A moment-convergence method for stochastic analysis of biochemical reaction networks
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in...
Gespeichert in:
| Veröffentlicht in: | The Journal of chemical physics Jg. 144; H. 19; S. 194109 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
21.05.2016
|
| Schlagworte: | |
| ISSN: | 1089-7690, 1089-7690 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise. |
|---|---|
| AbstractList | Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise. Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise. |
| Author | Zhang, Jiajun Zhou, Tianshou Nie, Qing |
| Author_xml | – sequence: 1 givenname: Jiajun surname: Zhang fullname: Zhang, Jiajun organization: School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China – sequence: 2 givenname: Qing surname: Nie fullname: Nie, Qing organization: Department of Mathematics, University of California at Irvine, Irvine, California 92697, USA – sequence: 3 givenname: Tianshou surname: Zhou fullname: Zhou, Tianshou organization: School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27208938$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAcxC1URB8w8AWQR5YUPxI7HquKl1SJpcyRY_9NA4ldbBfUb08kisR0p_udbrg5mvjgAaFrSpaUCH5Hl6WqiBTyDM0oqVUhhSKTf36K5im9E0KoZOUFmjLJRsTrGdqu8BAG8LkwwX9BfANvAA-Qd8FiFyJOOZidTrkzWHvdH1OXcHC47cYYhs7oHkfQJnfBYw_5O8SPdInOne4TXJ10gV4f7rfrp2Lz8vi8Xm0KUxGaC1UCoVRQZ7hrVWV4Ta2tlW3BGCZkPcKaOSJ01fLKKdbyutTcUSm5LUsLbIFuf3f3MXweIOVm6JKBvtcewiE1VCqimOBEjNWbU_XQDmCbfewGHY_N3xPsB4XrYPc |
| CitedBy_id | crossref_primary_10_1016_j_cjph_2025_07_027 crossref_primary_10_1016_j_cjph_2025_09_007 crossref_primary_10_1088_1742_5468_ab02ec crossref_primary_10_1088_1572_9494_adf38c crossref_primary_10_1088_1742_5468_ab4586 crossref_primary_10_1038_s41598_020_69319_x crossref_primary_10_1016_j_chaos_2022_112261 crossref_primary_10_1098_rsos_221057 crossref_primary_10_12677_HJCB_2018_84009 crossref_primary_10_1016_j_bpj_2020_09_001 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1063/1.4950767 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1089-7690 |
| ExternalDocumentID | 27208938 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS095355 – fundername: NIGMS NIH HHS grantid: R01 GM107264 – fundername: NIGMS NIH HHS grantid: P50 GM076516 |
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CGR CS3 CUY CVF D-I DU5 EBS ECM EIF EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPM NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 7X8 AAGWI ABUFD |
| ID | FETCH-LOGICAL-c501t-94e01161fc3fb95c381dd89dbecc267801182f06a5b35f92b384a3f1773d44de2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377712600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-7690 |
| IngestDate | Sun Nov 09 13:59:34 EST 2025 Wed Feb 19 02:09:12 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c501t-94e01161fc3fb95c381dd89dbecc267801182f06a5b35f92b384a3f1773d44de2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.4950767 |
| PMID | 27208938 |
| PQID | 1790926306 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1790926306 pubmed_primary_27208938 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-21 |
| PublicationDateYYYYMMDD | 2016-05-21 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of chemical physics |
| PublicationTitleAlternate | J Chem Phys |
| PublicationYear | 2016 |
| References | 25493811 - Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052702 23464139 - J Chem Phys. 2013 Feb 28;138(8):084106 17155441 - Phys Rev Lett. 2006 Oct 20;97(16):168302 11388089 - Q Rev Biophys. 2001 Feb;34(1):1-59 21551064 - Science. 2011 May 6;332(6030):732-5 21568538 - Phys Rev Lett. 2011 Apr 15;106(15):150602 22566653 - Proc Natl Acad Sci U S A. 2012 May 22;109 (21):8340-5 18373871 - BMC Syst Biol. 2008 Mar 29;2:30 23557991 - Methods. 2013 Jul 15;62(1):13-25 12948684 - Theor Popul Biol. 2003 Sep;64(2):233-9 17228945 - J Chem Phys. 2007 Jan 14;126(2):024109 19914166 - Cell. 2009 Nov 13;139(4):731-43 23030885 - Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031126 22455907 - Biophys J. 2012 Mar 21;102(6):1247-57 20431005 - Science. 2010 Apr 30;328(5978):581-2 24626049 - PLoS Comput Biol. 2014 Mar 13;10(3):e1003359 16383875 - Phys Rev Lett. 2005 Oct 21;95(17):178103 9262395 - Nature. 1997 Aug 14;388(6643):632-3 16460146 - J Chem Phys. 2006 Jan 28;124(4):044104 26567686 - J Chem Phys. 2015 Nov 14;143(18):185101 20562419 - Bioinformatics. 2010 Aug 15;26(16):2060-1 24811315 - PLoS Comput Biol. 2014 May 08;10(5):e1003596 17618274 - Nat Cell Biol. 2007 Aug;9(8):905-14 17048983 - PLoS Biol. 2006 Oct;4(10):e309 14597656 - Genome Res. 2003 Nov;13(11):2475-84 22022252 - PLoS Comput Biol. 2011 Oct;7(10):e1002209 10873438 - J Theor Biol. 2000 Jul 21;205(2):269-81 19500597 - J Theor Biol. 2009 Oct 7;260(3):340-52 22519313 - J Chem Phys. 2012 Apr 21;136(15):154105 24461023 - Biophys J. 2014 Jan 21;106(2):479-88 20937911 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18445-50 18988743 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17256-61 22660929 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9699-704 23656108 - J Chem Phys. 2013 May 7;138(17):174101 23940327 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5 20441737 - Biophys J. 2010 May 19;98(9):1742-50 15525059 - Phys Rev Lett. 2004 Oct 22;93(17):170601 20074511 - Biophys J. 2010 Jan 6;98(1):1-11 |
| References_xml | – reference: 19914166 - Cell. 2009 Nov 13;139(4):731-43 – reference: 12948684 - Theor Popul Biol. 2003 Sep;64(2):233-9 – reference: 24811315 - PLoS Comput Biol. 2014 May 08;10(5):e1003596 – reference: 20441737 - Biophys J. 2010 May 19;98(9):1742-50 – reference: 22519313 - J Chem Phys. 2012 Apr 21;136(15):154105 – reference: 23464139 - J Chem Phys. 2013 Feb 28;138(8):084106 – reference: 20937911 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18445-50 – reference: 10873438 - J Theor Biol. 2000 Jul 21;205(2):269-81 – reference: 20562419 - Bioinformatics. 2010 Aug 15;26(16):2060-1 – reference: 23656108 - J Chem Phys. 2013 May 7;138(17):174101 – reference: 16383875 - Phys Rev Lett. 2005 Oct 21;95(17):178103 – reference: 23030885 - Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031126 – reference: 20431005 - Science. 2010 Apr 30;328(5978):581-2 – reference: 22660929 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9699-704 – reference: 15525059 - Phys Rev Lett. 2004 Oct 22;93(17):170601 – reference: 17228945 - J Chem Phys. 2007 Jan 14;126(2):024109 – reference: 17155441 - Phys Rev Lett. 2006 Oct 20;97(16):168302 – reference: 24461023 - Biophys J. 2014 Jan 21;106(2):479-88 – reference: 9262395 - Nature. 1997 Aug 14;388(6643):632-3 – reference: 21568538 - Phys Rev Lett. 2011 Apr 15;106(15):150602 – reference: 25493811 - Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052702 – reference: 23940327 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5 – reference: 14597656 - Genome Res. 2003 Nov;13(11):2475-84 – reference: 17618274 - Nat Cell Biol. 2007 Aug;9(8):905-14 – reference: 21551064 - Science. 2011 May 6;332(6030):732-5 – reference: 18988743 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17256-61 – reference: 16460146 - J Chem Phys. 2006 Jan 28;124(4):044104 – reference: 23557991 - Methods. 2013 Jul 15;62(1):13-25 – reference: 20074511 - Biophys J. 2010 Jan 6;98(1):1-11 – reference: 24626049 - PLoS Comput Biol. 2014 Mar 13;10(3):e1003359 – reference: 11388089 - Q Rev Biophys. 2001 Feb;34(1):1-59 – reference: 22566653 - Proc Natl Acad Sci U S A. 2012 May 22;109 (21):8340-5 – reference: 22022252 - PLoS Comput Biol. 2011 Oct;7(10):e1002209 – reference: 17048983 - PLoS Biol. 2006 Oct;4(10):e309 – reference: 18373871 - BMC Syst Biol. 2008 Mar 29;2:30 – reference: 19500597 - J Theor Biol. 2009 Oct 7;260(3):340-52 – reference: 22455907 - Biophys J. 2012 Mar 21;102(6):1247-57 – reference: 26567686 - J Chem Phys. 2015 Nov 14;143(18):185101 |
| SSID | ssj0001724 |
| Score | 2.3515081 |
| Snippet | Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 194109 |
| SubjectTerms | Algorithms Biochemical Phenomena Computer Simulation Gene Expression Gene Regulatory Networks Kinetics Mathematical Concepts Metabolic Networks and Pathways Models, Biological Models, Chemical Probability Stochastic Processes |
| Title | A moment-convergence method for stochastic analysis of biochemical reaction networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27208938 https://www.proquest.com/docview/1790926306 |
| Volume | 144 |
| WOSCitedRecordID | wos000377712600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAguDCUvZNRuJqmjhOHJ9QVVFxoeqhSL1FXkUPJIUUvp-xk6gnJCQuuUVKxsu88Ty_h9C9VpI7LiLCrRSEmTQhSmWWwFCbOFLcpZkOZhN8MsnnczFtD9zqllbZ7YlhozaV9mfkA68kJWgGCPdx-UG8a5TvrrYWGpuolwCU8ZQuPl-rhUNyZg3BXhAOZWCnLJQlg_gBKgOo4fnvyDJkmPHBf7_tEO232BIPm8lwhDZs2Ue7o87SrY92At9T18doNsTvXnthRQLtPNzAtLixk8aAYzFgQv0mvYgzlq1uCa4cVgvvsBUkBjDAzXApApcNlbw-Qa_jp9nombQGC0SnUbwiglnfh4mdTpwSqYbsbUwujB9XClnM30qlLspkqpLUCaqSnMnExZwnhjFj6SnaKqvSniMcUaMASUUSsiJjWgnGmY0dNZnTearUBbrrQlfAT_uuhCxt9VUX6-BdoLMm_sWyUdoofJMYAFV--Ye3r9AegJnMd_ZpfI16DpavvUHb-nu1qD9vw8yA52T68gP0N8P8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+moment-convergence+method+for+stochastic+analysis+of+biochemical+reaction+networks&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zhang%2C+Jiajun&rft.au=Nie%2C+Qing&rft.au=Zhou%2C+Tianshou&rft.date=2016-05-21&rft.eissn=1089-7690&rft.volume=144&rft.issue=19&rft.spage=194109&rft_id=info:doi/10.1063%2F1.4950767&rft_id=info%3Apmid%2F27208938&rft_id=info%3Apmid%2F27208938&rft.externalDocID=27208938 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7690&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7690&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7690&client=summon |