A moment-convergence method for stochastic analysis of biochemical reaction networks

Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics Jg. 144; H. 19; S. 194109
Hauptverfasser: Zhang, Jiajun, Nie, Qing, Zhou, Tianshou
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 21.05.2016
Schlagworte:
ISSN:1089-7690, 1089-7690
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
AbstractList Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
Author Zhang, Jiajun
Zhou, Tianshou
Nie, Qing
Author_xml – sequence: 1
  givenname: Jiajun
  surname: Zhang
  fullname: Zhang, Jiajun
  organization: School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
– sequence: 2
  givenname: Qing
  surname: Nie
  fullname: Nie, Qing
  organization: Department of Mathematics, University of California at Irvine, Irvine, California 92697, USA
– sequence: 3
  givenname: Tianshou
  surname: Zhou
  fullname: Zhou, Tianshou
  organization: School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27208938$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAcxC1URB8w8AWQR5YUPxI7HquKl1SJpcyRY_9NA4ldbBfUb08kisR0p_udbrg5mvjgAaFrSpaUCH5Hl6WqiBTyDM0oqVUhhSKTf36K5im9E0KoZOUFmjLJRsTrGdqu8BAG8LkwwX9BfANvAA-Qd8FiFyJOOZidTrkzWHvdH1OXcHC47cYYhs7oHkfQJnfBYw_5O8SPdInOne4TXJ10gV4f7rfrp2Lz8vi8Xm0KUxGaC1UCoVRQZ7hrVWV4Ta2tlW3BGCZkPcKaOSJ01fLKKdbyutTcUSm5LUsLbIFuf3f3MXweIOVm6JKBvtcewiE1VCqimOBEjNWbU_XQDmCbfewGHY_N3xPsB4XrYPc
CitedBy_id crossref_primary_10_1016_j_cjph_2025_07_027
crossref_primary_10_1016_j_cjph_2025_09_007
crossref_primary_10_1088_1742_5468_ab02ec
crossref_primary_10_1088_1572_9494_adf38c
crossref_primary_10_1088_1742_5468_ab4586
crossref_primary_10_1038_s41598_020_69319_x
crossref_primary_10_1016_j_chaos_2022_112261
crossref_primary_10_1098_rsos_221057
crossref_primary_10_12677_HJCB_2018_84009
crossref_primary_10_1016_j_bpj_2020_09_001
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1063/1.4950767
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 27208938
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS095355
– fundername: NIGMS NIH HHS
  grantid: R01 GM107264
– fundername: NIGMS NIH HHS
  grantid: P50 GM076516
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CGR
CS3
CUY
CVF
D-I
DU5
EBS
ECM
EIF
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPM
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
7X8
AAGWI
ABUFD
ID FETCH-LOGICAL-c501t-94e01161fc3fb95c381dd89dbecc267801182f06a5b35f92b384a3f1773d44de2
IEDL.DBID 7X8
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377712600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7690
IngestDate Sun Nov 09 13:59:34 EST 2025
Wed Feb 19 02:09:12 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-94e01161fc3fb95c381dd89dbecc267801182f06a5b35f92b384a3f1773d44de2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.4950767
PMID 27208938
PQID 1790926306
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1790926306
pubmed_primary_27208938
PublicationCentury 2000
PublicationDate 2016-05-21
PublicationDateYYYYMMDD 2016-05-21
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2016
References 25493811 - Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052702
23464139 - J Chem Phys. 2013 Feb 28;138(8):084106
17155441 - Phys Rev Lett. 2006 Oct 20;97(16):168302
11388089 - Q Rev Biophys. 2001 Feb;34(1):1-59
21551064 - Science. 2011 May 6;332(6030):732-5
21568538 - Phys Rev Lett. 2011 Apr 15;106(15):150602
22566653 - Proc Natl Acad Sci U S A. 2012 May 22;109 (21):8340-5
18373871 - BMC Syst Biol. 2008 Mar 29;2:30
23557991 - Methods. 2013 Jul 15;62(1):13-25
12948684 - Theor Popul Biol. 2003 Sep;64(2):233-9
17228945 - J Chem Phys. 2007 Jan 14;126(2):024109
19914166 - Cell. 2009 Nov 13;139(4):731-43
23030885 - Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031126
22455907 - Biophys J. 2012 Mar 21;102(6):1247-57
20431005 - Science. 2010 Apr 30;328(5978):581-2
24626049 - PLoS Comput Biol. 2014 Mar 13;10(3):e1003359
16383875 - Phys Rev Lett. 2005 Oct 21;95(17):178103
9262395 - Nature. 1997 Aug 14;388(6643):632-3
16460146 - J Chem Phys. 2006 Jan 28;124(4):044104
26567686 - J Chem Phys. 2015 Nov 14;143(18):185101
20562419 - Bioinformatics. 2010 Aug 15;26(16):2060-1
24811315 - PLoS Comput Biol. 2014 May 08;10(5):e1003596
17618274 - Nat Cell Biol. 2007 Aug;9(8):905-14
17048983 - PLoS Biol. 2006 Oct;4(10):e309
14597656 - Genome Res. 2003 Nov;13(11):2475-84
22022252 - PLoS Comput Biol. 2011 Oct;7(10):e1002209
10873438 - J Theor Biol. 2000 Jul 21;205(2):269-81
19500597 - J Theor Biol. 2009 Oct 7;260(3):340-52
22519313 - J Chem Phys. 2012 Apr 21;136(15):154105
24461023 - Biophys J. 2014 Jan 21;106(2):479-88
20937911 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18445-50
18988743 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17256-61
22660929 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9699-704
23656108 - J Chem Phys. 2013 May 7;138(17):174101
23940327 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5
20441737 - Biophys J. 2010 May 19;98(9):1742-50
15525059 - Phys Rev Lett. 2004 Oct 22;93(17):170601
20074511 - Biophys J. 2010 Jan 6;98(1):1-11
References_xml – reference: 19914166 - Cell. 2009 Nov 13;139(4):731-43
– reference: 12948684 - Theor Popul Biol. 2003 Sep;64(2):233-9
– reference: 24811315 - PLoS Comput Biol. 2014 May 08;10(5):e1003596
– reference: 20441737 - Biophys J. 2010 May 19;98(9):1742-50
– reference: 22519313 - J Chem Phys. 2012 Apr 21;136(15):154105
– reference: 23464139 - J Chem Phys. 2013 Feb 28;138(8):084106
– reference: 20937911 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18445-50
– reference: 10873438 - J Theor Biol. 2000 Jul 21;205(2):269-81
– reference: 20562419 - Bioinformatics. 2010 Aug 15;26(16):2060-1
– reference: 23656108 - J Chem Phys. 2013 May 7;138(17):174101
– reference: 16383875 - Phys Rev Lett. 2005 Oct 21;95(17):178103
– reference: 23030885 - Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031126
– reference: 20431005 - Science. 2010 Apr 30;328(5978):581-2
– reference: 22660929 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9699-704
– reference: 15525059 - Phys Rev Lett. 2004 Oct 22;93(17):170601
– reference: 17228945 - J Chem Phys. 2007 Jan 14;126(2):024109
– reference: 17155441 - Phys Rev Lett. 2006 Oct 20;97(16):168302
– reference: 24461023 - Biophys J. 2014 Jan 21;106(2):479-88
– reference: 9262395 - Nature. 1997 Aug 14;388(6643):632-3
– reference: 21568538 - Phys Rev Lett. 2011 Apr 15;106(15):150602
– reference: 25493811 - Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052702
– reference: 23940327 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5
– reference: 14597656 - Genome Res. 2003 Nov;13(11):2475-84
– reference: 17618274 - Nat Cell Biol. 2007 Aug;9(8):905-14
– reference: 21551064 - Science. 2011 May 6;332(6030):732-5
– reference: 18988743 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17256-61
– reference: 16460146 - J Chem Phys. 2006 Jan 28;124(4):044104
– reference: 23557991 - Methods. 2013 Jul 15;62(1):13-25
– reference: 20074511 - Biophys J. 2010 Jan 6;98(1):1-11
– reference: 24626049 - PLoS Comput Biol. 2014 Mar 13;10(3):e1003359
– reference: 11388089 - Q Rev Biophys. 2001 Feb;34(1):1-59
– reference: 22566653 - Proc Natl Acad Sci U S A. 2012 May 22;109 (21):8340-5
– reference: 22022252 - PLoS Comput Biol. 2011 Oct;7(10):e1002209
– reference: 17048983 - PLoS Biol. 2006 Oct;4(10):e309
– reference: 18373871 - BMC Syst Biol. 2008 Mar 29;2:30
– reference: 19500597 - J Theor Biol. 2009 Oct 7;260(3):340-52
– reference: 22455907 - Biophys J. 2012 Mar 21;102(6):1247-57
– reference: 26567686 - J Chem Phys. 2015 Nov 14;143(18):185101
SSID ssj0001724
Score 2.3515081
Snippet Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 194109
SubjectTerms Algorithms
Biochemical Phenomena
Computer Simulation
Gene Expression
Gene Regulatory Networks
Kinetics
Mathematical Concepts
Metabolic Networks and Pathways
Models, Biological
Models, Chemical
Probability
Stochastic Processes
Title A moment-convergence method for stochastic analysis of biochemical reaction networks
URI https://www.ncbi.nlm.nih.gov/pubmed/27208938
https://www.proquest.com/docview/1790926306
Volume 144
WOSCitedRecordID wos000377712600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAguDCUvZNRuJqmjhOHJ9QVVFxoeqhSL1FXkUPJIUUvp-xk6gnJCQuuUVKxsu88Ty_h9C9VpI7LiLCrRSEmTQhSmWWwFCbOFLcpZkOZhN8MsnnczFtD9zqllbZ7YlhozaV9mfkA68kJWgGCPdx-UG8a5TvrrYWGpuolwCU8ZQuPl-rhUNyZg3BXhAOZWCnLJQlg_gBKgOo4fnvyDJkmPHBf7_tEO232BIPm8lwhDZs2Ue7o87SrY92At9T18doNsTvXnthRQLtPNzAtLixk8aAYzFgQv0mvYgzlq1uCa4cVgvvsBUkBjDAzXApApcNlbw-Qa_jp9nombQGC0SnUbwiglnfh4mdTpwSqYbsbUwujB9XClnM30qlLspkqpLUCaqSnMnExZwnhjFj6SnaKqvSniMcUaMASUUSsiJjWgnGmY0dNZnTearUBbrrQlfAT_uuhCxt9VUX6-BdoLMm_sWyUdoofJMYAFV--Ye3r9AegJnMd_ZpfI16DpavvUHb-nu1qD9vw8yA52T68gP0N8P8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+moment-convergence+method+for+stochastic+analysis+of+biochemical+reaction+networks&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zhang%2C+Jiajun&rft.au=Nie%2C+Qing&rft.au=Zhou%2C+Tianshou&rft.date=2016-05-21&rft.eissn=1089-7690&rft.volume=144&rft.issue=19&rft.spage=194109&rft_id=info:doi/10.1063%2F1.4950767&rft_id=info%3Apmid%2F27208938&rft_id=info%3Apmid%2F27208938&rft.externalDocID=27208938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7690&client=summon