Global Optimality Conditions for Discrete and Nonconvex Optimization--With Applications to Lagrangian Heuristics and Column Generation

The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions that are structurally similar but are consistent for any size of the dual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research Jg. 54; H. 3; S. 436 - 453
Hauptverfasser: Larsson, Torbjorn, Patriksson, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Linthicum, MD INFORMS 01.05.2006
Institute for Operations Research and the Management Sciences
Schlagworte:
ISSN:0030-364X, 1526-5463, 1526-5463
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions that are structurally similar but are consistent for any size of the duality gap. This system characterizes a primal–dual optimal solution by means of primal and dual feasibility, primal Lagrangian -optimality, and, in the presence of inequality constraints, a relaxed complementarity condition analogously called -complementarity. The total size + of those two perturbations equals the size of the duality gap at an optimal solution. Further, the characterization is equivalent to a near-saddle point condition which generalizes the classic saddle point characterization of a primal–dual optimal solution in convex programming. The system developed can be used to explain, to a large degree, when and why Lagrangian heuristics for discrete optimization are successful in reaching near-optimal solutions. Further, experiments on a set-covering problem illustrate how the new optimality conditions can be utilized as a foundation for the construction of new Lagrangian heuristics. Finally, we outline possible uses of the optimality conditions in column generation algorithms and in the construction of core problems.
AbstractList The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions that are structurally similar but are consistent for any size of the duality gap. This system characterizes a primal–dual optimal solution by means of primal and dual feasibility, primal Lagrangian -optimality, and, in the presence of inequality constraints, a relaxed complementarity condition analogously called -complementarity. The total size + of those two perturbations equals the size of the duality gap at an optimal solution. Further, the characterization is equivalent to a near-saddle point condition which generalizes the classic saddle point characterization of a primal–dual optimal solution in convex programming. The system developed can be used to explain, to a large degree, when and why Lagrangian heuristics for discrete optimization are successful in reaching near-optimal solutions. Further, experiments on a set-covering problem illustrate how the new optimality conditions can be utilized as a foundation for the construction of new Lagrangian heuristics. Finally, we outline possible uses of the optimality conditions in column generation algorithms and in the construction of core problems.
The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions that are structurally similar but are consistent for any size of the duality gap. This system characterizes a primal-dual optimal solution by means of primal and dual feasibility, primal Lagrangian ε-optimality, and, in the presence of inequality constraints, a relaxed complementarity condition analogously called δ-complementarity. The total size ε + δ of those two perturbations equals the size of the duality gap at an optimal solution. Further, the characterization is equivalent to a near-saddle point condition which generalizes the classic saddle point characterization of a primal-dual optimal solution in convex programming. The system developed can be used to explain, to a large degree, when and why Lagrangian heuristics for discrete optimization are successful in reaching near-optimal solutions. Further, experiments on a set-covering problem illustrate how the new optimality conditions can be utilized as a foundation for the construction of new Lagrangian heuristics. Finally, we outline possible uses of the optimality conditions in column generation algorithms and in the construction of core problems.
The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions that are structurally similar but are consistent for any size of the duality gap. This system characterizes a primal-dual optimal solution by means of primal and dual feasibility, primal Lagrangian e-optimality, and, in the presence of inequality constraints, a relaxed complementarity condition analogously called δ-complementarity. The total size ε + δ of those two perturbations equals the size of the duality gap at an optimal solution. Further, the characterization is equivalent to a near-saddle point condition which generalizes the classic saddle point characterization of a primal-dual optimal solution in convex programming. The system developed can be used to explain, to a large degree, when and why Lagrangian heuristics for discrete optimization are successful in reaching near-optimal solutions. Further, experiments on a set-covering problem illustrate how the new optimality conditions can be utilized as a foundation for the construction of new Lagrangian heuristics. Finally, we outline possible uses of the optimality conditions in column generation algorithms and in the construction of core problems. [PUBLICATION ABSTRACT]
The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions that are structurally similar but are consistent for any size of the duality gap. This system characterizes a primal-dual optimal solution by means of primal and dual feasibility, primal Lagrangian -optimality, and, in the presence of inequality constraints, a relaxed complementarity condition analogously called δ-complementarity. The total size + δ of those two perturbations equals the size of the duality gap at an optimal solution. Further, the characterization is equivalent to a near-saddle point condition which generalizes the classic saddle point characterization of a primal-dual optimal solution in convex programming. The system developed can be used to explain, to a large degree, when and why Lagrangian heuristics for discrete optimization are successful in reaching near-optimal solutions. Further, experiments on a set-covering problem illustrate how the new optimality conditions can be utilized as a foundation for the construction of new Lagrangian heuristics. Finally, we outline possible uses of the optimality conditions in column generation algorithms and in the construction of core problems.
The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions that are structurally similar but are consistent for any size of the duality gap. This system characterizes a primal-dual optimal solution by means of primal and dual feasibility, primal Lagrangian ε-optimality, and, in the presence of inequality constraints, a relaxed complementarity condition analogously called δ-complementarity. The total size ε + δ of those two perturbations equals the size of the duality gap at an optimal solution. Further, the characterization is equivalent to a near-saddle point condition which generalizes the classic saddle point characterization of a primal-dual optimal solution in convex programming. The system developed can be used to explain, to a large degree, when and why Lagrangian heuristics for discrete optimization are successful in reaching near-optimal solutions. Further, experiments on a set-covering problem illustrate how the new optimality conditions can be utilized as a foundation for the construction of new Lagrangian heuristics. Finally, we outline possible uses of the optimality conditions in column generation algorithms and in the construction of core problems. © 2006 INFORMS.
Audience Trade
Author Larsson, Torbjorn
Patriksson, Michael
Author_xml – sequence: 1
  fullname: Larsson, Torbjorn
– sequence: 2
  fullname: Patriksson, Michael
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17849235$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-36281$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNqFkl2L1DAUhous4OzqrXdCEfTKjknz0fRymNVZYXBv_LoLmTTtZMgkNUld1x_g7zZtlx2QFclFIDzvyXvec86zM-usyrLnECxhyaq3rvdqCQEFS1DW5aNsAUlJC4IpOssWACBQIIq_PcnOQzgAAGpCySL7vTFuJ0x-3Ud9FEbH23ztbKOjdjbkrfP5pQ7Sq6hyYZv8o7PS2R_q5yzQv8QIFsVXHff5qu-NlmKWRpdvReeF7bSw-ZUavA5RyzCVWTszHG2-UVb5iX-aPW6FCerZ3X2RfX7_7tP6qthebz6sV9tCEgBjIRvMhNhJSgVmRAlaMSJSyyWRmKG2FozBXYN2BFRt1RBJFQOMpTiwkJQ0Al1kb-a64Ub1w473PnXtb7kTml_qLyvufMeNHjiiJYMJfznjvXffBxUiP7jB2-SQl7CGKUIMElTMUCeM4tq2Lnohu6k3k0bU6vS8grgiENO6TvzyAT6dRh21fFDw6s6FCFKYNoUqdbj3DiuG6xKRU2HpXQhetScE8HFF-LgifFwRPq5IEuC_BFLHaR7JkTb_lr2YZYcQnb__pJzssvIUyNibP4b_23g983vd7W-0n0MZhSMYOMEccYwo-gNMqepN
CODEN OPREAI
CitedBy_id crossref_primary_10_1287_ijoc_2016_0691
crossref_primary_10_1007_s11590_021_01764_7
crossref_primary_10_1016_j_ejor_2007_06_005
crossref_primary_10_1007_s12532_023_00240_w
crossref_primary_10_1111_itor_12521
crossref_primary_10_1109_TVT_2017_2713413
crossref_primary_10_1016_j_disopt_2018_09_001
crossref_primary_10_1016_j_ejor_2013_08_036
crossref_primary_10_1007_s12351_024_00820_1
crossref_primary_10_1088_1361_6560_aaab83
crossref_primary_10_1007_s10107_016_1055_x
crossref_primary_10_1016_j_disopt_2022_100700
crossref_primary_10_1016_j_ijpe_2008_07_010
crossref_primary_10_1080_10556788_2024_2404094
crossref_primary_10_1016_j_ejor_2007_12_037
Cites_doi 10.1137/S1052623498332336
10.1007/BFb0120690
10.1016/0377-2217(94)00013-3
10.1007/BF02594782
10.1016/0377-2217(94)00200-2
10.1287/opre.18.6.1138
10.1002/(SICI)1097-0207(19970415)40:7<1295::AID-NME115>3.0.CO;2-P
10.1287/moor.4.3.233
10.1023/A:1013141227104
10.1007/BF01585554
10.1287/opre.28.5.1130
10.1287/trsc.5.1.64
10.1002/9781118627372
10.1016/S0167-5060(08)70346-7
10.1002/nav.3800310118
10.1287/mnsc.25.4.329
10.1287/opre.45.6.831
10.1016/S0377-2217(02)00629-X
10.1007/s101070050090
10.1007/BF01584070
10.1007/BFb0120886
10.1016/S0166-218X(01)00338-9
10.1287/mnsc.22.11.1195
10.1287/mnsc.27.1.1
10.1287/inte.15.2.10
10.1016/0377-2217(87)90141-X
10.1287/opre.26.6.992
10.1007/BF01581106
10.1287/opre.50.5.851.362
10.1287/opre.42.4.626
10.1287/trsc.3.1.53
10.1002/net.3230100403
10.1016/0041-5553(69)90061-5
10.1080/02331939708844312
10.1287/opre.44.6.875
10.1287/mnsc.27.3.247
10.1287/opre.46.3.316
10.1287/opre.11.3.399
10.1016/0167-6377(96)00019-3
10.1287/opre.27.6.1128
10.1287/opre.47.5.730
10.1007/BF01580223
10.1007/978-1-4757-3333-4_10
10.1287/mnsc.37.4.409
10.1002/net.3230210407
ContentType Journal Article
Copyright Copyright 2006 INFORMS
2006 INIST-CNRS
COPYRIGHT 2006 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences May/Jun 2006
Copyright_xml – notice: Copyright 2006 INFORMS
– notice: 2006 INIST-CNRS
– notice: COPYRIGHT 2006 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences May/Jun 2006
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88F
8AL
8AO
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
M0C
M0N
M0S
M1P
M1Q
M2O
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTPV
AOWAS
DG8
DOI 10.1287/opre.1060.0292
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
PHMC-Proquest健康医学期刊库
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Military Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Military Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)


CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
Business
Mathematics
Applied Sciences
EISSN 1526-5463
EndPage 453
ExternalDocumentID oai_DiVA_org_liu_36281
1069386121
A147514699
17849235
10_1287_opre_1060_0292
25146982
opre.1060.0292
opres_54_3_436
Genre Research Article
Feature
GeographicLocations California
GeographicLocations_xml – name: California
GroupedDBID 02
08R
123
1AW
1OL
29N
2AX
3V.
4.4
7WY
7X7
85S
88E
8AL
8AO
8FE
8FG
8FI
8FJ
8FL
8G5
8V8
92
AABCJ
ABBHK
ABDEX
ABEFU
ABJCF
ABPPZ
ABSIS
ABUWG
ABWPA
ACDCL
ACHQT
ACIWK
ACNCT
ACUWV
ACVYA
ADBBV
ADGDI
ADNFJ
AENEX
AEUPB
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
ARAPS
AZQEC
B-7
BBAFP
BENPR
BEZIV
BGLVJ
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DWQXO
DZ
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMI
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HCIFZ
HVGLF
H~9
IAO
ICJ
IEA
IGG
IOF
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
LI
M0C
M0N
M1P
M1Q
M2O
M7S
MBDVC
MV1
N95
NIEAY
P2P
P62
PQEST
PQQKQ
PQUKI
PRG
PROAC
PSQYO
PTHSS
QVA
RNS
RPU
SA0
TAE
TH9
TN5
U5U
VQA
WH7
X
XFK
XHC
XI7
XJT
XXP
YNT
YZZ
ZCG
AETEA
HGD
Y99
YHZ
ZY4
-DZ
-~X
18M
AAAZS
AAWTO
AAXLS
AAYOK
ABAWQ
ABDPE
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ACHJO
ACSVP
ACXJH
ADEPB
ADMHC
ADMHG
ADNWM
ADULT
AEGXH
AEMOZ
AFAIT
AFTQD
AGKTX
AHAJD
AHQJS
AIAGR
ALIPV
APTMU
ASMEE
BAAKF
CCPQU
HF~
HMCUK
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
UKHRP
XOL
XSW
~02
~92
AADHG
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
YYP
IQODW
7XB
8FK
JQ2
K9.
L.-
PKEHL
PRINS
Q9U
ADTPV
AOWAS
DG8
ID FETCH-LOGICAL-c501t-cd48aabc66a485ea6785a10625c483f9a881bd3b507f7d5c6e80880294ac65da3
IEDL.DBID 7X7
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238435100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-364X
1526-5463
IngestDate Tue Nov 04 16:18:17 EST 2025
Mon Oct 06 17:58:35 EDT 2025
Sat Nov 29 12:52:51 EST 2025
Sat Nov 29 11:04:42 EST 2025
Mon Jul 21 09:15:43 EDT 2025
Tue Nov 18 22:09:30 EST 2025
Sat Nov 29 06:35:29 EST 2025
Thu Jun 19 16:02:47 EDT 2025
Tue Jan 05 23:29:21 EST 2021
Fri Jan 15 03:35:26 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Saddle point method
Non convex programming
Covering problem
Complementarity problem
integer
Convex programming
Column generation
Classification
Inequality constraint
Discrete programming
Set covering
programming
Lagrangian
Subgradient optimization
algorithms: Subject classifications: programming
Coverage
Saddle point
theory; global optimality condi Lagrangian heuristics; column generation algorithms; core problems. Optimization
theory: global optimality conditions; programming
Condition of use
Heuristic method
Primal dual method
Optimality condition
Optimality criterion
Feasibility
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-cd48aabc66a485ea6785a10625c483f9a881bd3b507f7d5c6e80880294ac65da3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 219195640
PQPubID 37962
PageCount 18
ParticipantIDs proquest_journals_219195640
highwire_informs_opres_54_3_436
gale_infotracacademiconefile_A147514699
informs_primary_10_1287_opre_1060_0292
crossref_primary_10_1287_opre_1060_0292
swepub_primary_oai_DiVA_org_liu_36281
gale_infotracgeneralonefile_A147514699
pascalfrancis_primary_17849235
crossref_citationtrail_10_1287_opre_1060_0292
jstor_primary_25146982
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Linthicum, MD
PublicationPlace_xml – name: Linthicum, MD
– name: Linthicum
PublicationTitle Operations research
PublicationYear 2006
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B16
B17
B18
B19
Wolsey L. A. (B58) 1998
Beasley J. E. (B11) 1993
Bazaraa M. S. (B9) 1993
Martello S. (B41) 1990
Patriksson M. (B44) 1994
Shapiro J. F. (B49) 1979
Bertsekas D. P. (B13) 2003
Jonsson Ö. (B32) 1990; 7
Carlyle W. M. (B18) 2003
Lasdon L. S. (B38) 1970
Bertsekas D. P. (B12) 1999
References_xml – ident: B12
– ident: B35
– ident: B3
– ident: B41
– ident: B45
– ident: B7
– ident: B29
– ident: B25
– ident: B50
– ident: B21
– ident: B16
– ident: B31
– ident: B58
– ident: B39
– ident: B54
– ident: B13
– ident: B2
– ident: B40
– ident: B28
– ident: B44
– ident: B49
– ident: B6
– ident: B24
– ident: B48
– ident: B17
– ident: B30
– ident: B34
– ident: B51
– ident: B38
– ident: B55
– ident: B9
– ident: B14
– ident: B10
– ident: B43
– ident: B20
– ident: B1
– ident: B27
– ident: B5
– ident: B47
– ident: B23
– ident: B18
– ident: B33
– ident: B52
– ident: B37
– ident: B56
– ident: B8
– ident: B36
– ident: B11
– ident: B42
– ident: B26
– ident: B4
– ident: B46
– ident: B22
– ident: B32
– ident: B15
– ident: B57
– ident: B19
– ident: B53
– ident: B23
  doi: 10.1137/S1052623498332336
– volume-title: Knapsack Problems: Algorithms and Computer Implementations
  year: 1990
  ident: B41
– ident: B27
  doi: 10.1007/BFb0120690
– ident: B46
  doi: 10.1016/0377-2217(94)00013-3
– ident: B52
  doi: 10.1007/BF02594782
– start-page: 243
  volume-title: Modern Heuristic Techniques for Combinatorial Problems
  year: 1993
  ident: B11
– ident: B35
  doi: 10.1016/0377-2217(94)00200-2
– ident: B29
  doi: 10.1287/opre.18.6.1138
– volume-title: Integer Programming
  year: 1998
  ident: B58
– ident: B45
  doi: 10.1002/(SICI)1097-0207(19970415)40:7<1295::AID-NME115>3.0.CO;2-P
– ident: B20
  doi: 10.1287/moor.4.3.233
– ident: B57
  doi: 10.1023/A:1013141227104
– ident: B33
  doi: 10.1007/BF01585554
– ident: B7
  doi: 10.1287/opre.28.5.1130
– volume-title: Nonlinear Programming: Theory and Algorithms
  year: 1993
  ident: B9
– ident: B4
  doi: 10.1287/trsc.5.1.64
– ident: B43
  doi: 10.1002/9781118627372
– ident: B50
  doi: 10.1016/S0167-5060(08)70346-7
– ident: B55
  doi: 10.1002/nav.3800310118
– ident: B42
  doi: 10.1287/mnsc.25.4.329
– ident: B48
  doi: 10.1287/opre.45.6.831
– volume-title: Mathematical Programming: Structures and Algorithms
  year: 1979
  ident: B49
– ident: B37
  doi: 10.1016/S0377-2217(02)00629-X
– ident: B36
  doi: 10.1007/s101070050090
– volume-title: Optimization Theory for Large Systems
  year: 1970
  ident: B38
– ident: B30
  doi: 10.1007/BF01584070
– ident: B6
  doi: 10.1007/BFb0120886
– ident: B1
  doi: 10.1016/S0166-218X(01)00338-9
– ident: B39
  doi: 10.1287/mnsc.22.11.1195
– ident: B24
  doi: 10.1287/mnsc.27.1.1
– ident: B25
  doi: 10.1287/inte.15.2.10
– ident: B10
  doi: 10.1016/0377-2217(87)90141-X
– ident: B21
  doi: 10.1287/opre.26.6.992
– ident: B19
  doi: 10.1007/BF01581106
– volume: 7
  start-page: 155
  year: 1990
  ident: B32
  publication-title: Asia-Pacific J. Oper. Res.
– ident: B17
  doi: 10.1287/opre.50.5.851.362
– ident: B26
  doi: 10.1287/opre.42.4.626
– ident: B3
  doi: 10.1287/trsc.3.1.53
– ident: B28
  doi: 10.1002/net.3230100403
– ident: B47
  doi: 10.1016/0041-5553(69)90061-5
– volume-title: The Traffic Assignment Problem—Models and Methods. Topics in Transportation
  year: 1994
  ident: B44
– ident: B34
  doi: 10.1080/02331939708844312
– ident: B5
  doi: 10.1287/opre.44.6.875
– ident: B14
  doi: 10.1287/mnsc.27.3.247
– volume-title: Convex Analysis and Optimization
  year: 2003
  ident: B13
– volume-title: Nonlinear Programming
  year: 1999
  ident: B12
– ident: B8
  doi: 10.1287/opre.46.3.316
– ident: B22
  doi: 10.1287/opre.11.3.399
– ident: B51
  doi: 10.1016/0167-6377(96)00019-3
– ident: B53
  doi: 10.1287/opre.27.6.1128
– ident: B16
  doi: 10.1287/opre.47.5.730
– start-page: 3
  volume-title: Proc. 38th Annual ORSNZ Conf.
  year: 2003
  ident: B18
– ident: B31
  doi: 10.1007/BF01580223
– ident: B2
  doi: 10.1007/978-1-4757-3333-4_10
– ident: B15
  doi: 10.1287/mnsc.37.4.409
– ident: B56
  doi: 10.1002/net.3230210407
SSID ssj0009565
Score 1.873646
Snippet The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the...
SourceID swepub
proquest
gale
pascalfrancis
crossref
jstor
informs
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 436
SubjectTerms Algorithms
Applied sciences
column generation algorithms
Combinatorics
Computer programming
Conservatism
core problems
Exact sciences and technology
global optimality conditions
Heuristic
Heuristics
integer
Integer programming
Integers
Lagrangian function
Lagrangian functions
Lagrangian heuristics
Linear programming
Management
MATEMATIK
Mathematical vectors
MATHEMATICS
Operational research. Management science
Optimal solutions
Optimization
programming
Studies
theory
Title Global Optimality Conditions for Discrete and Nonconvex Optimization--With Applications to Lagrangian Heuristics and Column Generation
URI http://or.journal.informs.org/cgi/content/abstract/54/3/436
https://www.jstor.org/stable/25146982
https://www.proquest.com/docview/219195640
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-36281
Volume 54
WOSCitedRecordID wos000238435100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: 7WY
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: M0C
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: P5Z
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: K7-
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: M7S
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: M1Q
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1526-5463
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0009565
  issn: 0030-364X
  databaseCode: M2O
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CDSF4YKwwUQbFD1wfwnKxE-cJlW7TJKAb1xVeLMdJS6WRjKZF_AP-Nuc4TmklLg-8WGpz4jjJ5-Pj-Pj7AO6HWW6iXHAvoykKN9HYk-PM8t5iOJuleVJIKzaRDIdyNEpPXG5O7dIqW59oHXVeGfpGvoc9i7a2cf_Z-VePRKNocdUpaFyETVLNJpgno2SFczduBAwidDUxHznORpwj7JHCCE5cY_-pH6bh2pjUeuaWLthuc6IAsm5TFil_Utf4CMeN9sV6cLpKOGoHqcOt_7y963DNRaes38BpGy4UZQcut8nxHdhqRSCY8wkduLrCaNiBbfd_zR47QusnN-BHIyzAjtE9fbFxPxtUtFROkGd402x_it4Lw3emy5wNq9Lmwn9vTnAbRZnHTqfzz6y_suLO5hV7qSf4fCaIcnZULBzvtK1nQI63ZE07yP4mvD88eDc48pwAhGeEH8w9k3OpdWbiWHMpCo0Dq9D41kJhuIzGqZYYdOdRhjHtOMmFiQuJThPfKNcmFrmOdmCjrMriFrAiiPIQwzGe-BnxEem4SFKZhkITJWAQdsFrIaCMY0cnkY4zRbMkhIwiyCiCjCLIdOHR0v684QX5syUhShGIsEaj3b4HbBdRb6l-wBOMWuM07cLDNctJ855-Z3ivRady2LQXrZXgKlI8irGq9sC_WrdjMb00C-0lJB7orYH8Vz2JJFI_0YXdFsnK-b1aLWHchQdNR1ieRzzm-9MPfVXNJupsulAYOsng9l9r2YUrzScvSjC9Axvz2aK4C5fMt_m0nvWwt59-7Nk-34PN5wfDkzf460XiYfnKH1AZvKYyPKYyeYvlifj0E_JyZS0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgngcKA1UhEK7B8rjYBrba3t9QChKqFI1DSC1kNuyXjshUrFLnPD4Bfwa_iMz63VIJB6nHrja4_Fqd77ZGXv2G4CHXpJqPw24k1CKwrU_csQoMby3GM4mcRplwjSbiAYDMRzGr9fgR30Whsoqa59oHHVaaPpGvo_IoqNtvPXi_JNDTaPo52rdQaOyiqPs2xfM2Mrnh11c3j3PO3h50uk5tqmAo4OWO3N0yoVSiQ5DxUWQKXTWgcK8yAs0F_4oVgIDudRPME4aRWmgw0wgEFtezJUOg1T5qPcSXCZaPaogO3bfLHH8hlXDBB9dW8iHliMSc5J96miCiXLYeoaavJU9sN4Janpic6yKAtayLpGkek1V4pKNql4bq8HwMsGp2RQPNv6z6bwFN230zdoVXDZhLcsbcLUu_m_ARt3kglmf14AbS4yNDdi010v2xBJ2P70N36vGCewVut-PJq9hnYJKAQjSDCeZdSfonTE9YSpP2aDITa3_1-oBexCWOezdZPaBtZcqCtisYH01xvUYI4pZL5tbXm2jp0MbS86qcZD8HTi9kMnbgvW8yLO7wDLXTz0MN3nUSohvSYVZFIvYCxRRHrpeE5za5KS27O_UhORMUhaIJirJRCWZqCQTbcLjhfx5xXvyZ0myYElGixq1suc6cFxELSbbLo8wKg_juAmPViTH1Tr9TnC3RoO0WDAvLWXApS-5H6Kq-sa_RrdlMLQQ88wrBN7YWQHVLz2RINLCoAnbNXKk9eulXMCmCXsV8BbPEU97d_K2LYvpWJ5N5hJDQ-He-6uWXbjWOznuy_7h4Ggbrlef96iY9j6sz6bz7AFc0Z9nk3K6YzwNg_cXjcWfknS5vQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVwoDRQEQrtHiiPg0lir-31AaGQNGrVKkSIR27Leu2ESMUuccLjF_Cb-HfM2LshkXiceuAaj8fW7nyzM87MNwAP3DjRXuJzJ6YUhWtv7IhxXPLeYjgbR0mYinLYRDgYiNEoGm7AD9sLQ2WV1ieWjjrJNX0jbyKyqLWNt5pjUxUx7PWfX3xyaIAU_dFqp2lUFnKafvuC2Vvx7KSHW33ouv2j191jxwwYcLTfas8dnXChVKyDQHHhpwodt68wR3J9zYU3jpTAoC7xYoyZxmHi6yAVCMqWG3GlAz9RHuq9ApuhhzlPDTZfHA2Gr1YYf4NqfIKHji7gI8MYiRlKk-abYNoctJ6iLnftRLTngiUrLpusKHwtbMEkVW-qAjdwXE3eWA-NV-lOyyOyv_0fL-5NuGHictapgLQDG2lWhy3bFlCHbTv-ghlvWIfrK1yOddgxvxfssaHyfnILvlcjFdhLdMwfy4yHdXMqEiCwM1xw1pui38bEhaksYYM8K7sAvlY3mBZZ5rB30_kH1lmpNWDznJ2pCe7NBPHNjtOFYdwu9XTpyMlY9R4kfxveXMri7UIty7P0DrC07SUuBqI8bMXExKSCNIxE5PqKyBDbbgMca35SG154Gk9yLik_RHOVZK6SzFWSuTbg0VL-omJE-bMkWbMkA0aNWpmOD3wvIh2TnTYPMV4PoqgBD9ckJ9U-_U7wwCJDGlyUDy2kz6UnuRegKnvhX2-3W-JpKeaWjxB4YX8NYL_0hILoDP0G7FkUSePxC7mEUAMOKxAu7yMG9970bUfms4k8ny4kBo2iffevWg5gCyEoz04Gp3twrfruR1W296A2ny3S-3BVf55Pi9m-cTsM3l82GH8ClA_D1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Optimality+Conditions+for+Discrete+and+Nonconvex+Optimization--With+Applications+to+Lagrangian+Heuristics+and+Column+Generation&rft.jtitle=Operations+research&rft.au=Larsson%2C+Torbjorn&rft.au=Patriksson%2C+Michael&rft.date=2006-05-01&rft.eissn=1526-5463&rft.volume=54&rft.issue=3&rft.spage=436&rft_id=info:doi/10.1287%2Fopre.1060.0292&rft.externalDBID=n%2Fa&rft.externalDocID=opres_54_3_436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-364X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-364X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-364X&client=summon