric information is great in size, requiring extra room and transmission time. There is a significant obstruction of storing or sending telemetric information. Lossless data compression (LDC) algorithms have evolved to process telemetric data effectively and efficiently with a high compression ratio and a short processing time. Telemetric information can be packed to control the extra room and association data transmission. In spite of the fact that different examinations on the pressure of telemetric information have been conducted, the idea of telemetric information makes pressure incredibly troublesome. The purpose of this study is to offer a subsampled and balanced recurrent neural lossless data compression (SB-RNLDC) approach for increasing the compression rate while decreasing the compression time. This is accomplished through the development of two models: one for subsampled averaged telemetry data preprocessing and another for BRN-LDC. Subsampling and averaging are conducted at the preprocessing stage using an adjustable sampling factor. A balanced compression interval (BCI) is used to encode the data depending on the probability measurement during the LDC stage. The aim of this research work is to compare differential compression techniques directly. The final output demonstrates that the balancing-based LDC can reduce compression time and finally improve dependability. The final experimental results show that the model proposed can enhance the computing capabilities in data compression compared to the existing methodologies.
AbstractList Telemetric information is great in size, requiring extra room and transmission time. There is a significant obstruction of storing or sending telemetric information. Lossless data compression (LDC) algorithms have evolved to process telemetric data effectively and efficiently with a high compression ratio and a short processing time. Telemetric information can be packed to control the extra room and association data transmission. In spite of the fact that different examinations on the pressure of telemetric information have been conducted, the idea of telemetric information makes pressure incredibly troublesome. The purpose of this study is to offer a subsampled and balanced recurrent neural lossless data compression (SB-RNLDC) approach for increasing the compression rate while decreasing the compression time. This is accomplished through the development of two models: one for subsampled averaged telemetry data preprocessing and another for BRN-LDC. Subsampling and averaging are conducted at the preprocessing stage using an adjustable sampling factor. A balanced compression interval (BCI) is used to encode the data depending on the probability measurement during the LDC stage. The aim of this research work is to compare differential compression techniques directly. The final output demonstrates that the balancing-based LDC can reduce compression time and finally improve dependability. The final experimental results show that the model proposed can enhance the computing capabilities in data compression compared to the existing methodologies.
Telemetric information is great in size, requiring extra room and transmission time. There is a significant obstruction of storing or sending telemetric information. Lossless data compression (LDC) algorithms have evolved to process telemetric data effectively and efficiently with a high compression ratio and a short processing time. Telemetric information can be packed to control the extra room and association data transmission. In spite of the fact that different examinations on the pressure of telemetric information have been conducted, the idea of telemetric information makes pressure incredibly troublesome. The purpose of this study is to offer a subsampled and balanced recurrent neural lossless data compression (SB-RNLDC) approach for increasing the compression rate while decreasing the compression time. This is accomplished through the development of two models: one for subsampled averaged telemetry data preprocessing and another for BRN-LDC. Subsampling and averaging are conducted at the preprocessing stage using an adjustable sampling factor. A balanced compression interval (BCI) is used to encode the data depending on the probability measurement during the LDC stage. The aim of this research work is to compare differential compression techniques directly. The final output demonstrates that the balancing-based LDC can reduce compression time and finally improve dependability. The final experimental results show that the model proposed can enhance the computing capabilities in data compression compared to the existing methodologies.Telemetric information is great in size, requiring extra room and transmission time. There is a significant obstruction of storing or sending telemetric information. Lossless data compression (LDC) algorithms have evolved to process telemetric data effectively and efficiently with a high compression ratio and a short processing time. Telemetric information can be packed to control the extra room and association data transmission. In spite of the fact that different examinations on the pressure of telemetric information have been conducted, the idea of telemetric information makes pressure incredibly troublesome. The purpose of this study is to offer a subsampled and balanced recurrent neural lossless data compression (SB-RNLDC) approach for increasing the compression rate while decreasing the compression time. This is accomplished through the development of two models: one for subsampled averaged telemetry data preprocessing and another for BRN-LDC. Subsampling and averaging are conducted at the preprocessing stage using an adjustable sampling factor. A balanced compression interval (BCI) is used to encode the data depending on the probability measurement during the LDC stage. The aim of this research work is to compare differential compression techniques directly. The final output demonstrates that the balancing-based LDC can reduce compression time and finally improve dependability. The final experimental results show that the model proposed can enhance the computing capabilities in data compression compared to the existing methodologies.
Audience Academic
Author Webber, Julian L.
Shabaz, Mohammad
Ramalingam, Parameshwaran
Gopalakrishnan, Lakshminarayanan
Mehbodniya, Abolfazl
AuthorAffiliation 3 Graduate School of Engineering Science, Osaka University, Osaka, Japan
5 Department of Computer Science Engineering, Chandigarh University, Ajitgarh, Punjab, India
2 Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Kuwait City, Kuwait
6 Department of ECE, National Institute of Technology, Tiruchirappalli, India
1 Department of ECE, KPR Institute of Engineering and Technology, Arasur, Coimbatore 641048, Tamilnadu, India
4 Arba Minch University, Arba Minch, Ethiopia
AuthorAffiliation_xml – name: 4 Arba Minch University, Arba Minch, Ethiopia
– name: 1 Department of ECE, KPR Institute of Engineering and Technology, Arasur, Coimbatore 641048, Tamilnadu, India
– name: 3 Graduate School of Engineering Science, Osaka University, Osaka, Japan
– name: 5 Department of Computer Science Engineering, Chandigarh University, Ajitgarh, Punjab, India
– name: 6 Department of ECE, National Institute of Technology, Tiruchirappalli, India
– name: 2 Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Kuwait City, Kuwait
Author_xml – sequence: 1
  givenname: Parameshwaran
  orcidid: 0000-0003-0862-9471
  surname: Ramalingam
  fullname: Ramalingam, Parameshwaran
  organization: Department of ECEKPR Institute of Engineering and TechnologyArasurCoimbatore 641048TamilnaduIndiakpriet.ac.in
– sequence: 2
  givenname: Abolfazl
  orcidid: 0000-0002-0945-512X
  surname: Mehbodniya
  fullname: Mehbodniya, Abolfazl
  organization: Department of Electronics and Communication EngineeringKuwait College of Science and TechnologyKuwait CityKuwaitkcst.edu.kw
– sequence: 3
  givenname: Julian L.
  orcidid: 0000-0001-7796-2898
  surname: Webber
  fullname: Webber, Julian L.
  organization: Graduate School of Engineering ScienceOsaka UniversityOsakaJapanosaka-u.ac.jp
– sequence: 4
  givenname: Mohammad
  orcidid: 0000-0001-5106-7609
  surname: Shabaz
  fullname: Shabaz, Mohammad
  organization: Arba Minch UniversityArba MinchEthiopiaamu.edu.et
– sequence: 5
  givenname: Lakshminarayanan
  orcidid: 0000-0002-7207-846X
  surname: Gopalakrishnan
  fullname: Gopalakrishnan, Lakshminarayanan
  organization: Department of ECENational Institute of TechnologyTiruchirappalliIndiaint.gov.br
BackLink https://cir.nii.ac.jp/crid/1873398392894273920$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/35047035$$D View this record in MEDLINE/PubMed
BookMark eNp9kttrFDEUxoNU7EXffJYBfRB0bS6Ty7wI69aqsChI-2rIZM7sps4k22TG0v_eTHddtaAvOYH8zne-w5djdOCDB4SeEvyGEM5PKab0tFRKcCUeoCMilJxxKtnB_i74ITpO6QpjLjmmj9Ah47iUmPEj9O0COuhhiLfFmRlMsQj9JkJKLvhi3q1CdMO6Ly6T86vinemMt9AUX8GOMYIfis8wRtPlMtyE-L0wvinOADbFEkz0uecxetiaLsGTXT1Bl-fvLxYfZ8svHz4t5suZ5ZgMs6a1vK0ZI5xhU1tQhFdCglIG16UhDa1rYUlT1y0pGSEVrxtOiLI1NpZQWrET9HaruxnrHhqbvWVfehNdb-KtDsbpv1-8W-tV-KGVFIzfCbzcCcRwPUIadO-ShS5vDGFMmgpKBJclkRl9fg-9CmP0eb2JolhJrMrf1Mp0oJ1vQ55rJ1E9F5UUQuUVM_XsT997w78CysDrLWBjSClCu0cI1lP-espf7_LPOL2HWzeYIaeZp7vuX00vtk3eucxPJ1GSsUqxiqqqzJ-pojhjr7bY2vnG3Lj_O_kJkhfIXg
CitedBy_id crossref_primary_10_1088_1402_4896_acc5bc
crossref_primary_10_1155_2023_9830360
crossref_primary_10_3390_s22145425
crossref_primary_10_1590_1519_6984_266923
Cites_doi 10.1371/journal.pone.0206521
10.1109/access.2020.3015493
10.1155/2015/795353
10.1155/2012/539638
10.1016/j.patrec.2020.04.006
10.5194/gmd-12-4099-2019
10.36478/jeasci.2019.831.836
10.1109/TNNLS.2019.2910073
10.1109/JSTSP.2020.2969554
10.1016/j.ress.2019.04.011
10.1109/ets50041.2021.9465460
10.1007/s11390-019-1921-0
10.1109/TCSVT.2018.2881040
10.1002/cpe.4283
10.1109/access.2018.2872778
10.1109/tkde.2011.79
10.1007/s10462-019-09760-1
10.1155/2019/8981240
10.1109/access.2020.3037254
10.1109/tifs.2011.2119314
10.1155/2019/8616215
10.1155/2012/471857
ContentType Journal Article
Copyright Copyright © 2022 Parameshwaran Ramalingam et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Parameshwaran Ramalingam et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Parameshwaran Ramalingam et al. 2022
Copyright_xml – notice: Copyright © 2022 Parameshwaran Ramalingam et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Parameshwaran Ramalingam et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Parameshwaran Ramalingam et al. 2022
DBID RHU
RHW
RHX
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2022/4886586
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Gupta, Suneet Kumar
Editor_xml – sequence: 1
  givenname: Suneet Kumar
  surname: Gupta
  fullname: Gupta, Suneet Kumar
EndPage 10
ExternalDocumentID PMC8763529
A697668596
35047035
10_1155_2022_4886586
Genre Retracted Publication
Journal Article
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
ACCMX
ACUHS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
RYH
AAYXX
CITATION
2UF
C1A
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
EJD
IL9
NPM
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c501t-dfc5fb331530abce815967e88a0b4a1d2bb6c1dbbf1431195bd5118cb0ac12293
IEDL.DBID M7P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000774903200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-5265
1687-5273
IngestDate Tue Nov 04 01:38:49 EST 2025
Sun Nov 09 13:24:30 EST 2025
Sat Nov 29 14:51:05 EST 2025
Tue Nov 11 10:56:16 EST 2025
Wed Feb 19 02:05:40 EST 2025
Sat Nov 29 02:55:47 EST 2025
Tue Nov 18 22:13:25 EST 2025
Mon Nov 10 09:19:52 EST 2025
Sun Jun 02 18:52:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Parameshwaran Ramalingam et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-dfc5fb331530abce815967e88a0b4a1d2bb6c1dbbf1431195bd5118cb0ac12293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Suneet Kumar Gupta
ORCID 0000-0002-0945-512X
0000-0001-7796-2898
0000-0002-7207-846X
0000-0001-5106-7609
0000-0003-0862-9471
OpenAccessLink https://www.proquest.com/docview/2622087084?pq-origsite=%requestingapplication%
PMID 35047035
PQID 2622087084
PQPubID 237303
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8763529
proquest_miscellaneous_2621657417
proquest_journals_2622087084
gale_infotracmisc_A697668596
pubmed_primary_35047035
crossref_primary_10_1155_2022_4886586
crossref_citationtrail_10_1155_2022_4886586
nii_cinii_1873398392894273920
hindawi_primary_10_1155_2022_4886586
PublicationCentury 2000
PublicationDate 2022-01-10
PublicationDateYYYYMMDD 2022-01-10
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational Intelligence and Neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
Hindawi Limited
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: Hindawi Limited
– name: John Wiley & Sons, Inc
References 22
23
25
26
L. Luo (24) 2019; 125
H. Yan (17) 2019; 20
10
12
13
14
16
19
X. Delaunay (18) 2018; 12
D. Tao (11) 2018; 13
1
2
3
4
5
6
7
A. Guerra (15) 2018; 13
8
9
20
21
38124854 - Comput Intell Neurosci. 2023 Dec 13;2023:9830360
References_xml – ident: 7
  doi: 10.1371/journal.pone.0206521
– ident: 20
  doi: 10.1109/access.2020.3015493
– ident: 10
  doi: 10.1155/2015/795353
– ident: 5
  doi: 10.1155/2012/539638
– volume: 125
  issue: 1
  year: 2019
  ident: 24
  article-title: Metaheuristic FIR filter with game theory based compression technique-a reliable medical image compression technique for online applications
  publication-title: Pattern Recognition Letters
– ident: 25
  doi: 10.1016/j.patrec.2020.04.006
– volume: 12
  issue: 9
  year: 2018
  ident: 18
  article-title: Evaluation of lossless and lossy algorithms for the compression of scientific datasets in NetCDF-4 or HDF5 formatted files
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-12-4099-2019
– ident: 9
  doi: 10.36478/jeasci.2019.831.836
– volume: 13
  issue: 3
  year: 2018
  ident: 11
  article-title: Optimizing lossy compression rate-distortion from automatic online selection between SZ and ZFP
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– ident: 23
  doi: 10.1109/TNNLS.2019.2910073
– volume: 20
  start-page: 114
  issue: 9
  year: 2019
  ident: 17
  article-title: Evaluation of video compression methods for cone beam computerized tomography
  publication-title: Medical Imaging
– ident: 26
  doi: 10.1109/JSTSP.2020.2969554
– ident: 2
  doi: 10.1016/j.ress.2019.04.011
– ident: 6
  doi: 10.1109/ets50041.2021.9465460
– ident: 12
  doi: 10.1007/s11390-019-1921-0
– ident: 21
  doi: 10.1109/TCSVT.2018.2881040
– ident: 16
  doi: 10.1002/cpe.4283
– ident: 1
  doi: 10.1109/access.2018.2872778
– ident: 13
  doi: 10.1109/tkde.2011.79
– ident: 3
  doi: 10.1007/s10462-019-09760-1
– ident: 4
  doi: 10.1155/2019/8981240
– ident: 22
  doi: 10.1109/access.2020.3037254
– volume: 13
  year: 2018
  ident: 15
  article-title: Tackling the challenges of FASTQ referential compression
  publication-title: Bioinformatics and Biology Insights
– ident: 14
  doi: 10.1109/tifs.2011.2119314
– ident: 8
  doi: 10.1155/2019/8616215
– ident: 19
  doi: 10.1155/2012/471857
– reference: 38124854 - Comput Intell Neurosci. 2023 Dec 13;2023:9830360
SSID ssj0057502
Score 2.2892265
SecondaryResourceType retracted_publication
Snippet Telemetric information is great in size, requiring extra room and transmission time. There is a significant obstruction of storing or sending telemetric...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
nii
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Clustering
Compression
Compression ratio
Data Compression
Data processing
Data transmission
Deep Learning
Energy efficiency
Ground stations
Information processing
Lossless equipment
Machine learning
Neural networks
Neural Networks, Computer
Preprocessing
Recurrent neural networks
Research Article
Sensors
Telemetry
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB5sUfBF1KqNtrJC9UWCm012s3k8raVPh5QK92TYX-kF2r1ylyr9751JcodXFX0JhGyS3czOzDebj28BjrTEaaOUTXNrOBYoZZNqm4XUepVzW1TGCNdvNlFOp3o2q76MIkmr33_hY7aj8lx8wHmGuVLtwI6WxNw6O52tAy4CjoFaqNBfSO19zW-_c-9W5hnj74M5Vb4_WswssW3_hDLvkiV_yT4nj-HRCBvZZLDzE7gX4lPYm0Qsma9u2TvWEzn7FfI9-HYeiBPeLW_ZsekMI5cf2K6RTS4vFsu2m1-xnivAPhKz0QXPzmjdnZSaGMl14KumAz-cmejZcQjXbFRivXgGX08-n386TcdtFFInedalvnGysXmOsY0b64JGBKPKoLVBY5jMC2uVy7y1DWInUoCznsoOZ7lxmUA48Bx24yKGfWBYXAjPdeErJwvfVBajhc6tbnLZePz-Cbxff-LajRrjtNXFZd3XGlLWZJB6NEgCbzetrwdtjb-0OyBr1eRy-DSHDuDqiUIgpTQOJYGj0Yr_eMohmhi7RcdMl3leETjUVYEIrhIc37I2fj368aoWSgiOIU0XCbzZXKYOEDcthsVN3yZTEpFZmcCLYa5sOpJLXmBMlQmUW7No04DUvbevxHbeq3z3UoGievl_o3sFD-mUFocyfgC73fImHMJ9971rV8vXvb_8BKY6Cgg
  priority: 102
  providerName: Hindawi Publishing
Title Telemetry Data Compression Algorithm Using Balanced Recurrent Neural Network and Deep Learning
URI https://dx.doi.org/10.1155/2022/4886586
https://cir.nii.ac.jp/crid/1873398392894273920
https://www.ncbi.nlm.nih.gov/pubmed/35047035
https://www.proquest.com/docview/2622087084
https://www.proquest.com/docview/2621657417
https://pubmed.ncbi.nlm.nih.gov/PMC8763529
Volume 2022
WOSCitedRecordID wos000774903200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: M7P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database (ProQuest)
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfI1BYKuMNHhB0RIndpwn1LFNQ4gqKkMqPBDFH1krbWlpM9D-e-4ct1DExwMvliJbjp07n-8uP_2OkH3JQW2EUGGiqggClKwOpYptqIxIIpXmVcW0KzaRDQZyNMoLn3BbeFjl0iY6Q22mGnPkB0wwFoFyyfTV7EuIVaPw76ovobFBtpAlgTnoXrG0xOCJdJhDAQcJaeCXwHfOMeZnB6C8cAGLtSvJG-ZbYwyJv03gymkmk9-5n7-iKH-6lk7u_u-G7pE73iGl_U6D7pMbtnlAtvsNBOOX1_QFdRBRl3vfJp_PLKLN2_k1ParaiqIx6XC0De1fnMPs7fiSOhQCPUTMpLaGDjGjjxxQFIlA4FWDDnlOq8bQI2tn1HO8nj8kH06Oz16fhr5AQ6h5FLehqTWvVZKA1Ywqpa0E30hkVsoKxFzFhikldGyUqsErQ245ZTCg0SqqdMzA0dghm820sY8JhbCFGfgWJtc8NXWuwA7JRMk64bUBAQbk5VJGpfbs5VhE46J0UQznJUq09BINyPPV6FnH2vGHcbso7hIPM8ym4Wjpsi_ARRMSthKQfa8G_5hlD3QEloVtLLMkydHtlHkKvmHOInjLUgNKbyEW5Q_xB-TZqhsXgKi3xk6v3JhYcPD5soA86pRttZCERylYax6QbE0NVwOQN3y9p5mMHX-4IyFk-ZO_L-spuY2bxHRTHO2SzXZ-ZffITf21nSzmPbKRjTLXyh7ZOjweFEN4epuFPXcEXfse2oJ_gv7izbviIzwNT0ffAZxBM64
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VBQSb8ihQQwuD1LJBVu2xZzxeIBQIVauUCKEgdYWZlxtLrRMSlyo_xTdyrx-BIB6rLthk45F9xzn3MTPH5xKyKznARgjtR1oFsEBJcl_q0PnaiijQcaoUM3WziWQ4lCcn6fs18q37FgZplV1MrAO1nRjcI99ngrEAwCXjV9MvPnaNwtPVroVGA4uBW1zCkm3-8qgP_-8eYwdvR28O_bargG94EFa-zQ3PdRSBqwdKGychoYvESanANhVaprUwodU6h1ICBdG0xSrc6ECZkDEUX4KQfy2OZIJ-NUj8LvJD5dNwHAU4LsrOd0R7znGPge2Ds0DCFyspsE0EN8a4BL8sIMWVRfG7cvdX1uZPafDg9v_2Au-Qjbbgpr3GQ-6SNVfeI5u9UlWT8wV9TmsKbH22sEk-jRyy6avZgvZVpSgGy4YnXNLe2SnMphqf05plQV8jJ9Q4Sz_giQVqXFEUOoFHDRtmPVWlpX3nprTVsD29Tz5eyUwfkPVyUrotQmFZxiy8e5saHts81RBnZaRlHvHcAmA88qLDRGZadXZsEnKW1as0zjNEUNYiyCN7y9HTRpXkD-O2EV4ZBiu4m4HQYbKegBJUSJiKR3Zb2P3jLjuASTALf0OAfZRiWS3TGGrflAXwlA5xWRsB59kPuHnk2fIyGoCsvtJNLuoxoeBQ0yYeediAe2lIxIMYshH3SLIC--UA1EVfvVIW41ofvRZZZOmjv5v1lNw8HL07zo6PhoPH5BZOGLfWwmCbrFezC7dDrpuvVTGfPamdnJLPV-0U3wE7jIg4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB5VZREXtrIYWhiklguyYo894_EBoUCIqIqiCBWp4oA7mxtLrRMSlyp_jV_He14CQSynHrjk4pE9Y39vm_nyPUJ2JQfYCKH9SKsACpQk96UOna-tiAIdp0oxUzebSEYjeXSUjjfIt-6_MEir7Hxi7ajt1OAeeY8JxgIAl4x7eUuLGA-Gr2ZffOwghSetXTuNBiIHbnkB5dvi5f4AvvUeY8O3h2_e-W2HAd_wIKx8mxue6ygCsw-UNk5CcBeJk1LBPFVomdbChFbrHNIKFEfTFjNyowNlQsZQiAnc_5UEakykE475py4KQBbU8B0FGDFK0Heke85xv4H1wHAg-Iu1cNgGhWsTLMcvCgh3ZVH8LvX9lcH5U0gc3vqfX-ZtcrNNxGm_sZw7ZMOVd8lWv1TV9GxJn9OaGlufOWyRz4cOWfbVfEkHqlIUnWjDHy5p__QEVlNNzmjNvqCvkStqnKUf8CQDta8oCqDAo0YN456q0tKBczPaatue3CMfL2Wl98lmOS3dQ0KhXGMWvoNNDY9tnmrwvzLSMo94bgE8HnnR4SMzrWo7Ng85zerqjfMM0ZS1aPLI3mr0rFEr-cO4bYRahk4M7mbApZisLyA1FRKW4pHdFoL_uMsO4BOmhb-hTKIoxXRbpjHkxCkL4Ckd-rLWMy6yH9DzyLPVZZwAsv1KNz2vx4SCQ66beORBA_TVRCIexBCluEeSNRNYDUC99PUrZTGpddNr8UWWPvr7tJ6S62AL2fv90cFjcgPXiztuYbBNNqv5udshV83XqljMn9T2TsnxZdvEdy4xkVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Telemetry+Data+Compression+Algorithm+Using+Balanced+Recurrent+Neural+Network+and+Deep+Learning&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ramalingam%2C+Parameshwaran&rft.au=Mehbodniya%2C+Abolfazl&rft.au=Webber%2C+Julian+L&rft.au=Shabaz%2C+Mohammad&rft.date=2022-01-10&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2022&rft.spage=4886586&rft_id=info:doi/10.1155%2F2022%2F4886586&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon