Bidding Strategy for Microgrid in Day-Ahead Market Based on Hybrid Stochastic/Robust Optimization
This paper proposes an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG, and price responsive loads. The microgrid coordinates the energy consumption or production of its components, and trades electricit...
Uložené v:
| Vydané v: | IEEE transactions on smart grid Ročník 7; číslo 1; s. 227 - 237 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.01.2016
|
| Predmet: | |
| ISSN: | 1949-3053, 1949-3061 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG, and price responsive loads. The microgrid coordinates the energy consumption or production of its components, and trades electricity in both day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, and day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total cost of operation minus total benefit of demand. This formulation can be solved by mixed-integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a photovoltaic panel, a fuel cell, a micro-turbine, a diesel generator, a battery, and a responsive load show the advantage of stochastic optimization, as well as robust optimization. |
|---|---|
| AbstractList | This paper proposes an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG, and price responsive loads. The microgrid coordinates the energy consumption or production of its components, and trades electricity in both day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, and day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total cost of operation minus total benefit of demand. This formulation can be solved by mixed-integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a photovoltaic panel, a fuel cell, a micro-turbine, a diesel generator, a battery, and a responsive load show the advantage of stochastic optimization, as well as robust optimization. In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total cost of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization. |
| Author | Tomsovic, Kevin Guodong Liu Yan Xu |
| Author_xml | – sequence: 1 surname: Guodong Liu fullname: Guodong Liu email: liug@ornl.gov organization: Oak Ridge Nat. Lab., Oak Ridge, TN, USA – sequence: 2 surname: Yan Xu fullname: Yan Xu email: xuy3@ornl.gov organization: Oak Ridge Nat. Lab., Oak Ridge, TN, USA – sequence: 3 givenname: Kevin surname: Tomsovic fullname: Tomsovic, Kevin email: tomsovic@utk.edu organization: Min H. Kao Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA |
| BackLink | https://www.osti.gov/servlets/purl/1265375$$D View this record in Osti.gov |
| BookMark | eNp9kE1PGzEQhq2KSoWUe6VeLE5cNtjr9dp75KtQCYRE4Gz5YzYxJHawnUP49XUaxKGHzmXm8LyjmecIHYQYAKEflEwpJcPZ0-xm2hLKp20n-r4fvqBDOnRDw0hPDz5nzr6h45xfSC3GWN8Oh0hfeOd8mONZSbrAfIvHmPC9tynOk3fYB3ylt835ArTD9zq9QsEXOoPDMeDbrdkxsxLtQufi7dljNJtc8MO6-JV_18XH8B19HfUyw_FHn6DnX9dPl7fN3cPN78vzu8ZyQksjjQU7GmNHRp2QxBrKRk6tGJ3tR-LY0BnopNaGWOHkIJ0QTkDLhaCUSsMm6GS_N9ZLVLa-gF3YGALYomjbcyZ4hU730DrFtw3kolY-W1gudYC4yYrKlnMqOiEr2u_RqiLnBKOqK_9-VE35paJE7dyr6l7t3KsP9zVI_gmuk1_ptP1f5Oc-4gHgExetqF9L9gfMD5F5 |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1109_TSG_2022_3147370 crossref_primary_10_1109_TSTE_2022_3232370 crossref_primary_10_1016_j_ijepes_2019_01_025 crossref_primary_10_1016_j_ijepes_2021_107620 crossref_primary_10_1016_j_ijepes_2022_108557 crossref_primary_10_1049_rpg2_12368 crossref_primary_10_3390_en9110973 crossref_primary_10_1016_j_est_2022_104373 crossref_primary_10_1016_j_ijepes_2019_105702 crossref_primary_10_1016_j_segan_2021_100467 crossref_primary_10_1016_j_apenergy_2018_07_120 crossref_primary_10_1016_j_seta_2024_103929 crossref_primary_10_3390_pr8010107 crossref_primary_10_1109_TSTE_2021_3121444 crossref_primary_10_1016_j_apenergy_2022_119082 crossref_primary_10_1016_j_ifacol_2017_08_028 crossref_primary_10_1007_s40998_019_00208_4 crossref_primary_10_1016_j_compchemeng_2022_107923 crossref_primary_10_1016_j_ijepes_2023_109362 crossref_primary_10_1016_j_scs_2020_102421 crossref_primary_10_1049_iet_gtd_2016_1699 crossref_primary_10_1109_TSG_2016_2600487 crossref_primary_10_3389_fenrg_2021_679365 crossref_primary_10_1109_TSG_2020_2966931 crossref_primary_10_1109_TPWRS_2020_3047260 crossref_primary_10_1049_iet_rpg_2020_0121 crossref_primary_10_1016_j_apenergy_2017_11_084 crossref_primary_10_1016_j_epsr_2023_109711 crossref_primary_10_1016_j_epsr_2019_04_025 crossref_primary_10_1109_ACCESS_2020_3011594 crossref_primary_10_1109_TSG_2022_3210272 crossref_primary_10_1088_1755_1315_766_1_012036 crossref_primary_10_1016_j_epsr_2018_09_003 crossref_primary_10_1049_iet_gtd_2019_1406 crossref_primary_10_3390_en14133747 crossref_primary_10_1016_j_apenergy_2020_115707 crossref_primary_10_1109_ACCESS_2020_2964652 crossref_primary_10_1109_ACCESS_2020_3008747 crossref_primary_10_1049_esi2_12031 crossref_primary_10_1016_j_enbuild_2024_114423 crossref_primary_10_1016_j_energy_2021_122844 crossref_primary_10_1016_j_ijepes_2022_108572 crossref_primary_10_1109_ACCESS_2025_3588035 crossref_primary_10_1016_j_enconman_2017_08_041 crossref_primary_10_1016_j_epsr_2023_110016 crossref_primary_10_1007_s40095_018_0286_4 crossref_primary_10_1016_j_apenergy_2020_115159 crossref_primary_10_1016_j_scs_2023_104686 crossref_primary_10_1049_iet_gtd_2018_5905 crossref_primary_10_3390_en17163901 crossref_primary_10_1016_j_apenergy_2021_117635 crossref_primary_10_1016_j_apenergy_2019_01_210 crossref_primary_10_1109_ACCESS_2017_2784834 crossref_primary_10_3390_en10040554 crossref_primary_10_1016_j_ijepes_2025_110591 crossref_primary_10_1016_j_seta_2021_101467 crossref_primary_10_1109_TSTE_2018_2884223 crossref_primary_10_1109_TPWRS_2021_3099336 crossref_primary_10_1049_iet_rpg_2019_0958 crossref_primary_10_1016_j_ijepes_2019_02_037 crossref_primary_10_3390_app9224872 crossref_primary_10_1109_TSTE_2020_3019494 crossref_primary_10_1109_TSTE_2018_2875483 crossref_primary_10_3390_en15134838 crossref_primary_10_1016_j_apenergy_2017_07_047 crossref_primary_10_1109_TSG_2018_2878024 crossref_primary_10_1109_TSTE_2018_2884997 crossref_primary_10_1109_TPWRS_2024_3523220 crossref_primary_10_3390_en10040566 crossref_primary_10_1016_j_ijepes_2018_10_027 crossref_primary_10_1109_TSTE_2018_2868548 crossref_primary_10_1109_TCSS_2024_3476694 crossref_primary_10_1109_TIA_2022_3188233 crossref_primary_10_1016_j_egyr_2023_05_067 crossref_primary_10_1016_j_ijepes_2019_105465 crossref_primary_10_1109_ACCESS_2022_3174123 crossref_primary_10_1080_15567036_2024_2319723 crossref_primary_10_1016_j_epsr_2019_106011 crossref_primary_10_1016_j_ijepes_2018_10_032 crossref_primary_10_1109_ACCESS_2021_3076872 crossref_primary_10_3390_app14219766 crossref_primary_10_1155_2022_6884956 crossref_primary_10_1016_j_apenergy_2023_120847 crossref_primary_10_1016_j_ejor_2019_12_030 crossref_primary_10_1016_j_ijepes_2020_106293 crossref_primary_10_1109_TII_2020_2973740 crossref_primary_10_1002_2050_7038_12426 crossref_primary_10_1016_j_renene_2018_06_113 crossref_primary_10_1109_TSG_2017_2693212 crossref_primary_10_1016_j_energy_2024_134167 crossref_primary_10_1016_j_ijepes_2020_106742 crossref_primary_10_1109_TPWRS_2017_2683263 crossref_primary_10_1109_ACCESS_2021_3131163 crossref_primary_10_1109_TNNLS_2022_3232630 crossref_primary_10_1109_TPWRS_2024_3391920 crossref_primary_10_1080_15567036_2021_1953637 crossref_primary_10_1016_j_est_2019_101157 crossref_primary_10_1016_j_energy_2022_123205 crossref_primary_10_1049_iet_rpg_2017_0076 crossref_primary_10_1016_j_apenergy_2023_120739 crossref_primary_10_1109_TCC_2018_2879948 crossref_primary_10_1016_j_jprocont_2017_06_004 crossref_primary_10_1016_j_ijepes_2020_105864 crossref_primary_10_1109_TPWRS_2022_3166264 crossref_primary_10_1155_2017_6249432 crossref_primary_10_1016_j_epsr_2021_107371 crossref_primary_10_1016_j_apenergy_2019_03_094 crossref_primary_10_3390_su13126577 crossref_primary_10_1016_j_energy_2023_127462 crossref_primary_10_1016_j_prime_2022_100028 crossref_primary_10_1109_TPWRS_2019_2916144 crossref_primary_10_3390_en15196971 crossref_primary_10_1038_s41467_019_10548_8 crossref_primary_10_1109_ACCESS_2020_3018071 crossref_primary_10_1109_TNNLS_2024_3432137 crossref_primary_10_1016_j_enbuild_2024_114465 crossref_primary_10_1016_j_renene_2024_120617 crossref_primary_10_3390_en11123312 crossref_primary_10_1109_TSG_2020_3036525 crossref_primary_10_1016_j_apenergy_2020_116272 crossref_primary_10_1016_j_jclepro_2022_133283 crossref_primary_10_1016_j_segan_2024_101373 crossref_primary_10_1016_j_est_2022_104558 crossref_primary_10_3390_en10101554 crossref_primary_10_1016_j_energy_2019_116154 crossref_primary_10_1049_iet_rpg_2018_5605 crossref_primary_10_1109_TPWRS_2020_2985572 crossref_primary_10_1016_j_energy_2024_132880 crossref_primary_10_1016_j_apenergy_2022_120226 crossref_primary_10_1109_TSG_2018_2834952 crossref_primary_10_1016_j_energy_2018_03_074 crossref_primary_10_1016_j_jclepro_2018_12_281 crossref_primary_10_1016_j_renene_2018_03_021 crossref_primary_10_1109_JPETS_2017_2749256 crossref_primary_10_1016_j_iot_2024_101178 crossref_primary_10_1109_ACCESS_2023_3316513 crossref_primary_10_1109_TSG_2020_3012562 crossref_primary_10_3390_app14051946 crossref_primary_10_1016_j_ijepes_2022_108144 crossref_primary_10_1016_j_apenergy_2018_06_087 crossref_primary_10_3390_en12061019 crossref_primary_10_1109_ACCESS_2025_3588003 crossref_primary_10_1016_j_epsr_2020_106302 crossref_primary_10_1109_TSG_2018_2834921 crossref_primary_10_1016_j_ijepes_2023_109769 crossref_primary_10_1016_j_apenergy_2018_06_040 crossref_primary_10_1109_TIA_2023_3258930 crossref_primary_10_1016_j_ijepes_2023_109644 crossref_primary_10_1109_TSG_2021_3113573 crossref_primary_10_1109_ACCESS_2021_3108905 crossref_primary_10_1007_s00521_021_06247_5 crossref_primary_10_1007_s10957_024_02518_y crossref_primary_10_1016_j_rser_2021_111859 crossref_primary_10_32604_ee_2024_043294 crossref_primary_10_1016_j_scs_2019_101600 crossref_primary_10_1002_dac_4133 crossref_primary_10_1016_j_est_2022_105627 crossref_primary_10_1049_gtd2_13116 crossref_primary_10_1109_ACCESS_2021_3076679 crossref_primary_10_1049_gtd2_12270 crossref_primary_10_1016_j_ijhydene_2024_07_273 crossref_primary_10_3390_su142114194 crossref_primary_10_1016_j_apenergy_2020_115336 crossref_primary_10_1109_TPWRS_2022_3160195 crossref_primary_10_1016_j_seta_2022_102675 crossref_primary_10_1155_2020_8877008 crossref_primary_10_1016_j_energy_2024_133712 crossref_primary_10_1515_jee_2017_0075 crossref_primary_10_1109_TPWRS_2023_3296273 crossref_primary_10_1109_TSTE_2023_3288745 crossref_primary_10_1109_TSTE_2020_3045216 crossref_primary_10_1049_gtd2_12958 crossref_primary_10_1109_TSG_2016_2597263 crossref_primary_10_1109_TII_2018_2850533 crossref_primary_10_1109_TPWRS_2018_2835464 crossref_primary_10_1049_iet_gtd_2018_5881 crossref_primary_10_1049_iet_gtd_2018_7022 crossref_primary_10_1109_TII_2018_2792441 crossref_primary_10_1109_TPWRD_2024_3399595 crossref_primary_10_1049_iet_gtd_2018_5880 crossref_primary_10_1016_j_ifacol_2018_11_780 crossref_primary_10_1016_j_est_2017_12_017 crossref_primary_10_1016_j_eneco_2020_104912 crossref_primary_10_1016_j_est_2021_102296 crossref_primary_10_1002_2050_7038_12559 crossref_primary_10_1016_j_ejor_2025_01_023 crossref_primary_10_1016_j_jprocont_2016_06_002 crossref_primary_10_1049_iet_gtd_2016_0772 crossref_primary_10_1016_j_ijepes_2016_12_018 crossref_primary_10_1016_j_energy_2018_01_174 crossref_primary_10_1088_1755_1315_647_1_012046 crossref_primary_10_1016_j_est_2024_114911 crossref_primary_10_1016_j_ijepes_2018_09_031 crossref_primary_10_3390_en16020600 crossref_primary_10_1109_TCNS_2021_3059851 crossref_primary_10_1177_0309524X17721995 crossref_primary_10_1109_TPWRS_2018_2876466 crossref_primary_10_1109_JSYST_2022_3185033 crossref_primary_10_1109_TII_2018_2820421 crossref_primary_10_1007_s12667_021_00490_4 crossref_primary_10_1016_j_epsr_2017_01_014 crossref_primary_10_1109_TSG_2018_2798039 crossref_primary_10_1016_j_energy_2018_12_173 crossref_primary_10_1109_ACCESS_2024_3415811 crossref_primary_10_1002_2050_7038_12566 crossref_primary_10_1016_j_apenergy_2022_120028 crossref_primary_10_1016_j_ress_2020_106821 crossref_primary_10_1016_j_apenergy_2017_05_068 crossref_primary_10_1049_iet_gtd_2018_6951 crossref_primary_10_1109_TSG_2023_3332139 crossref_primary_10_1109_TSG_2023_3290191 crossref_primary_10_1007_s11750_022_00628_2 crossref_primary_10_1007_s40565_019_0499_4 crossref_primary_10_3390_en11092347 crossref_primary_10_1016_j_apenergy_2022_119848 crossref_primary_10_1109_TPWRS_2021_3117571 crossref_primary_10_1080_15325008_2020_1857472 crossref_primary_10_3390_en18051115 crossref_primary_10_1109_TPWRS_2017_2743765 crossref_primary_10_3390_en15103725 crossref_primary_10_1109_TSG_2022_3154023 crossref_primary_10_1109_TSG_2022_3208093 crossref_primary_10_1515_ijeeps_2022_0113 crossref_primary_10_3390_en11061513 crossref_primary_10_1016_j_apenergy_2025_126384 crossref_primary_10_1016_j_suscom_2020_100477 crossref_primary_10_1016_j_epsr_2024_110124 crossref_primary_10_3390_en12203983 crossref_primary_10_1016_j_compchemeng_2024_108656 crossref_primary_10_1109_TSG_2018_2865621 crossref_primary_10_3390_en11123258 crossref_primary_10_1016_j_jclepro_2023_135962 crossref_primary_10_1109_TNET_2018_2817525 crossref_primary_10_1016_j_energy_2021_121015 crossref_primary_10_1049_iet_rpg_2017_0223 crossref_primary_10_1016_j_ijepes_2025_110727 crossref_primary_10_1109_TSG_2019_2941687 crossref_primary_10_1002_tee_23068 crossref_primary_10_1016_j_apenergy_2018_04_087 crossref_primary_10_1109_TSG_2019_2938723 crossref_primary_10_1016_j_apenergy_2025_126272 crossref_primary_10_1016_j_energy_2020_117845 crossref_primary_10_1016_j_gloei_2024_11_013 crossref_primary_10_1016_j_ijepes_2022_108403 crossref_primary_10_1016_j_est_2021_103230 crossref_primary_10_1016_j_ijepes_2021_106848 crossref_primary_10_1002_etep_2603 crossref_primary_10_1109_TSG_2022_3161801 crossref_primary_10_1016_j_epsr_2017_02_004 crossref_primary_10_1109_TSTE_2017_2769558 crossref_primary_10_1016_j_est_2024_114663 crossref_primary_10_1016_j_segan_2020_100376 crossref_primary_10_1109_TSG_2020_3035127 crossref_primary_10_3390_app14083253 crossref_primary_10_1016_j_ejor_2024_03_001 crossref_primary_10_1109_TASE_2021_3091334 crossref_primary_10_2478_rtuect_2020_0036 crossref_primary_10_1016_j_energy_2019_116441 crossref_primary_10_1109_TSG_2017_2647958 crossref_primary_10_1051_e3sconf_202125701083 crossref_primary_10_1016_j_ijepes_2021_107046 crossref_primary_10_1051_matecconf_20179515001 crossref_primary_10_1016_j_apenergy_2017_05_133 crossref_primary_10_1049_iet_rpg_2018_5575 crossref_primary_10_1109_TIE_2018_2829677 crossref_primary_10_1016_j_ijepes_2019_105605 crossref_primary_10_1049_iet_gtd_2018_6097 crossref_primary_10_1109_TII_2021_3094274 crossref_primary_10_1002_etep_2610 crossref_primary_10_1007_s00202_025_02960_9 crossref_primary_10_1016_j_egyr_2022_05_249 crossref_primary_10_1016_j_enconman_2020_112495 crossref_primary_10_1109_TNNLS_2018_2801880 crossref_primary_10_1109_TPWRS_2020_3025185 crossref_primary_10_3390_en15051932 crossref_primary_10_3390_en11102498 crossref_primary_10_3390_en13225882 crossref_primary_10_1016_j_scs_2023_105166 crossref_primary_10_1016_j_ijepes_2018_11_001 crossref_primary_10_1109_TSG_2019_2929695 crossref_primary_10_1109_TSG_2022_3164080 crossref_primary_10_1016_j_ijepes_2021_107281 crossref_primary_10_1109_TSG_2022_3153635 crossref_primary_10_3390_en16073014 crossref_primary_10_1016_j_scs_2022_103943 crossref_primary_10_3390_en9040278 crossref_primary_10_1007_s11708_017_0457_7 crossref_primary_10_1016_j_epsr_2021_107522 crossref_primary_10_1016_j_energy_2018_07_103 crossref_primary_10_1109_TSTE_2016_2590460 crossref_primary_10_1016_j_energy_2025_136104 crossref_primary_10_1109_TSG_2018_2830751 crossref_primary_10_1109_TSTE_2016_2624506 crossref_primary_10_1007_s11708_021_0792_6 crossref_primary_10_3390_en12163126 crossref_primary_10_1109_ACCESS_2022_3186519 crossref_primary_10_3390_en18051101 crossref_primary_10_1016_j_compchemeng_2023_108394 crossref_primary_10_1016_j_apenergy_2024_123005 crossref_primary_10_1109_TII_2020_3022412 crossref_primary_10_1109_TPWRS_2019_2945994 crossref_primary_10_1109_TSG_2021_3109111 crossref_primary_10_1080_15567036_2022_2143950 crossref_primary_10_1109_JSYST_2020_3047672 crossref_primary_10_1109_TSG_2018_2795007 |
| Cites_doi | 10.1109/PESGM.2012.6344870 10.1016/j.renene.2009.02.031 10.1109/TPWRS.2012.2207465 10.1109/TSG.2011.2163091 10.1109/TPWRS.2006.876672 10.1109/TSG.2012.2231440 10.1109/TPWRS.2006.873119 10.1007/s10107-003-0396-4 10.1109/TPWRS.2012.2185960 10.1007/s10107-002-0331-0 10.1016/j.ijepes.2009.11.003 10.1016/j.epsr.2013.05.005 10.1109/PowerCon.2012.6401287 10.1109/TPWRD.2011.2116044 10.1080/10473289.2006.10464536 10.1109/TPWRS.2012.2232682 10.1109/TPWRS.2005.846082 10.1016/j.ijepes.2013.06.028 10.1049/iet-rpg.2008.0064 10.1109/Allerton.2012.6483339 10.1109/TPWRS.2010.2092793 10.1109/TPWRS.2002.807063 10.1109/TSP.2014.2307835 10.1016/j.epsr.2014.02.006 10.1109/TPWRS.2014.2346988 10.1109/CDC.2010.5717304 10.1016/j.apenergy.2012.12.077 10.1109/TSG.2012.2189028 10.1109/TSG.2013.2265313 10.1109/TPWRS.2008.2008675 10.1109/TSG.2012.2206060 10.1109/NAPS.2014.6965466 10.1109/TPWRS.2013.2251916 10.1109/TEC.2007.914686 10.1109/TDC.2014.6863212 10.1109/TSG.2013.2280645 |
| ContentType | Journal Article |
| CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M OIOZB OTOTI |
| DOI | 10.1109/TSG.2015.2476669 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 237 |
| ExternalDocumentID | 1265375 10_1109_TSG_2015_2476669 7273948 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Engineering Research Center Shared Facilities of the Engineering Research Center Program of the National Science Foundation and the Department of Energy under National Science Foundation grantid: EEC-1041877 – fundername: Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT) Industry Partnership Program – fundername: U.S. Department of Energy with the University of Tennessee (UT)-Battelle and conducted at Oak Ridge National Laboratory and UT Knoxville grantid: DE-AC05-00OR 22725 funderid: 10.13039/100006130 – fundername: Office of Electricity Delivery and Energy Reliability funderid: 10.13039/100006130 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M OIOZB OTOTI RIG |
| ID | FETCH-LOGICAL-c501t-8bcecfbbcf31d780cb13f51c7fdc6f0d394be48aab0c7d898d77d7e25771118b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 374 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000367299800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Fri May 19 01:57:15 EDT 2023 Sun Sep 28 04:00:42 EDT 2025 Tue Nov 18 21:44:03 EST 2025 Sat Nov 29 03:45:48 EST 2025 Tue Aug 26 16:42:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | uncertainty Market bidding strategy microgrid mixed-integer linear programming (MILP) robust optimization stochastic optimization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c501t-8bcecfbbcf31d780cb13f51c7fdc6f0d394be48aab0c7d898d77d7e25771118b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-00OR22725 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1265375 |
| PQID | 1825517478 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1825517478 osti_scitechconnect_1265375 crossref_primary_10_1109_TSG_2015_2476669 ieee_primary_7273948 crossref_citationtrail_10_1109_TSG_2015_2476669 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 ref34 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref39 ref17 ref38 ref16 ref19 ref18 (ref46) 2013 birge (ref12) 1997 ref24 ref23 ref26 ortega-vazquez (ref37) 2006 ref20 ref42 ref22 ref44 ref21 ref43 marnay (ref5) 2007 yan (ref29) 2000 (ref41) 2011 ref28 (ref45) 2013 ref27 ref8 agrawal (ref6) 2011; 7 ref7 ref9 ref4 (ref1) 2003 ref3 kraning (ref25) 2012 (ref47) 2013 ref40 |
| References_xml | – ident: ref17 doi: 10.1109/PESGM.2012.6344870 – volume: 7 start-page: 147 year: 2011 ident: ref6 article-title: Micro grid technological activities across the globe: A review publication-title: Int J Res Rev Appl Sci – start-page: 1 year: 2006 ident: ref37 article-title: Optimizing the spinning reserve requirements – ident: ref10 doi: 10.1016/j.renene.2009.02.031 – ident: ref39 doi: 10.1109/TPWRS.2012.2207465 – ident: ref3 doi: 10.1109/TSG.2011.2163091 – year: 2013 ident: ref45 publication-title: Tacke TW 60 (Turbine) Models – ident: ref40 doi: 10.1109/TPWRS.2006.876672 – year: 2003 ident: ref1 publication-title: The CERTS Microgrid Concept – ident: ref9 doi: 10.1109/TSG.2012.2231440 – ident: ref28 doi: 10.1109/TPWRS.2006.873119 – ident: ref13 doi: 10.1007/s10107-003-0396-4 – ident: ref31 doi: 10.1109/TPWRS.2012.2185960 – ident: ref34 doi: 10.1007/s10107-002-0331-0 – ident: ref11 doi: 10.1016/j.ijepes.2009.11.003 – ident: ref16 doi: 10.1016/j.epsr.2013.05.005 – ident: ref8 doi: 10.1109/PowerCon.2012.6401287 – ident: ref14 doi: 10.1109/TPWRD.2011.2116044 – ident: ref19 doi: 10.1080/10473289.2006.10464536 – ident: ref22 doi: 10.1109/TPWRS.2012.2232682 – start-page: 629 year: 2007 ident: ref5 article-title: Microgrids and heterogeneous power quality and reliability publication-title: Proc Power Convers Conf (PCC) – ident: ref27 doi: 10.1109/TPWRS.2005.846082 – ident: ref7 doi: 10.1016/j.ijepes.2013.06.028 – ident: ref2 doi: 10.1049/iet-rpg.2008.0064 – ident: ref23 doi: 10.1109/Allerton.2012.6483339 – ident: ref43 doi: 10.1109/TPWRS.2010.2092793 – ident: ref30 doi: 10.1109/TPWRS.2002.807063 – ident: ref33 doi: 10.1109/TSP.2014.2307835 – ident: ref35 doi: 10.1016/j.epsr.2014.02.006 – ident: ref20 doi: 10.1109/TPWRS.2014.2346988 – ident: ref21 doi: 10.1109/CDC.2010.5717304 – ident: ref15 doi: 10.1016/j.apenergy.2012.12.077 – year: 2011 ident: ref41 – ident: ref44 doi: 10.1109/TSG.2012.2189028 – year: 1997 ident: ref12 publication-title: Introduction to Stochastic Programming – year: 2013 ident: ref47 publication-title: Oak Ridge National Laboratory (ORNL) Rotating Shadowband Radiometer (RSR) – ident: ref24 doi: 10.1109/TSG.2013.2265313 – ident: ref38 doi: 10.1109/TPWRS.2008.2008675 – ident: ref32 doi: 10.1109/TSG.2012.2206060 – ident: ref42 doi: 10.1109/NAPS.2014.6965466 – ident: ref18 doi: 10.1109/TPWRS.2013.2251916 – ident: ref4 doi: 10.1109/TEC.2007.914686 – ident: ref26 doi: 10.1109/TDC.2014.6863212 – year: 2012 ident: ref25 publication-title: Message Passing for Dynamic Network Energy Management – start-page: 1249 year: 2000 ident: ref29 article-title: Optimal energy purchases in deregulated California energy markets publication-title: Proc IEEE Power Energy Soc Winter Meeting – ident: ref36 doi: 10.1109/TSG.2013.2280645 – year: 2013 ident: ref46 publication-title: MSX-60 and MSX-64 Photovoltaic Modules |
| SSID | ssj0000333629 |
| Score | 2.617132 |
| Snippet | This paper proposes an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage,... In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage,... |
| SourceID | osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 227 |
| SubjectTerms | Batteries Distributed generation Electric power generation ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ENERGY PLANNING, POLICY, AND ECONOMY Market bidding strategy Markets Mathematical models Microgrid Microgrids mixed-integer linear programming (MILP) Optimization Pricing Real time Real-time systems robust optimization Robustness stochastic optimization Stochastic processes Stochasticity Uncertainty |
| Title | Bidding Strategy for Microgrid in Day-Ahead Market Based on Hybrid Stochastic/Robust Optimization |
| URI | https://ieeexplore.ieee.org/document/7273948 https://www.proquest.com/docview/1825517478 https://www.osti.gov/servlets/purl/1265375 |
| Volume | 7 |
| WOSCitedRecordID | wos000367299800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc4UKAglgIyEhck0k1ie20fW9rSAy0ICurNir_KSpCg3SzS_vvOeLMrEAiJU6LIjhM_e2bsmXkGeFk3gbxtpkioEAqhlCmcmKRCiTQpUyMrn3NhvrxTFxf66sp82ILXm1yYGGMOPosHdJt9-aHzC9oqG5OuNUJvw7ZSapWrtdlPKTlHWWyyE1mQO1_ytVeyNOPLT28pjEse1EKhwW5-00L5WBW8dDip_hDJWc-c7v7fF96Du4M9yQ5XA-A-bMX2Adz5hWVwD5qjaSANxQYm2iVDQ5WdUyTe9Wwa2LRlx82yOESxHNh5zoJmR6jcAutadraklC6s2vmvDXE6jz92bjHv2XuUNd-HJM6H8Pn05PLNWTGcrFB4WVZ9oZ2PPjnnE6-C0qV3FU-ESwp-ksqA_-Ci0E3jSq-CNjooFVTE6a1QNmrHH8FO27XxMTAXjfe1rCM-FzElLbCJVKmUEpc8xhGM1z1t_UA7TqdffLN5-VEai9hYwsYO2Izg1abGjxXlxj_K7hEIm3JD_49gn8C0aEUQFa6nmCHf26qeSK7kCF6sMbY4mchD0rSxW8wtLrYkUXcr_eTvL96H29j8sAfzFHb62SI-g1v-Zz-dz57nEXkDuK3efQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcR44GuglfFhJF6QyJoPu7YfN2AU0RYEBe3Nir-2SluC2hSp_z13aVqBQEg8JYrsxPHPvjv77n4GeJGXnrxtOomoEBIupU4sH8RE8jhIYyky1-bCfBvJyUSdnelPO_BqmwsTQmiDz8IR3ba-fF-7JW2V9UnXaq6uwXXBeZ6ts7W2OyppUaA01q0bmZNDXxQbv2Sq-9Mv7yiQSxzlXKLJrn_TQ-3BKnipcVr9IZRbTXN65__aeBdudxYlO14PgXuwE6r7cOsXnsF9KE9mnnQU67hoVwxNVTamWLzz-cyzWcXelKvkGAWzZ-M2D5qdoHrzrK7YcEVJXVi1dhclsTr3P9d2uWjYR5Q2V10a5wP4evp2-nqYdGcrJE6kWZMo64KL1rpYZF6q1NmsiIRM9G4QU4__YANXZWlTJ73SykvpZcAJLlE6Kls8hN2qrsIBMBu0c7nIAz7nIUbF8RMxkzHGQhQh9KC_6WnjOuJxOv_i0rQLkFQbxMYQNqbDpgcvtzW-r0k3_lF2n0DYluv6vweHBKZBO4LIcB1FDbnGZPlAFFL04PkGY4PTiXwkZRXq5cLgcksQebdUj_7-4mdwczgdj8zo_eTDIexhU7odmcew28yX4QnccD-a2WL-tB2dPwFvneHE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidding+Strategy+for+Microgrid+in+Day-Ahead+Market+Based+on+Hybrid+Stochastic%2FRobust+Optimization&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Liu%2C+Guodong&rft.au=Xu%2C+Yan&rft.au=Tomsovic%2C+Kevin&rft.date=2016-01-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=7&rft.issue=1&rft.spage=227&rft.epage=237&rft_id=info:doi/10.1109%2FTSG.2015.2476669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2015_2476669 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |