Integrating the predictiveness of a marker with its performance as a classifier

There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:American journal of epidemiology Ročník 167; číslo 3; s. 362
Hlavní autori: Pepe, Margaret S, Feng, Ziding, Huang, Ying, Longton, Gary, Prentice, Ross, Thompson, Ian M, Zheng, Yingye
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.02.2008
Predmet:
ISSN:1476-6256, 1476-6256
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003.
AbstractList There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003.
There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003.There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003.
Author Feng, Ziding
Longton, Gary
Prentice, Ross
Zheng, Yingye
Huang, Ying
Pepe, Margaret S
Thompson, Ian M
Author_xml – sequence: 1
  givenname: Margaret S
  surname: Pepe
  fullname: Pepe, Margaret S
  email: mspepe@u.washington.edu
  organization: Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. mspepe@u.washington.edu
– sequence: 2
  givenname: Ziding
  surname: Feng
  fullname: Feng, Ziding
– sequence: 3
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
– sequence: 4
  givenname: Gary
  surname: Longton
  fullname: Longton, Gary
– sequence: 5
  givenname: Ross
  surname: Prentice
  fullname: Prentice, Ross
– sequence: 6
  givenname: Ian M
  surname: Thompson
  fullname: Thompson, Ian M
– sequence: 7
  givenname: Yingye
  surname: Zheng
  fullname: Zheng, Yingye
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17982157$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAURS1URD9g4QcgT2yhtuOXxCOqKFSq1KV75CTPrdvECbZLxb-nEkViunc4OtK9UzJyvUNCHjl74Uylc33A-fHcpQxuyITLPEsyAdnoXx-TaQgHxjhXwO7ImOeqEBzyCdmsXMSd19G6HY17pIPHxtbRfqHDEGhvqKad9kf09GzjntoY6IDe9L7TrkaqwwWoWx2CNRb9Pbk1ug34cM0Z2S7ftouPZL15Xy1e10kNjMckh0Yp1IWEIheg04bzKpOSF6zCCoDJBmSDqWJGGeCNgVpXXGRGi4yBKcSMPP9qB99_njDEsrOhxrbVDvtTKHMmZJEyeQGfruCp6rApB28va77LvwfED4wdXyE
CitedBy_id crossref_primary_10_1001_jamaophthalmol_2023_4786
crossref_primary_10_1016_j_ajog_2018_01_031
crossref_primary_10_3109_10903127_2011_561415
crossref_primary_10_1177_1176935117734844
crossref_primary_10_1016_j_jsams_2017_05_012
crossref_primary_10_1016_j_lungcan_2014_05_002
crossref_primary_10_1002_pst_2002
crossref_primary_10_1002_gepi_22092
crossref_primary_10_1186_s13321_015_0100_8
crossref_primary_10_1111_j_1467_9876_2009_00707_x
crossref_primary_10_1002_pbc_24548
crossref_primary_10_1186_s12877_025_05679_1
crossref_primary_10_1093_biostatistics_kxn025
crossref_primary_10_1186_s13054_014_0601_2
crossref_primary_10_1016_j_gastha_2025_100661
crossref_primary_10_1007_s12561_014_9122_4
crossref_primary_10_1016_j_annepidem_2009_05_005
crossref_primary_10_3390_e24010068
crossref_primary_10_1111_rssc_12367
crossref_primary_10_1159_000433414
crossref_primary_10_1146_annurev_statistics_031017_100609
crossref_primary_10_7326_M19_0974
crossref_primary_10_1016_j_urology_2009_02_017
crossref_primary_10_1038_pr_2016_215
crossref_primary_10_1007_s11011_018_0186_6
crossref_primary_10_1080_17470919_2014_907201
crossref_primary_10_1186_bcr3110
crossref_primary_10_1016_j_jad_2016_05_034
crossref_primary_10_1111_jth_12262
crossref_primary_10_1186_1476_511X_11_160
crossref_primary_10_1002_sim_3876
crossref_primary_10_1177_0962280220929039
crossref_primary_10_1038_ejhg_2011_27
crossref_primary_10_1111_j_1541_0420_2009_01201_x
crossref_primary_10_1111_j_1541_0420_2011_01603_x
crossref_primary_10_1002_cncr_25386
crossref_primary_10_1002_jimd_70032
crossref_primary_10_1177_1179299X17732007
crossref_primary_10_1055_s_0044_1788623
crossref_primary_10_1177_0272989X12470757
crossref_primary_10_1111_j_1365_2362_2011_02562_x
crossref_primary_10_1093_jnci_djn215
crossref_primary_10_1016_j_jocd_2013_08_003
crossref_primary_10_1080_01621459_2013_810149
crossref_primary_10_2215_CJN_12181212
crossref_primary_10_1016_j_acra_2022_08_031
crossref_primary_10_1186_1471_2369_14_49
crossref_primary_10_1111_j_1464_5491_2011_03437_x
crossref_primary_10_1177_0962280218776989
crossref_primary_10_3389_fnut_2022_831696
crossref_primary_10_1111_j_1538_7836_2008_03236_x
crossref_primary_10_1093_aje_kwt293
crossref_primary_10_1097_EDE_0000000000000499
crossref_primary_10_1186_s13321_017_0230_2
crossref_primary_10_1016_j_amjcard_2020_07_048
crossref_primary_10_1007_s10654_011_9551_z
crossref_primary_10_1161_CIRCHEARTFAILURE_111_964841
crossref_primary_10_2215_CJN_06210616
crossref_primary_10_1002_jbmr_1539
crossref_primary_10_1007_s00586_011_1910_7
crossref_primary_10_1016_j_diabres_2017_09_010
crossref_primary_10_1097_CCM_0000000000000249
crossref_primary_10_1111_biom_12455
crossref_primary_10_3233_JAD_221118
crossref_primary_10_1002_sim_4187
crossref_primary_10_1002_alz_14160
crossref_primary_10_1002_ajhb_23107
crossref_primary_10_1053_j_gastro_2024_02_030
crossref_primary_10_1542_peds_2018_3604
crossref_primary_10_1080_10543406_2022_2041655
crossref_primary_10_1016_j_critrevonc_2014_10_002
crossref_primary_10_1093_biostatistics_kxu037
crossref_primary_10_1111_j_1365_2362_2011_02493_x
crossref_primary_10_1186_gm480
crossref_primary_10_1002_sim_5727
crossref_primary_10_1227_NEU_0000000000001123
crossref_primary_10_1093_jncics_pkae086
crossref_primary_10_1200_JCO_2013_52_8505
crossref_primary_10_1016_j_ebiom_2018_03_027
crossref_primary_10_1053_j_gastro_2018_05_023
crossref_primary_10_1155_2014_542069
crossref_primary_10_1177_0272989X10364246
crossref_primary_10_1016_j_ejca_2024_113571
crossref_primary_10_1186_s13098_018_0344_3
crossref_primary_10_1186_s12874_025_02544_y
crossref_primary_10_1093_aje_kwq122
crossref_primary_10_2215_CJN_08110715
crossref_primary_10_1097_CCE_0000000000000116
crossref_primary_10_1016_j_annepidem_2018_07_014
crossref_primary_10_1016_j_ejim_2015_08_002
crossref_primary_10_1007_s10985_013_9270_8
crossref_primary_10_1097_EDE_0b013e31823035fb
crossref_primary_10_1542_peds_2021_055641
crossref_primary_10_1093_biomet_asp040
crossref_primary_10_1111_jgs_16773
crossref_primary_10_1177_0962280219833089
crossref_primary_10_1001_jamanetworkopen_2022_37970
crossref_primary_10_1038_aja_2013_52
crossref_primary_10_1007_s12265_013_9470_3
crossref_primary_10_1016_j_jpeds_2021_11_026
crossref_primary_10_59786_bmtj_317
crossref_primary_10_1038_s41598_020_79548_9
crossref_primary_10_1111_j_1541_0420_2010_01523_x
crossref_primary_10_1111_j_1600_0463_2010_02594_x
crossref_primary_10_3390_ph14070699
crossref_primary_10_1007_s12561_012_9077_2
crossref_primary_10_1373_clinchem_2012_182550
crossref_primary_10_3389_fpsyt_2022_993077
crossref_primary_10_1158_1940_6207_CAPR_11_0006
crossref_primary_10_1016_j_jclinepi_2011_02_003
crossref_primary_10_1177_2168479015601721
crossref_primary_10_1007_s10554_024_03248_y
crossref_primary_10_1007_s00198_008_0688_x
crossref_primary_10_1158_1940_6207_CAPR_09_0098
crossref_primary_10_1097_EDE_0b013e3181c30fb2
crossref_primary_10_1016_j_jocd_2013_11_003
crossref_primary_10_1097_QAI_0000000000003030
crossref_primary_10_1016_j_kint_2016_07_018
crossref_primary_10_1371_journal_pmed_1001491
crossref_primary_10_1002_bimj_201000078
crossref_primary_10_1186_s12874_015_0042_x
crossref_primary_10_1016_j_jpeds_2011_06_044
crossref_primary_10_1007_s11606_011_1899_y
crossref_primary_10_7326_M18_3668
crossref_primary_10_1089_neu_2014_3351
crossref_primary_10_1002_bimj_201400061
crossref_primary_10_1093_biostatistics_kxr001
crossref_primary_10_1093_aje_kwq026
crossref_primary_10_1016_j_ajog_2015_01_019
crossref_primary_10_1136_bmjopen_2023_076547
crossref_primary_10_1161_CIRCULATIONAHA_110_943860
crossref_primary_10_1093_biostatistics_kxad020
crossref_primary_10_1093_humrep_dep109
crossref_primary_10_1002_bimj_201300260
crossref_primary_10_1016_j_ijcard_2018_10_027
crossref_primary_10_1371_journal_pgen_1000337
crossref_primary_10_1186_s12885_016_2345_7
crossref_primary_10_1002_sim_5776
crossref_primary_10_1002_sim_6745
crossref_primary_10_1016_j_jaci_2025_02_023
crossref_primary_10_1093_aje_kwr013
crossref_primary_10_1158_1940_6207_CAPR_11_0026
crossref_primary_10_1093_aje_kwr010
crossref_primary_10_1016_j_ebiom_2019_08_028
crossref_primary_10_1007_s10985_013_9272_6
crossref_primary_10_1007_s00392_021_01857_4
crossref_primary_10_1161_JAHA_115_003045
crossref_primary_10_1136_gutjnl_2013_305013
crossref_primary_10_1002_pds_1923
crossref_primary_10_1183_23120541_00339_2022
crossref_primary_10_1111_jgs_18075
crossref_primary_10_1002_alz_12801
crossref_primary_10_1097_EDE_0000000000001173
crossref_primary_10_1002_bsl_2052
crossref_primary_10_1177_0962280218819202
crossref_primary_10_1016_j_jclinepi_2015_01_003
crossref_primary_10_1007_s10549_018_4693_2
crossref_primary_10_1002_bimj_201200146
crossref_primary_10_1007_s10899_018_9745_3
crossref_primary_10_1542_peds_2021_051405
crossref_primary_10_1002_sim_6754
crossref_primary_10_1177_0306624X16677784
crossref_primary_10_2217_bmm_12_75
crossref_primary_10_1007_s00439_012_1194_y
crossref_primary_10_1097_SLA_0000000000002706
crossref_primary_10_1002_bimj_201000145
crossref_primary_10_2215_CJN_00310112
crossref_primary_10_1016_j_bone_2009_03_666
crossref_primary_10_1111_j_1445_5994_2010_02210_x
crossref_primary_10_1111_liv_15449
crossref_primary_10_1111_rssc_12448
crossref_primary_10_1097_COH_0b013e32833ed742
crossref_primary_10_1002_bimj_201000153
crossref_primary_10_3109_13547500903560065
crossref_primary_10_4103_jpgm_jpgm_753_23
crossref_primary_10_1038_nrcardio_2013_35
crossref_primary_10_1371_journal_pone_0187702
crossref_primary_10_1146_annurev_statistics_022513_115617
crossref_primary_10_1161_JAHA_118_009680
crossref_primary_10_1016_j_ijcard_2012_03_017
crossref_primary_10_1161_01_cir_0000437913_98912_1d
crossref_primary_10_1371_journal_pgen_1001230
crossref_primary_10_1515_CCLM_2010_340
crossref_primary_10_1007_s10985_017_9414_3
crossref_primary_10_1002_sim_5321
crossref_primary_10_1111_apt_16136
crossref_primary_10_1158_0008_5472_CAN_09_0028
crossref_primary_10_1093_humupd_dmu004
crossref_primary_10_1097_HCO_0b013e32832f0a5b
crossref_primary_10_1186_s12913_020_05883_2
crossref_primary_10_1080_1062936X_2019_1635526
crossref_primary_10_1007_s10877_013_9530_x
crossref_primary_10_1007_s11011_018_0199_1
crossref_primary_10_1002_jbmr_371
crossref_primary_10_1002_sim_8723
crossref_primary_10_1111_dom_12686
crossref_primary_10_3171_2017_8_JNS171413
crossref_primary_10_1007_s10742_008_0040_0
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/aje/kwm305
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1476-6256
ExternalDocumentID 17982157
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM054438
– fundername: NCI NIH HHS
  grantid: P01 CA053996
– fundername: NCI NIH HHS
  grantid: U01 CA086368
– fundername: NCI NIH HHS
  grantid: UO1 CA086368
GroupedDBID ---
-DZ
-E4
-~X
..I
.2P
.I3
.XZ
.ZR
0R~
186
1TH
23M
2WC
354
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6J9
70D
85S
8F7
AABZA
AACZT
AAILS
AAJKP
AAJQQ
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNGD
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABQTQ
ABVGC
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ADBBV
ADCFL
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMHG
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHKS
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGSYK
AHMBA
AHMMS
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ASPBG
ATGXG
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C1A
C45
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
ECM
EE~
EIF
EJD
EMOBN
F5P
F9B
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
ML0
N9A
NEJ
NGC
NOMLY
NOYVH
NPM
NVLIB
O0~
O9-
OAWHX
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TR2
UHB
UPT
VH1
W8F
WOQ
X7H
YAYTL
YF5
YKOAZ
YOC
YROCO
YSK
YXANX
Z0Y
ZKX
~91
7X8
ADGHP
AGQPQ
AJBYB
ID FETCH-LOGICAL-c501t-75d99ea8458725a3d11b644180beb5504d54de390f9f51df5cab126fa2605f82
IEDL.DBID 7X8
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000252903200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-6256
IngestDate Sun Sep 28 12:36:14 EDT 2025
Thu Apr 03 07:09:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-75d99ea8458725a3d11b644180beb5504d54de390f9f51df5cab126fa2605f82
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/aje/article-pdf/167/3/362/306073/kwm305.pdf
PMID 17982157
PQID 70248304
PQPubID 23479
ParticipantIDs proquest_miscellaneous_70248304
pubmed_primary_17982157
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of epidemiology
PublicationTitleAlternate Am J Epidemiol
PublicationYear 2008
References 12230001 - Biometrics. 2002 Sep;58(3):657-64
16622122 - J Natl Cancer Inst. 2006 Apr 19;98(8):529-34
12644540 - J Natl Cancer Inst. 2003 Mar 19;95(6):470-8
7055134 - Am J Epidemiol. 1982 Jan;115(1):92-106
7662848 - Biometrics. 1995 Jun;51(2):600-14
12809422 - Acad Radiol. 2003 Jun;10(6):670-2
11890304 - Biometrics. 2002 Mar;58(1):1-12
17489968 - Biometrics. 2007 Dec;63(4):1181-8
15105181 - Am J Epidemiol. 2004 May 1;159(9):882-90
17679623 - Circulation. 2007 Aug 7;116(6):e132; author reply e134
11782052 - Stat Med. 2002 Jan 15;21(1):79-93
15772102 - Biostatistics. 2005 Apr;6(2):227-39
7127706 - Circulation. 1982 Nov;66(5):945-53
8896134 - Stat Med. 1996 Oct 15;15(19):1987-97
17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12
16818925 - Ann Intern Med. 2006 Jul 4;145(1):21-9
References_xml – reference: 16818925 - Ann Intern Med. 2006 Jul 4;145(1):21-9
– reference: 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12
– reference: 15105181 - Am J Epidemiol. 2004 May 1;159(9):882-90
– reference: 8896134 - Stat Med. 1996 Oct 15;15(19):1987-97
– reference: 17679623 - Circulation. 2007 Aug 7;116(6):e132; author reply e134
– reference: 12809422 - Acad Radiol. 2003 Jun;10(6):670-2
– reference: 17489968 - Biometrics. 2007 Dec;63(4):1181-8
– reference: 11782052 - Stat Med. 2002 Jan 15;21(1):79-93
– reference: 15772102 - Biostatistics. 2005 Apr;6(2):227-39
– reference: 7055134 - Am J Epidemiol. 1982 Jan;115(1):92-106
– reference: 7127706 - Circulation. 1982 Nov;66(5):945-53
– reference: 16622122 - J Natl Cancer Inst. 2006 Apr 19;98(8):529-34
– reference: 12644540 - J Natl Cancer Inst. 2003 Mar 19;95(6):470-8
– reference: 12230001 - Biometrics. 2002 Sep;58(3):657-64
– reference: 11890304 - Biometrics. 2002 Mar;58(1):1-12
– reference: 7662848 - Biometrics. 1995 Jun;51(2):600-14
SSID ssj0011950
Score 2.3960679
Snippet There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 362
SubjectTerms Biomarkers - analysis
Epidemiologic Methods
Humans
Logistic Models
Male
Models, Theoretical
Predictive Value of Tests
Prostate-Specific Antigen - blood
Risk
Risk Assessment - methods
ROC Curve
Sensitivity and Specificity
Title Integrating the predictiveness of a marker with its performance as a classifier
URI https://www.ncbi.nlm.nih.gov/pubmed/17982157
https://www.proquest.com/docview/70248304
Volume 167
WOSCitedRecordID wos000252903200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qFRHE96M-9-A1NK_NbkAQEYuCrT300FvY7AOqNIlN1b_vTh70JB685DSBMJmd-WZn5huAGx4ZKbUbOsIXygm1HzpccWFzHqF1ylLXyIoy_4WNRnw6jccduG1nYbCtsvWJlaNWucQ78j5D8i2be98VHw7ujMLaarNAYw26gQUyaNNsuqoh4ILTaraIRY5F-VFLThoHffGm--_f88ClvwPLKsAMdv_3aXuw0wBLcl9bwj50dHYAm8OmdH4A2_UFHannjg7h9bkhirCxi1gUSIoFyrbej-SGCDLH5p0FwctaMluWpFiNGRBRWgGJ4HtmbGw9gsngcfLw5DTbFRxJXW_pMKriWAseUs58KgLleSmCI-6mOrV5S6hoqHQQuyY21FOGSpF6fmQEZkCG-8ewnuWZPgViTGr_qeZWlIfK94QRrjbGQ54XRaXpwXWrt8QaL1YkRKbzzzJpNdeDk1r1SVFzbCTIo2bRCDv7891z2Kp7OLDF5AK6xh5bfQkb8ms5KxdXlU3Y52g8_AEn5MOt
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+the+predictiveness+of+a+marker+with+its+performance+as+a+classifier&rft.jtitle=American+journal+of+epidemiology&rft.au=Pepe%2C+Margaret+S&rft.au=Feng%2C+Ziding&rft.au=Huang%2C+Ying&rft.au=Longton%2C+Gary&rft.date=2008-02-01&rft.eissn=1476-6256&rft.volume=167&rft.issue=3&rft.spage=362&rft_id=info:doi/10.1093%2Faje%2Fkwm305&rft_id=info%3Apmid%2F17982157&rft_id=info%3Apmid%2F17982157&rft.externalDocID=17982157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-6256&client=summon