Integrating the predictiveness of a marker with its performance as a classifier
There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such a...
Uložené v:
| Vydané v: | American journal of epidemiology Ročník 167; číslo 3; s. 362 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.02.2008
|
| Predmet: | |
| ISSN: | 1476-6256, 1476-6256 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003. |
|---|---|
| AbstractList | There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003. There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003.There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003. |
| Author | Feng, Ziding Longton, Gary Prentice, Ross Zheng, Yingye Huang, Ying Pepe, Margaret S Thompson, Ian M |
| Author_xml | – sequence: 1 givenname: Margaret S surname: Pepe fullname: Pepe, Margaret S email: mspepe@u.washington.edu organization: Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. mspepe@u.washington.edu – sequence: 2 givenname: Ziding surname: Feng fullname: Feng, Ziding – sequence: 3 givenname: Ying surname: Huang fullname: Huang, Ying – sequence: 4 givenname: Gary surname: Longton fullname: Longton, Gary – sequence: 5 givenname: Ross surname: Prentice fullname: Prentice, Ross – sequence: 6 givenname: Ian M surname: Thompson fullname: Thompson, Ian M – sequence: 7 givenname: Yingye surname: Zheng fullname: Zheng, Yingye |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17982157$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAURS1URD9g4QcgT2yhtuOXxCOqKFSq1KV75CTPrdvECbZLxb-nEkViunc4OtK9UzJyvUNCHjl74Uylc33A-fHcpQxuyITLPEsyAdnoXx-TaQgHxjhXwO7ImOeqEBzyCdmsXMSd19G6HY17pIPHxtbRfqHDEGhvqKad9kf09GzjntoY6IDe9L7TrkaqwwWoWx2CNRb9Pbk1ug34cM0Z2S7ftouPZL15Xy1e10kNjMckh0Yp1IWEIheg04bzKpOSF6zCCoDJBmSDqWJGGeCNgVpXXGRGi4yBKcSMPP9qB99_njDEsrOhxrbVDvtTKHMmZJEyeQGfruCp6rApB28va77LvwfED4wdXyE |
| CitedBy_id | crossref_primary_10_1001_jamaophthalmol_2023_4786 crossref_primary_10_1016_j_ajog_2018_01_031 crossref_primary_10_3109_10903127_2011_561415 crossref_primary_10_1177_1176935117734844 crossref_primary_10_1016_j_jsams_2017_05_012 crossref_primary_10_1016_j_lungcan_2014_05_002 crossref_primary_10_1002_pst_2002 crossref_primary_10_1002_gepi_22092 crossref_primary_10_1186_s13321_015_0100_8 crossref_primary_10_1111_j_1467_9876_2009_00707_x crossref_primary_10_1002_pbc_24548 crossref_primary_10_1186_s12877_025_05679_1 crossref_primary_10_1093_biostatistics_kxn025 crossref_primary_10_1186_s13054_014_0601_2 crossref_primary_10_1016_j_gastha_2025_100661 crossref_primary_10_1007_s12561_014_9122_4 crossref_primary_10_1016_j_annepidem_2009_05_005 crossref_primary_10_3390_e24010068 crossref_primary_10_1111_rssc_12367 crossref_primary_10_1159_000433414 crossref_primary_10_1146_annurev_statistics_031017_100609 crossref_primary_10_7326_M19_0974 crossref_primary_10_1016_j_urology_2009_02_017 crossref_primary_10_1038_pr_2016_215 crossref_primary_10_1007_s11011_018_0186_6 crossref_primary_10_1080_17470919_2014_907201 crossref_primary_10_1186_bcr3110 crossref_primary_10_1016_j_jad_2016_05_034 crossref_primary_10_1111_jth_12262 crossref_primary_10_1186_1476_511X_11_160 crossref_primary_10_1002_sim_3876 crossref_primary_10_1177_0962280220929039 crossref_primary_10_1038_ejhg_2011_27 crossref_primary_10_1111_j_1541_0420_2009_01201_x crossref_primary_10_1111_j_1541_0420_2011_01603_x crossref_primary_10_1002_cncr_25386 crossref_primary_10_1002_jimd_70032 crossref_primary_10_1177_1179299X17732007 crossref_primary_10_1055_s_0044_1788623 crossref_primary_10_1177_0272989X12470757 crossref_primary_10_1111_j_1365_2362_2011_02562_x crossref_primary_10_1093_jnci_djn215 crossref_primary_10_1016_j_jocd_2013_08_003 crossref_primary_10_1080_01621459_2013_810149 crossref_primary_10_2215_CJN_12181212 crossref_primary_10_1016_j_acra_2022_08_031 crossref_primary_10_1186_1471_2369_14_49 crossref_primary_10_1111_j_1464_5491_2011_03437_x crossref_primary_10_1177_0962280218776989 crossref_primary_10_3389_fnut_2022_831696 crossref_primary_10_1111_j_1538_7836_2008_03236_x crossref_primary_10_1093_aje_kwt293 crossref_primary_10_1097_EDE_0000000000000499 crossref_primary_10_1186_s13321_017_0230_2 crossref_primary_10_1016_j_amjcard_2020_07_048 crossref_primary_10_1007_s10654_011_9551_z crossref_primary_10_1161_CIRCHEARTFAILURE_111_964841 crossref_primary_10_2215_CJN_06210616 crossref_primary_10_1002_jbmr_1539 crossref_primary_10_1007_s00586_011_1910_7 crossref_primary_10_1016_j_diabres_2017_09_010 crossref_primary_10_1097_CCM_0000000000000249 crossref_primary_10_1111_biom_12455 crossref_primary_10_3233_JAD_221118 crossref_primary_10_1002_sim_4187 crossref_primary_10_1002_alz_14160 crossref_primary_10_1002_ajhb_23107 crossref_primary_10_1053_j_gastro_2024_02_030 crossref_primary_10_1542_peds_2018_3604 crossref_primary_10_1080_10543406_2022_2041655 crossref_primary_10_1016_j_critrevonc_2014_10_002 crossref_primary_10_1093_biostatistics_kxu037 crossref_primary_10_1111_j_1365_2362_2011_02493_x crossref_primary_10_1186_gm480 crossref_primary_10_1002_sim_5727 crossref_primary_10_1227_NEU_0000000000001123 crossref_primary_10_1093_jncics_pkae086 crossref_primary_10_1200_JCO_2013_52_8505 crossref_primary_10_1016_j_ebiom_2018_03_027 crossref_primary_10_1053_j_gastro_2018_05_023 crossref_primary_10_1155_2014_542069 crossref_primary_10_1177_0272989X10364246 crossref_primary_10_1016_j_ejca_2024_113571 crossref_primary_10_1186_s13098_018_0344_3 crossref_primary_10_1186_s12874_025_02544_y crossref_primary_10_1093_aje_kwq122 crossref_primary_10_2215_CJN_08110715 crossref_primary_10_1097_CCE_0000000000000116 crossref_primary_10_1016_j_annepidem_2018_07_014 crossref_primary_10_1016_j_ejim_2015_08_002 crossref_primary_10_1007_s10985_013_9270_8 crossref_primary_10_1097_EDE_0b013e31823035fb crossref_primary_10_1542_peds_2021_055641 crossref_primary_10_1093_biomet_asp040 crossref_primary_10_1111_jgs_16773 crossref_primary_10_1177_0962280219833089 crossref_primary_10_1001_jamanetworkopen_2022_37970 crossref_primary_10_1038_aja_2013_52 crossref_primary_10_1007_s12265_013_9470_3 crossref_primary_10_1016_j_jpeds_2021_11_026 crossref_primary_10_59786_bmtj_317 crossref_primary_10_1038_s41598_020_79548_9 crossref_primary_10_1111_j_1541_0420_2010_01523_x crossref_primary_10_1111_j_1600_0463_2010_02594_x crossref_primary_10_3390_ph14070699 crossref_primary_10_1007_s12561_012_9077_2 crossref_primary_10_1373_clinchem_2012_182550 crossref_primary_10_3389_fpsyt_2022_993077 crossref_primary_10_1158_1940_6207_CAPR_11_0006 crossref_primary_10_1016_j_jclinepi_2011_02_003 crossref_primary_10_1177_2168479015601721 crossref_primary_10_1007_s10554_024_03248_y crossref_primary_10_1007_s00198_008_0688_x crossref_primary_10_1158_1940_6207_CAPR_09_0098 crossref_primary_10_1097_EDE_0b013e3181c30fb2 crossref_primary_10_1016_j_jocd_2013_11_003 crossref_primary_10_1097_QAI_0000000000003030 crossref_primary_10_1016_j_kint_2016_07_018 crossref_primary_10_1371_journal_pmed_1001491 crossref_primary_10_1002_bimj_201000078 crossref_primary_10_1186_s12874_015_0042_x crossref_primary_10_1016_j_jpeds_2011_06_044 crossref_primary_10_1007_s11606_011_1899_y crossref_primary_10_7326_M18_3668 crossref_primary_10_1089_neu_2014_3351 crossref_primary_10_1002_bimj_201400061 crossref_primary_10_1093_biostatistics_kxr001 crossref_primary_10_1093_aje_kwq026 crossref_primary_10_1016_j_ajog_2015_01_019 crossref_primary_10_1136_bmjopen_2023_076547 crossref_primary_10_1161_CIRCULATIONAHA_110_943860 crossref_primary_10_1093_biostatistics_kxad020 crossref_primary_10_1093_humrep_dep109 crossref_primary_10_1002_bimj_201300260 crossref_primary_10_1016_j_ijcard_2018_10_027 crossref_primary_10_1371_journal_pgen_1000337 crossref_primary_10_1186_s12885_016_2345_7 crossref_primary_10_1002_sim_5776 crossref_primary_10_1002_sim_6745 crossref_primary_10_1016_j_jaci_2025_02_023 crossref_primary_10_1093_aje_kwr013 crossref_primary_10_1158_1940_6207_CAPR_11_0026 crossref_primary_10_1093_aje_kwr010 crossref_primary_10_1016_j_ebiom_2019_08_028 crossref_primary_10_1007_s10985_013_9272_6 crossref_primary_10_1007_s00392_021_01857_4 crossref_primary_10_1161_JAHA_115_003045 crossref_primary_10_1136_gutjnl_2013_305013 crossref_primary_10_1002_pds_1923 crossref_primary_10_1183_23120541_00339_2022 crossref_primary_10_1111_jgs_18075 crossref_primary_10_1002_alz_12801 crossref_primary_10_1097_EDE_0000000000001173 crossref_primary_10_1002_bsl_2052 crossref_primary_10_1177_0962280218819202 crossref_primary_10_1016_j_jclinepi_2015_01_003 crossref_primary_10_1007_s10549_018_4693_2 crossref_primary_10_1002_bimj_201200146 crossref_primary_10_1007_s10899_018_9745_3 crossref_primary_10_1542_peds_2021_051405 crossref_primary_10_1002_sim_6754 crossref_primary_10_1177_0306624X16677784 crossref_primary_10_2217_bmm_12_75 crossref_primary_10_1007_s00439_012_1194_y crossref_primary_10_1097_SLA_0000000000002706 crossref_primary_10_1002_bimj_201000145 crossref_primary_10_2215_CJN_00310112 crossref_primary_10_1016_j_bone_2009_03_666 crossref_primary_10_1111_j_1445_5994_2010_02210_x crossref_primary_10_1111_liv_15449 crossref_primary_10_1111_rssc_12448 crossref_primary_10_1097_COH_0b013e32833ed742 crossref_primary_10_1002_bimj_201000153 crossref_primary_10_3109_13547500903560065 crossref_primary_10_4103_jpgm_jpgm_753_23 crossref_primary_10_1038_nrcardio_2013_35 crossref_primary_10_1371_journal_pone_0187702 crossref_primary_10_1146_annurev_statistics_022513_115617 crossref_primary_10_1161_JAHA_118_009680 crossref_primary_10_1016_j_ijcard_2012_03_017 crossref_primary_10_1161_01_cir_0000437913_98912_1d crossref_primary_10_1371_journal_pgen_1001230 crossref_primary_10_1515_CCLM_2010_340 crossref_primary_10_1007_s10985_017_9414_3 crossref_primary_10_1002_sim_5321 crossref_primary_10_1111_apt_16136 crossref_primary_10_1158_0008_5472_CAN_09_0028 crossref_primary_10_1093_humupd_dmu004 crossref_primary_10_1097_HCO_0b013e32832f0a5b crossref_primary_10_1186_s12913_020_05883_2 crossref_primary_10_1080_1062936X_2019_1635526 crossref_primary_10_1007_s10877_013_9530_x crossref_primary_10_1007_s11011_018_0199_1 crossref_primary_10_1002_jbmr_371 crossref_primary_10_1002_sim_8723 crossref_primary_10_1111_dom_12686 crossref_primary_10_3171_2017_8_JNS171413 crossref_primary_10_1007_s10742_008_0040_0 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/aje/kwm305 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1476-6256 |
| ExternalDocumentID | 17982157 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM054438 – fundername: NCI NIH HHS grantid: P01 CA053996 – fundername: NCI NIH HHS grantid: U01 CA086368 – fundername: NCI NIH HHS grantid: UO1 CA086368 |
| GroupedDBID | --- -DZ -E4 -~X ..I .2P .I3 .XZ .ZR 0R~ 186 1TH 23M 2WC 354 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6J9 70D 85S 8F7 AABZA AACZT AAILS AAJKP AAJQQ AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNGD ABNHQ ABNKS ABOCM ABPTD ABQLI ABQTQ ABVGC ABXVV ABZBJ ACGFO ACGFS ACGOD ACPRK ACUFI ACUKT ACUTJ ACUTO ADBBV ADCFL ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMHG ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHKS AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGSYK AHMBA AHMMS AHXPO AI. AIAGR AIJHB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ASPBG ATGXG AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C1A C45 CAG CDBKE CGR COF CS3 CUY CVF CZ4 DAKXR DIK DILTD D~K E3Z EBS ECM EE~ EIF EJD EMOBN F5P F9B FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z ML0 N9A NEJ NGC NOMLY NOYVH NPM NVLIB O0~ O9- OAWHX OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TR2 UHB UPT VH1 W8F WOQ X7H YAYTL YF5 YKOAZ YOC YROCO YSK YXANX Z0Y ZKX ~91 7X8 ADGHP AGQPQ AJBYB |
| ID | FETCH-LOGICAL-c501t-75d99ea8458725a3d11b644180beb5504d54de390f9f51df5cab126fa2605f82 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 237 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000252903200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-6256 |
| IngestDate | Sun Sep 28 12:36:14 EDT 2025 Thu Apr 03 07:09:42 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c501t-75d99ea8458725a3d11b644180beb5504d54de390f9f51df5cab126fa2605f82 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/aje/article-pdf/167/3/362/306073/kwm305.pdf |
| PMID | 17982157 |
| PQID | 70248304 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_70248304 pubmed_primary_17982157 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-02-01 |
| PublicationDateYYYYMMDD | 2008-02-01 |
| PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | American journal of epidemiology |
| PublicationTitleAlternate | Am J Epidemiol |
| PublicationYear | 2008 |
| References | 12230001 - Biometrics. 2002 Sep;58(3):657-64 16622122 - J Natl Cancer Inst. 2006 Apr 19;98(8):529-34 12644540 - J Natl Cancer Inst. 2003 Mar 19;95(6):470-8 7055134 - Am J Epidemiol. 1982 Jan;115(1):92-106 7662848 - Biometrics. 1995 Jun;51(2):600-14 12809422 - Acad Radiol. 2003 Jun;10(6):670-2 11890304 - Biometrics. 2002 Mar;58(1):1-12 17489968 - Biometrics. 2007 Dec;63(4):1181-8 15105181 - Am J Epidemiol. 2004 May 1;159(9):882-90 17679623 - Circulation. 2007 Aug 7;116(6):e132; author reply e134 11782052 - Stat Med. 2002 Jan 15;21(1):79-93 15772102 - Biostatistics. 2005 Apr;6(2):227-39 7127706 - Circulation. 1982 Nov;66(5):945-53 8896134 - Stat Med. 1996 Oct 15;15(19):1987-97 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 16818925 - Ann Intern Med. 2006 Jul 4;145(1):21-9 |
| References_xml | – reference: 16818925 - Ann Intern Med. 2006 Jul 4;145(1):21-9 – reference: 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 – reference: 15105181 - Am J Epidemiol. 2004 May 1;159(9):882-90 – reference: 8896134 - Stat Med. 1996 Oct 15;15(19):1987-97 – reference: 17679623 - Circulation. 2007 Aug 7;116(6):e132; author reply e134 – reference: 12809422 - Acad Radiol. 2003 Jun;10(6):670-2 – reference: 17489968 - Biometrics. 2007 Dec;63(4):1181-8 – reference: 11782052 - Stat Med. 2002 Jan 15;21(1):79-93 – reference: 15772102 - Biostatistics. 2005 Apr;6(2):227-39 – reference: 7055134 - Am J Epidemiol. 1982 Jan;115(1):92-106 – reference: 7127706 - Circulation. 1982 Nov;66(5):945-53 – reference: 16622122 - J Natl Cancer Inst. 2006 Apr 19;98(8):529-34 – reference: 12644540 - J Natl Cancer Inst. 2003 Mar 19;95(6):470-8 – reference: 12230001 - Biometrics. 2002 Sep;58(3):657-64 – reference: 11890304 - Biometrics. 2002 Mar;58(1):1-12 – reference: 7662848 - Biometrics. 1995 Jun;51(2):600-14 |
| SSID | ssj0011950 |
| Score | 2.3960679 |
| Snippet | There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 362 |
| SubjectTerms | Biomarkers - analysis Epidemiologic Methods Humans Logistic Models Male Models, Theoretical Predictive Value of Tests Prostate-Specific Antigen - blood Risk Risk Assessment - methods ROC Curve Sensitivity and Specificity |
| Title | Integrating the predictiveness of a marker with its performance as a classifier |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17982157 https://www.proquest.com/docview/70248304 |
| Volume | 167 |
| WOSCitedRecordID | wos000252903200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qFRHE96M-9-A1NK_NbkAQEYuCrT300FvY7AOqNIlN1b_vTh70JB685DSBMJmd-WZn5huAGx4ZKbUbOsIXygm1HzpccWFzHqF1ylLXyIoy_4WNRnw6jccduG1nYbCtsvWJlaNWucQ78j5D8i2be98VHw7ujMLaarNAYw26gQUyaNNsuqoh4ILTaraIRY5F-VFLThoHffGm--_f88ClvwPLKsAMdv_3aXuw0wBLcl9bwj50dHYAm8OmdH4A2_UFHannjg7h9bkhirCxi1gUSIoFyrbej-SGCDLH5p0FwctaMluWpFiNGRBRWgGJ4HtmbGw9gsngcfLw5DTbFRxJXW_pMKriWAseUs58KgLleSmCI-6mOrV5S6hoqHQQuyY21FOGSpF6fmQEZkCG-8ewnuWZPgViTGr_qeZWlIfK94QRrjbGQ54XRaXpwXWrt8QaL1YkRKbzzzJpNdeDk1r1SVFzbCTIo2bRCDv7891z2Kp7OLDF5AK6xh5bfQkb8ms5KxdXlU3Y52g8_AEn5MOt |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+the+predictiveness+of+a+marker+with+its+performance+as+a+classifier&rft.jtitle=American+journal+of+epidemiology&rft.au=Pepe%2C+Margaret+S&rft.au=Feng%2C+Ziding&rft.au=Huang%2C+Ying&rft.au=Longton%2C+Gary&rft.date=2008-02-01&rft.eissn=1476-6256&rft.volume=167&rft.issue=3&rft.spage=362&rft_id=info:doi/10.1093%2Faje%2Fkwm305&rft_id=info%3Apmid%2F17982157&rft_id=info%3Apmid%2F17982157&rft.externalDocID=17982157 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-6256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-6256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-6256&client=summon |