STracking: a free and open-source Python library for particle tracking and analysis

Abstract Summary Analysis of intra- and extracellular dynamic like vesicles transport involves particle tracking algorithms. The design of a particle tracking pipeline is a routine but tedious task. Therefore, particle dynamics analysis is often performed by combining several pieces of software (fil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics Jg. 38; H. 14; S. 3671 - 3673
Hauptverfasser: Prigent, Sylvain, Valades-Cruz, Cesar Augusto, Leconte, Ludovic, Salamero, Jean, Kervrann, Charles
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford University Press 11.07.2022
Oxford University Press (OUP)
Schlagworte:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Summary Analysis of intra- and extracellular dynamic like vesicles transport involves particle tracking algorithms. The design of a particle tracking pipeline is a routine but tedious task. Therefore, particle dynamics analysis is often performed by combining several pieces of software (filtering, detection, tracking, etc.) requiring many manual operations, and thus leading to poorly reproducible results. Given the new segmentation tools based on deep learning, modularity and interoperability between software have become essential in particle tracking algorithms. A good synergy between a particle detector and a tracker is of paramount importance. In addition, a user-friendly interface to control the quality of estimated trajectories is necessary. To address these issues, we developed STracking, a Python library that allows combining algorithms into standardized particle tracking pipelines. Availability and implementation STracking is available as a Python library using ‘pip install’ and the source code is publicly available on GitHub (https://github.com/sylvainprigent/stracking). A graphical interface is available using two napari plugins: napari-stracking and napari-tracks-reader. These napari plugins can be installed via the napari plugins menu or using ‘pip install’. The napari plugin source codes are available on GitHub (https://github.com/sylvainprigent/napari-tracks-reader, https://github.com/sylvainprigent/napari-stracking). Supplementary information Supplementary data are available at Bioinformatics online.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btac365