Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime

The response of lean (ϕ ≤ 0.4) premixed hydrogen flames to maintained homogeneous isotropic turbulence is investigated using detailed numerical simulation in an idealised three-dimensional configuration over a range of Karlovitz numbers from 10 to 1562. In particular, a focus is placed on turbulence...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics Vol. 680; pp. 287 - 320
Main Authors: ASPDEN, A. J., DAY, M. S., BELL, J. B.
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 10.08.2011
Subjects:
ISSN:0022-1120, 1469-7645
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The response of lean (ϕ ≤ 0.4) premixed hydrogen flames to maintained homogeneous isotropic turbulence is investigated using detailed numerical simulation in an idealised three-dimensional configuration over a range of Karlovitz numbers from 10 to 1562. In particular, a focus is placed on turbulence sufficiently intense that the flames can no longer be considered to be in the thin reaction burning regime. This transition to the so-called distributed burning regime is characterised through a number of diagnostics, and the relative roles of molecular and turbulent mixing processes are examined. The phenomenology and statistics of these flames are contrasted with a distributed thermonuclear flame from a related astrophysical study.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2011.164