Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime
The response of lean (ϕ ≤ 0.4) premixed hydrogen flames to maintained homogeneous isotropic turbulence is investigated using detailed numerical simulation in an idealised three-dimensional configuration over a range of Karlovitz numbers from 10 to 1562. In particular, a focus is placed on turbulence...
Saved in:
| Published in: | Journal of fluid mechanics Vol. 680; pp. 287 - 320 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cambridge, UK
Cambridge University Press
10.08.2011
|
| Subjects: | |
| ISSN: | 0022-1120, 1469-7645 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The response of lean (ϕ ≤ 0.4) premixed hydrogen flames to maintained homogeneous isotropic turbulence is investigated using detailed numerical simulation in an idealised three-dimensional configuration over a range of Karlovitz numbers from 10 to 1562. In particular, a focus is placed on turbulence sufficiently intense that the flames can no longer be considered to be in the thin reaction burning regime. This transition to the so-called distributed burning regime is characterised through a number of diagnostics, and the relative roles of molecular and turbulent mixing processes are examined. The phenomenology and statistics of these flames are contrasted with a distributed thermonuclear flame from a related astrophysical study. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0022-1120 1469-7645 |
| DOI: | 10.1017/jfm.2011.164 |