Data mining algorithm predicts a range of adverse outcomes in major depression

•The course of major depression is highly varied.•Genetic and environmental risk factors influence the course of depression.•Data mining techniques can be used to predict the course of depression.•Replication in new samples is crucial to test these prediction models.•Prediction models may assist cli...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of affective disorders Ročník 276; s. 945 - 953
Hlavní autoři: van Loo, Hanna M., Bigdeli, Tim B., Milaneschi, Yuri, Aggen, Steven H., Kendler, Kenneth S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.11.2020
Témata:
ISSN:0165-0327, 1573-2517, 1573-2517
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The course of major depression is highly varied.•Genetic and environmental risk factors influence the course of depression.•Data mining techniques can be used to predict the course of depression.•Replication in new samples is crucial to test these prediction models.•Prediction models may assist clinicians in treatment decisions. Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data. We applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1–9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness. Our model consistently predicted future episodes of MD in both test samples (AUC 0.68–0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65–0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas. Prediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background. Our prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice.
AbstractList Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data. We applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1-9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness. Our model consistently predicted future episodes of MD in both test samples (AUC 0.68-0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65-0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas. Prediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background. Our prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice.
•The course of major depression is highly varied.•Genetic and environmental risk factors influence the course of depression.•Data mining techniques can be used to predict the course of depression.•Replication in new samples is crucial to test these prediction models.•Prediction models may assist clinicians in treatment decisions. Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data. We applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1–9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness. Our model consistently predicted future episodes of MD in both test samples (AUC 0.68–0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65–0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas. Prediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background. Our prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice.
Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data.BACKGROUNDCourse of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data.We applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1-9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness.METHODSWe applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1-9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness.Our model consistently predicted future episodes of MD in both test samples (AUC 0.68-0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65-0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas.RESULTSOur model consistently predicted future episodes of MD in both test samples (AUC 0.68-0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65-0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas.Prediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background.LIMITATIONSPrediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background.Our prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice.CONCLUSIONSOur prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice.
Highlights•The course of major depression is highly varied. •Genetic and environmental risk factors influence the course of depression. •Data mining techniques can be used to predict the course of depression. •Replication in new samples is crucial to test these prediction models. •Prediction models may assist clinicians in treatment decisions.
Author Aggen, Steven H.
Kendler, Kenneth S.
van Loo, Hanna M.
Milaneschi, Yuri
Bigdeli, Tim B.
Author_xml – sequence: 1
  givenname: Hanna M.
  surname: van Loo
  fullname: van Loo, Hanna M.
  email: h.van.loo@umcg.nl
  organization: Department of Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (PO Box 30.001), 9700 RB Groningen, the Netherlands
– sequence: 2
  givenname: Tim B.
  surname: Bigdeli
  fullname: Bigdeli, Tim B.
  organization: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States
– sequence: 3
  givenname: Yuri
  surname: Milaneschi
  fullname: Milaneschi, Yuri
  organization: Department of Psychiatry, Amsterdam Public Health and Neuroscience Amsterdam research institutes, Amsterdam UMC and GGZ inGeest Amsterdam, Amsterdam, the Netherlands
– sequence: 4
  givenname: Steven H.
  surname: Aggen
  fullname: Aggen, Steven H.
  organization: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States
– sequence: 5
  givenname: Kenneth S.
  surname: Kendler
  fullname: Kendler, Kenneth S.
  organization: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32745831$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFTEUhoNU7O3VH-BGsnQzY5L5SAZBkKqtUHShgrtDmpy5ZpxJrkmm0H9vLrfdFKybfPG-b3KenDNy4oNHQl5yVnPG-zdTPWlbCyZYzWTNBvWEbHgnm0p0XJ6QTdF0FWuEPCVnKU2MsX6Q7Bk5LUdtpxq-IV8-6Kzp4rzzO6rnXYgu_1roPqJ1JieqadR-hzSMVNsbjKks12zCgok6Txc9hUgtFn1KLvjn5Omo54Qv7uYt-fHp4_fzy-rq68Xn8_dXlekYz1XHrVCSW87FqEbVay60wNaqdpRtX7aq6Q3Tyg4DGjnIBrtrXeqzVvFRKt5syetj7j6GPyumDItLBudZewxrAtE2rJGtKkVuyas76Xq9oIV9dIuOt3DPoAjkUWBiSCniCMZlnUs1OWo3A2dwoA0TFNpwoA1MQnlNcfIHzvvwxzxvjx4seG4cRkjGoTeFd0STwQb3qPvdA7eZy98ZPf_GW0xTWKMv3IFDEsDg26EDDg0gytC1zc8SMPw74D-X_wWTab4q
CitedBy_id crossref_primary_10_1192_bjp_2021_218
crossref_primary_10_1016_j_health_2023_100238
crossref_primary_10_1002_14651858_CD013491_pub2
crossref_primary_10_1155_2021_9948800
crossref_primary_10_1007_s00779_020_01509_w
crossref_primary_10_2196_32736
crossref_primary_10_1017_S0033291722002069
crossref_primary_10_1155_2021_1640870
crossref_primary_10_1186_s41512_021_00101_x
Cites_doi 10.5498/wjp.v5.i4.366
10.1016/j.jad.2018.02.005
10.1001/archpsyc.62.6.617
10.1001/archpsyc.65.6.674
10.1001/archpsyc.65.5.513
10.1111/j.1467-9868.2005.00503.x
10.1136/svn-2017-000101
10.1016/j.jad.2011.06.053
10.1016/j.jad.2006.10.023
10.1017/S0033291705005714
10.1016/j.jad.2015.03.045
10.18637/jss.v033.i01
10.1001/jama.2015.18421
10.1186/1471-2288-13-33
10.32614/CRAN.package.rcompanion
10.1158/1055-9965.EPI-14-0295
10.1017/S0033291714000993
10.1016/j.ajhg.2015.09.001
10.1017/S0033291712002395
10.1016/S2215-0366(15)00471-X
10.1016/j.cobeha.2017.07.003
10.1017/S0033291717003178
10.1186/s12916-014-0242-y
10.1002/mpr.256
10.18637/jss.v039.i05
10.1016/j.biopsych.2012.12.007
10.1001/archpsyc.1991.01810330075011
10.2307/1914185
10.1001/jama.2016.3775
10.1002/da.22233
10.1038/mp.2015.198
10.1016/j.jad.2012.11.008
10.1176/appi.ajp.2010.10030340
10.1017/S0033291716001653
10.1002/9781118625392.wbecp048
10.1002/da.22215
10.1136/bmj.e3318
10.1001/archpsyc.64.6.651
10.4088/JCP.10m06176blu
10.1186/s12888-017-1270-x
ContentType Journal Article
Copyright 2020 The Author(s)
The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jad.2020.07.098
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1573-2517
EndPage 953
ExternalDocumentID 32745831
10_1016_j_jad_2020_07_098
S016503272032543X
1_s2_0_S016503272032543X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: RC2 MH089995
– fundername: NIMH NIH HHS
  grantid: RC2 MH089951
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
ABBQC
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ACDAQ
ACGFS
ACHQT
ACIEU
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
HMW
IHE
J1W
KOM
M29
M2V
M39
M3V
M41
MO0
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
T5K
UV1
Z5R
~G-
~HD
0SF
29J
53G
AACTN
AAEDT
AAGKA
AAQXK
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AFCTW
AFJKZ
AFKWA
AGHFR
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FGOYB
G-2
HEG
HMK
HMO
HVGLF
HZ~
NCXOZ
R2-
RIG
SEW
SNS
SPS
WUQ
ZGI
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
LCYCR
ZA5
9DU
AAYWO
AAYXX
AGQPQ
AIGII
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c501t-51d2871d112f8f86a12a2e4d84f7466a1836c0a8d99ec7973e5ba098dd81f7813
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565874400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-0327
1573-2517
IngestDate Wed Oct 01 14:46:34 EDT 2025
Wed Feb 19 02:28:24 EST 2025
Tue Nov 18 22:19:38 EST 2025
Sat Nov 29 07:21:05 EST 2025
Fri Feb 23 02:46:19 EST 2024
Sun Feb 23 10:18:55 EST 2025
Tue Oct 14 19:31:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Recurrence
Replication
Data mining, prediction
Major depression
Course of illness
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c501t-51d2871d112f8f86a12a2e4d84f7466a1836c0a8d99ec7973e5ba098dd81f7813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.jad.2020.07.098
PMID 32745831
PQID 2430374858
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2430374858
pubmed_primary_32745831
crossref_citationtrail_10_1016_j_jad_2020_07_098
crossref_primary_10_1016_j_jad_2020_07_098
elsevier_sciencedirect_doi_10_1016_j_jad_2020_07_098
elsevier_clinicalkeyesjournals_1_s2_0_S016503272032543X
elsevier_clinicalkey_doi_10_1016_j_jad_2020_07_098
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of affective disorders
PublicationTitleAlternate J Affect Disord
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References van Loo, Aggen, Gardner, Kendler (bib0042) 2015; 180
Yeh, Secemsky, Kereiakes, Normand, Gershlick, Cohen, Spertus, Steg, Cutlip, Rinaldi, Camenzind, Wijns, Apruzzese, Song, Massaro, Mauri (bib0051) 2016; 315
Kendler, Aggen, Knudsen, Roysamb, Neale, Reichborn-Kjennerud (bib0020) 2011; 168
van Loo, Aggen, Gardner, Kendler (bib0041) 2018; 48
Royston, Altman (bib0036) 2013; 13
(bib0002) 1987
Frank (bib0010) 1991; 48
Kraemer (bib0026) 2014
Lamers, van Oppen, Comijs, Smit, Spinhoven, van Balkom, Nolen, Zitman, Beekman, Penninx (bib0027) 2011; 72
Hardeveld, Spijker, De Graaf, Hendriks, Licht, Nolen, Penninx, Beekman (bib0014) 2013; 147
van Buuren, Groothuis-Oudshoorn (bib0040) 2011; 45
Xia, He, Li, Xie, Zhu, Chen, Shen, Zhang, Wei, Chen, Shen, Zhang, Gao, Li, Ding, Shen, Wang, Cao, Liu, Zhang, Duan, Bao, Ma, Zhou, Luo, Zhang, Liu, Li, Jin, Zhang, Liang, Chen, Zhao, Li, Chen, Shi, Kendler, Flint, Wang (bib0050) 2011; 135
Hardeveld, Spijker, De Graaf, Nolen, Beekman (bib0015) 2013; 43
Jiang, Jiang, Zhi, Dong, Li, Ma, Wang, Dong, Shen, Wang (bib0018) 2017; 2
van Loo, Cai, Gruber, Li, de Jonge, Petukhova, Rose, Sampson, Schoevers, Wardenaar, Wilcox, Al-Hamzawi, Andrade, Bromet, Bunting, Fayyad, Florescu, Gureje, Hu, Huang, Levinson, Medina-Mora, Nakane, Posada-Villa, Scott, Xavier, Zarkov, Kessler (bib0043) 2014; 31
Wardenaar, van Loo, Cai, Fava, Gruber, Li, de Jonge, Nierenberg, Pethukova, Rose, Sampson, Schoevers, Wilcox, Alonso, Bromet, Bunting, Florescu, Fukao, Gureje, Hu, Huang, Karam, Levinson, Medina-Mora, Posada-Villa, Scott, Taib, Viana, Xavier, Zarkov, Kessler (bib0047) 2014; 44
Vilhjálmsson, Yang, Finucane, Gusev, Lindström, Ripke, Genovese, Loh, Bhatia, Do, Hayeck, Won, Kathiresan, Pato, Pato, Tamimi, Stahl, Zaitlen, Pasaniuc, Belbin, Kenny, Schierup, De Jager, Patsopoulos, McCarroll, Daly, Purcell, Chasman, Neale, Goddard, Visscher, Kraft, Patterson, Price, Neale, Corvin, Walters, Farh, Holmans, Lee, Bulik-Sullivan, Collier, Huang, Pers, Agartz, Agerbo, Albus, Alexander, Amin, Bacanu, Begemann, Belliveau, Bene, Bergen, Bevilacqua, Bigdeli, Black, Bruggeman, Buccola, Buckner, Byerley, Cahn, Cai, Campion, Cantor, Carr, Carrera, Catts, Chambert, Chan, Chen, Chen, Cheng, Cheung, Chong, Cloninger, Cohen, Cohen, Cormican, Craddock, Crowley, Curtis, Davidson, Davis, Degenhardt, Del Favero, DeLisi, Demontis, Dikeos, Dinan, Djurovic, Donohoe, Drapeau, Duan, Dudbridge, Durmishi, Eichhammer, Eriksson, Escott-Price, Essioux, Fanous, Farrell, Frank, Franke, Freedman, Freimer, Friedl, Friedman, Fromer, Genovese, Georgieva, Gershon, Giegling, Giusti-Rodrguez, Godard, Goldstein, Golimbet, Gopal, Gratten, Grove, de Haan, Hammer, Hamshere, Hansen, Hansen, Haroutunian, Hartmann, Henskens, Herms, Hirschhorn, Hoffmann, Hofman, Hollegaard, Hougaard, Ikeda, Joa, Julia, Kahn, Kalaydjieva, Karachanak-Yankova, Karjalainen, Kavanagh, Keller, Kelly, Kennedy, Khrunin, Kim, Klovins, Knowles, Konte, Kucinskas, Kucinskiene, Kuzelova-Ptackova, Kahler, Laurent, Keong, Lee, Legge, Lerer, Li, Li, Liang, Lieberman, Limborska, Loughland, Lubinski, Lnnqvist, Macek, Magnusson, Maher, Maier, Mallet, Marsal, Mattheisen, Mattingsdal, McCarley, McDonald, McIntosh, Meier, Meijer, Melegh, Melle, Mesholam-Gately, Metspalu, Michie, Milani, Milanova, Mokrab, Morris, Mors, Mortensen, Murphy, Murray, Myin-Germeys, Mller-Myhsok, Nelis, Nenadic, Nertney, Nestadt, Nicodemus, Nikitina-Zake, Nisenbaum, Nordin, O'Callaghan, O'Dushlaine, O'Neill, Oh, Olincy, Olsen, Van Os, Pantelis, Papadimitriou, Papiol, Parkhomenko, Pato, Paunio, Pejovic-Milovancevic, Perkins, Pietilinen, Pimm, Pocklington, Powell, Price, Pulver, Purcell, Quested, Rasmussen, Reichenberg, Reimers, Richards, Roffman, Roussos, Ruderfer, Salomaa, Sanders, Schall, Schubert, Schulze, Schwab, Scolnick, Scott, Seidman, Shi, Sigurdsson, Silagadze, Silverman, Sim, Slominsky, Smoller, So, Spencer, Stahl, Stefansson, Steinberg, Stogmann, Straub, Strengman, Strohmaier, Stroup, Subramaniam, Suvisaari, Svrakic, Szatkiewicz, Sderman, Thirumalai, Toncheva, Tooney, Tosato, Veijola, Waddington, Walsh, Wang, Wang, Webb, Weiser, Wildenauer, Williams, Williams, Witt, Wolen, Wong, Wormley, Wu, Xi, Zai, Zheng, Zimprich, Wray, Stefansson, Visscher, Adolfsson, Andreassen, Blackwood, Bramon, Buxbaum, Børglum, Cichon, Darvasi, Domenici, Ehrenreich, Esko, Gejman, Gill, Gurling, Hultman, Iwata, Jablensky, Jonsson, Kendler, Kirov, Knight, Lencz, Levinson, Li, Liu, Malhotra, McCarroll, McQuillin, Moran, Mortensen, Mowry, Nthen, Ophoff, Owen, Palotie, Pato, Petryshen, Posthuma, Rietschel, Riley, Rujescu, Sham, Sklar, St. Clair, Weinberger, Wendland, Werge, Daly, Sullivan, O'Donovan, Kraft, Hunter, Adank, Ahsan, Aittomäki, Baglietto, Berndt, Blomquist, Canzian, Chang-Claude, Chanock, Crisponi, Czene, Dahmen, Silva, Easton, Eliassen, Figueroa, Fletcher, Garcia-Closas, Gaudet, Gibson, Haiman, Hall, Hazra, Hein, Henderson, Hofman, Hopper, Irwanto, Johansson, Kaaks, Kibriya, Lichtner, Lindström, Liu, Lund, Makalic, Meindl, Meijers-Heijboer, Müller-Myhsok, Muranen, Nevanlinna, Peeters, Peto, Prentice, Rahman, Sánchez, Schmidt, Schmutzler, Southey, Tamimi, Travis, Turnbull, Uitterlinden, van der Luijt, Waisfisz, Wang, Whittemore, Yang, Zheng (bib0045) 2015; 97
Usher-Smith, Emery, Kassianos, Walter (bib0039) 2014; 23
Chekroud, Zotti, Shehzad, Gueorguieva, Johnson, Trivedi, Cannon, Krystal, Corlett (bib0005) 2016; 3
Hastie, Tibshirani, Friedman (bib0016) 2009
Moffitt, Harrington, Caspi, Kim-Cohen, Goldberg, Gregory, Poulton (bib0030) 2007; 64
Mangiafico, S., 2017. rcompanion: functions to Support Extension Education Program Evaluation.
Kendler, Schmitt, Aggen, Prescott (bib0023) 2008; 65
Darcy, Louie, Roberts (bib0007) 2016; 315
Jeronimus, Kotov, Riese, Ormel (bib0017) 2016; 46
Kendler, Gatz, Gardner, Pedersen (bib0021) 2005; 35
Wickham (bib0048) 2009
Carpenter, Kenward (bib0003) 2013
Wray, Ripke, Mattheisen, Trzaskowski, Byrne, Abdellaoui, Adams, Agerbo, Air, Andlauer, Bacanu, Bækvad-Hansen, Beekman, Bigdeli, Binder, Blackwood, Bryois, Buttenschøn, Bybjerg-Grauholm, Cai, Castelao, Christensen, Clarke, Coleman, Colodro-Conde, Couvy-Duchesne, Craddock, Crawford, Crowley, Dashti, Davies, Deary, Degenhardt, Derks, Direk, Dolan, Dunn, Eley, Eriksson, Escott-Price, Kiadeh, Finucane, Forstner, Frank, Gaspar, Gill, Giusti-Rodríguez, Goes, Gordon, Grove, Hall, Hannon, Hansen, Hansen, Herms, Hickie, Hoffmann, Homuth, Horn, Hottenga, Hougaard, Hu, Hyde, Ising, Jansen, Jin, Jorgenson, Knowles, Kohane, Kraft, Kretzschmar, Krogh, Kutalik, Lane, Li, Li, Lind, Liu, Lu, MacIntyre, MacKinnon, Maier, Maier, Marchini, Mbarek, McGrath, McGuffin, Medland, Mehta, Middeldorp, Mihailov, Milaneschi, Milani, Mill, Mondimore, Montgomery, Mostafavi, Mullins, Nauck, Ng, Nivard, Nyholt, O'Reilly, Oskarsson, Owen, Painter, Pedersen, Pedersen, Peterson, Pettersson, Peyrot, Pistis, Posthuma, Purcell, Quiroz, Qvist, Rice, Riley, Rivera, Saeed Mirza, Saxena, Schoevers, Schulte, Shen, Shi, Shyn, Sigurdsson, Sinnamon, Smit, Smith, Stefansson, Steinberg, Stockmeier, Streit, Strohmaier, Tansey, Teismann, Teumer, Thompson, Thomson, Thorgeirsson, Tian, Traylor, Treutlein, Trubetskoy, Uitterlinden, Umbricht, Van der Auwera, van Hemert, Viktorin, Visscher, Wang, Webb, Weinsheimer, Wellmann, Willemsen, Witt, Wu, Xi, Yang, Zhang, Arolt, Baune, Berger, Boomsma, Cichon, Dannlowski, de Geus, DePaulo, Domenici, Domschke, Esko, Grabe, Hamilton, Hayward, Heath, Hinds, Kendler, Kloiber, Lewis, Li, Lucae, Madden, Magnusson, Martin, McIntosh, Metspalu, Mors, Mortensen, Müller-Myhsok, Nordentoft, Nöthen, O'Donovan, Paciga, Pedersen, Penninx, Perlis, Porteous, Potash, Preisig, Rietschel, Schaefer, Schulze, Smoller, Stefansson, Tiemeier, Uher, Völzke, Weissman, Werge, Winslow, Lewis, Levinson, Breen, Børglum, Sullivan (bib0049) 2018
Kessler, Chiu, Demler, Walters (bib0024) 2005; 62
Paterniti, Sterner, Caldwell, Bisserbe (bib0031) 2017; 17
van Loo, van den Heuvel, Schoevers, Anselmino, Carney, Denollet, Doyle, Freedland, Grace, Hosseini, Parakh, Pilote, Rafanelli, Roest, Sato, Steeds, Kessler, de Jonge (bib0044) 2014; 12
Eaton, Shao, Nestadt, Lee, Bienvenu, Zandi (bib0009) 2008; 65
Gillan, Whelan (bib0012) 2017; 18
Penninx, Beekman, Smit, Zitman, Nolen, Spinhoven, Cuijpers, De Jong, Van Marwijk, Assendelft, Van, Verhaak, Wensing, De Graaf, Hoogendijk, Ormel, Van Dyck (bib0032) 2008; 17
de Vries, Roest, Bos, Burgerhof, van Loo, de Jonge (bib0008) 2018
Kahneman, Tversky (bib0019) 1979; 47
Coplan, Aaronson, Panthangi, Kim (bib0006) 2015; 5
Wang, Patten, Sareen, Bolton, Schmitz, MacQueen (bib0046) 2014; 31
Perlis (bib0033) 2013; 74
Peterson, Cai, Bigdeli, Li, Reimers, Nikulova, Webb, Bacanu, Riley, Flint, Kendler (bib0034) 2016
R Core Team, 2017. R: a language and environment for statistical computing.
Carstensen, Plummer, Laara (bib0004) 2017
Gopinath, Katon, Russo, Ludman (bib0013) 2007; 101
Zou, Hastie (bib0052) 2005; 67
Kessler, van Loo, Wardenaar, Bossarte, Brenner, Cai, Ebert, Hwang, Li, de Jonge, Nierenberg, Petukhova, Rosellini, Sampson, Schoevers, Wilcox, Zaslavsky (bib0025) 2016; 21
Kendler, Prescott (bib0022) 2006
Mistry, Harrison, Smith, Escott-Price, Zammit (bib0029) 2018; 234
Simon, Friedman, Hastie, Tibshirani (bib0037) 2011; 39
Siontis, Tzoulaki, Siontis, Ioannidis (bib0038) 2012; 344
American Psychiatric Association, 2000. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 4th Ed.American Psychiatric Publishing, Arlington, US.
Friedman, Hastie, Tibshirani (bib0011) 2010; 33
10.1016/j.jad.2020.07.098_bib0001
Kendler (10.1016/j.jad.2020.07.098_bib0021) 2005; 35
Simon (10.1016/j.jad.2020.07.098_bib0037) 2011; 39
van Loo (10.1016/j.jad.2020.07.098_bib0042) 2015; 180
Chekroud (10.1016/j.jad.2020.07.098_bib0005) 2016; 3
Mistry (10.1016/j.jad.2020.07.098_bib0029) 2018; 234
Lamers (10.1016/j.jad.2020.07.098_bib0027) 2011; 72
van Buuren (10.1016/j.jad.2020.07.098_bib0040) 2011; 45
Kendler (10.1016/j.jad.2020.07.098_bib0023) 2008; 65
Paterniti (10.1016/j.jad.2020.07.098_bib0031) 2017; 17
de Vries (10.1016/j.jad.2020.07.098_bib0008) 2018
Kessler (10.1016/j.jad.2020.07.098_bib0025) 2016; 21
Wang (10.1016/j.jad.2020.07.098_bib0046) 2014; 31
Yeh (10.1016/j.jad.2020.07.098_bib0051) 2016; 315
Penninx (10.1016/j.jad.2020.07.098_bib0032) 2008; 17
Zou (10.1016/j.jad.2020.07.098_bib0052) 2005; 67
(10.1016/j.jad.2020.07.098_bib0002) 1987
Royston (10.1016/j.jad.2020.07.098_bib0036) 2013; 13
Vilhjálmsson (10.1016/j.jad.2020.07.098_bib0045) 2015; 97
Gillan (10.1016/j.jad.2020.07.098_bib0012) 2017; 18
van Loo (10.1016/j.jad.2020.07.098_bib0044) 2014; 12
Xia (10.1016/j.jad.2020.07.098_bib0050) 2011; 135
Jiang (10.1016/j.jad.2020.07.098_bib0018) 2017; 2
Wardenaar (10.1016/j.jad.2020.07.098_bib0047) 2014; 44
Siontis (10.1016/j.jad.2020.07.098_bib0038) 2012; 344
Kendler (10.1016/j.jad.2020.07.098_bib0020) 2011; 168
Carpenter (10.1016/j.jad.2020.07.098_bib0003) 2013
Kessler (10.1016/j.jad.2020.07.098_bib0024) 2005; 62
Moffitt (10.1016/j.jad.2020.07.098_bib0030) 2007; 64
Perlis (10.1016/j.jad.2020.07.098_bib0033) 2013; 74
Eaton (10.1016/j.jad.2020.07.098_bib0009) 2008; 65
10.1016/j.jad.2020.07.098_bib0028
Friedman (10.1016/j.jad.2020.07.098_bib0011) 2010; 33
Hardeveld (10.1016/j.jad.2020.07.098_bib0015) 2013; 43
Jeronimus (10.1016/j.jad.2020.07.098_bib0017) 2016; 46
Wray (10.1016/j.jad.2020.07.098_bib0049) 2018
Darcy (10.1016/j.jad.2020.07.098_bib0007) 2016; 315
Frank (10.1016/j.jad.2020.07.098_bib0010) 1991; 48
Carstensen (10.1016/j.jad.2020.07.098_bib0004) 2017
Peterson (10.1016/j.jad.2020.07.098_bib0034) 2016
van Loo (10.1016/j.jad.2020.07.098_bib0043) 2014; 31
10.1016/j.jad.2020.07.098_bib0035
Hardeveld (10.1016/j.jad.2020.07.098_bib0014) 2013; 147
Kraemer (10.1016/j.jad.2020.07.098_bib0026) 2014
Gopinath (10.1016/j.jad.2020.07.098_bib0013) 2007; 101
Coplan (10.1016/j.jad.2020.07.098_bib0006) 2015; 5
Kendler (10.1016/j.jad.2020.07.098_bib0022) 2006
Hastie (10.1016/j.jad.2020.07.098_bib0016) 2009
van Loo (10.1016/j.jad.2020.07.098_bib0041) 2018; 48
Usher-Smith (10.1016/j.jad.2020.07.098_bib0039) 2014; 23
Wickham (10.1016/j.jad.2020.07.098_bib0048) 2009
Kahneman (10.1016/j.jad.2020.07.098_bib0019) 1979; 47
References_xml – volume: 147
  start-page: 225
  year: 2013
  end-page: 231
  ident: bib0014
  article-title: Recurrence of major depressive disorder across different treatment settings: results from the NESDA study
  publication-title: J. Affect. Disord.
– volume: 43
  start-page: 39
  year: 2013
  end-page: 48
  ident: bib0015
  article-title: Recurrence of major depressive disorder and its predictors in the general population: results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS)
  publication-title: Psychol. Med.
– volume: 97
  start-page: 576
  year: 2015
  end-page: 592
  ident: bib0045
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am. J. Hum. Genet.
– year: 2009
  ident: bib0016
  article-title: The Elements of Statistical Learning: Data mining, Inference, and Prediction
– reference: Mangiafico, S., 2017. rcompanion: functions to Support Extension Education Program Evaluation.
– volume: 74
  start-page: 7
  year: 2013
  end-page: 14
  ident: bib0033
  article-title: A clinical risk stratification tool for predicting treatment resistance in major depressive disorder
  publication-title: Biol. Psychiatry
– volume: 2
  start-page: 230
  year: 2017
  end-page: 243
  ident: bib0018
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc. Neurol.
– volume: 17
  start-page: 113
  year: 2017
  ident: bib0031
  article-title: Childhood neglect predicts the course of major depression in a tertiary care sample: a follow-up study
  publication-title: BMC Psychiatry
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0052
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 315
  start-page: 551
  year: 2016
  ident: bib0007
  article-title: Machine learning and the profession of medicine
  publication-title: JAMA
– volume: 17
  start-page: 121
  year: 2008
  end-page: 140
  ident: bib0032
  article-title: The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods
  publication-title: Int. J. Methods Psychiatr. Res.
– volume: 12
  start-page: 242
  year: 2014
  ident: bib0044
  article-title: Sex dependent risk factors for mortality after myocardial infarction: individual patient data meta-analysis
  publication-title: BMC Med.
– volume: 3
  start-page: 243
  year: 2016
  end-page: 250
  ident: bib0005
  article-title: Cross-trial prediction of treatment outcome in depression: a machine learning approach
  publication-title: Lancet Psychiatry
– volume: 5
  start-page: 366
  year: 2015
  end-page: 378
  ident: bib0006
  article-title: Treating comorbid anxiety and depression: psychosocial and pharmacological approaches
  publication-title: World J. Psychiatry
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib0011
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– start-page: 1
  year: 2018
  ident: bib0049
  article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression
  publication-title: Nat. Genet.
– reference: American Psychiatric Association, 2000. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 4th Ed.American Psychiatric Publishing, Arlington, US.
– volume: 101
  start-page: 57
  year: 2007
  end-page: 63
  ident: bib0013
  article-title: Clinical factors associated with relapse in primary care patients with chronic or recurrent depression
  publication-title: J. Affect. Disord.
– volume: 180
  start-page: 52
  year: 2015
  end-page: 61
  ident: bib0042
  article-title: Multiple risk factors predict recurrence of major depressive disorder in women
  publication-title: J. Affect. Disord.
– start-page: 1
  year: 2018
  end-page: 7
  ident: bib0008
  article-title: Predicting antidepressant response by monitoring early improvement of individual symptoms of depression: individual patient data meta-analysis
  publication-title: Br. J. Psychiatry
– year: 2009
  ident: bib0048
  article-title: ggplot2: Elegant graphics for Data Analysis
– volume: 46
  start-page: 2883
  year: 2016
  end-page: 2906
  ident: bib0017
  article-title: Neuroticism's prospective association with mental disorders halves after adjustment for baseline symptoms and psychiatric history, but the adjusted association hardly decays with time: a meta-analysis on 59 longitudinal/prospective studies with 443 313 pa
  publication-title: Psychol. Med.
– reference: R Core Team, 2017. R: a language and environment for statistical computing.
– volume: 47
  start-page: 263
  year: 1979
  end-page: 291
  ident: bib0019
  article-title: Prospect theory: an analysis of decision under risk
  publication-title: Econometrica
– volume: 13
  start-page: 33
  year: 2013
  ident: bib0036
  article-title: External validation of a Cox prognostic model: principles and methods
  publication-title: BMC Med. Res. Methodol.
– volume: 45
  start-page: 1
  year: 2011
  end-page: 67
  ident: bib0040
  article-title: mice: multivariate imputation by chained equations in R
  publication-title: J. Stat. Softw.
– year: 2014
  ident: bib0026
  article-title: Effect size
  publication-title: Encycl. Clin. Psychol.
– volume: 64
  start-page: 651
  year: 2007
  end-page: 660
  ident: bib0030
  article-title: Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years
  publication-title: Arch. Gen. Psychiatry
– volume: 168
  start-page: 29
  year: 2011
  end-page: 39
  ident: bib0020
  article-title: The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders
  publication-title: Am. J. Psychiatry
– year: 1987
  ident: bib0002
  article-title: Diagnostic and Statistical Manual of Mental Disorders: DSM-III-R
– volume: 135
  start-page: 100
  year: 2011
  end-page: 105
  ident: bib0050
  article-title: The relationship between neuroticism, major depressive disorder and comorbid disorders in Chinese women
  publication-title: J. Affect. Disord.
– volume: 48
  start-page: 1685
  year: 2018
  end-page: 1693
  ident: bib0041
  article-title: Sex similarities and differences in risk factors for recurrence of major depression
  publication-title: Psychol. Med.
– volume: 44
  start-page: 3289
  year: 2014
  end-page: 3302
  ident: bib0047
  article-title: The effects of co-morbidity in defining major depression subtypes associated with long-term course and severity
  publication-title: Psychol. Med.
– volume: 48
  start-page: 851
  year: 1991
  ident: bib0010
  article-title: Conceptualization and rationale for consensus definitions of terms in major depressive disorder
  publication-title: Arch. Gen. Psychiatry
– year: 2016
  ident: bib0034
  article-title: The genetic architecture of major depressive disorder in Han Chinese women
  publication-title: JAMA psychiatry.
– volume: 31
  start-page: 765
  year: 2014
  end-page: 777
  ident: bib0043
  article-title: Major depressive disorder subtypes to predict long-term course
  publication-title: Depress. Anxiety
– volume: 31
  start-page: 451
  year: 2014
  end-page: 457
  ident: bib0046
  article-title: Development and validation of a prediction algorithm for use by health professionals in prediction of recurrence of major depression
  publication-title: Depress. Anxiety
– volume: 234
  start-page: 148
  year: 2018
  end-page: 155
  ident: bib0029
  article-title: The use of polygenic risk scores to identify phenotypes associated with genetic risk of bipolar disorder and depression: a systematic review
  publication-title: J. Affect. Disord.
– volume: 39
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib0037
  article-title: Regularization paths for Cox's proportional hazards model via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 21
  start-page: 1366
  year: 2016
  end-page: 1371
  ident: bib0025
  article-title: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports
  publication-title: Mol. Psychiatry
– volume: 62
  start-page: 617
  year: 2005
  end-page: 627
  ident: bib0024
  article-title: Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication
  publication-title: Arch. Gen. Psychiatry
– volume: 65
  start-page: 674
  year: 2008
  end-page: 682
  ident: bib0023
  article-title: Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood
  publication-title: Arch. Gen. Psychiatry
– volume: 18
  start-page: 34
  year: 2017
  end-page: 42
  ident: bib0012
  article-title: What big data can do for treatment in psychiatry
  publication-title: Curr. Opin. Behav. Sci.
– year: 2006
  ident: bib0022
  article-title: Genes, Environment and Psychopathology: Understanding the Causes of Psychiatric and Substance use Disorders
– volume: 23
  start-page: 1450
  year: 2014
  end-page: 1463
  ident: bib0039
  article-title: Risk prediction models for melanoma: a systematic review
  publication-title: Cancer Epidemiol. Biomark. Prev.
– volume: 315
  start-page: 1735
  year: 2016
  ident: bib0051
  article-title: Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention
  publication-title: JAMA
– volume: 65
  start-page: 513
  year: 2008
  end-page: 520
  ident: bib0009
  article-title: Population-based study of first onset and chronicity in major depressive disorder
  publication-title: Arch. Gen. Psychiatry
– volume: 72
  start-page: 341
  year: 2011
  end-page: 348
  ident: bib0027
  article-title: Comorbidity patterns of anxiety and depressive disorders in a large cohort study
  publication-title: J. Clin. Psychiatry
– volume: 344
  start-page: e3318
  year: 2012
  ident: bib0038
  article-title: Comparisons of established risk prediction models for cardiovascular disease: systematic review
  publication-title: BMJ
– volume: 35
  start-page: 1573
  year: 2005
  end-page: 1579
  ident: bib0021
  article-title: Age at onset and familial risk for major depression in a Swedish national twin sample
  publication-title: Psychol. Med.
– year: 2013
  ident: bib0003
  article-title: Multiple Imputation and its Application
– year: 2017
  ident: bib0004
  article-title: Epi: a package for statistical analysis in epidemiology [WWW Document]
  publication-title: R Packag.
– volume: 5
  start-page: 366
  year: 2015
  ident: 10.1016/j.jad.2020.07.098_bib0006
  article-title: Treating comorbid anxiety and depression: psychosocial and pharmacological approaches
  publication-title: World J. Psychiatry
  doi: 10.5498/wjp.v5.i4.366
– volume: 234
  start-page: 148
  year: 2018
  ident: 10.1016/j.jad.2020.07.098_bib0029
  article-title: The use of polygenic risk scores to identify phenotypes associated with genetic risk of bipolar disorder and depression: a systematic review
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2018.02.005
– year: 2009
  ident: 10.1016/j.jad.2020.07.098_bib0048
– volume: 62
  start-page: 617
  year: 2005
  ident: 10.1016/j.jad.2020.07.098_bib0024
  article-title: Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.62.6.617
– volume: 65
  start-page: 674
  year: 2008
  ident: 10.1016/j.jad.2020.07.098_bib0023
  article-title: Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.65.6.674
– volume: 65
  start-page: 513
  year: 2008
  ident: 10.1016/j.jad.2020.07.098_bib0009
  article-title: Population-based study of first onset and chronicity in major depressive disorder
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.65.5.513
– year: 2009
  ident: 10.1016/j.jad.2020.07.098_bib0016
– volume: 45
  start-page: 1
  year: 2011
  ident: 10.1016/j.jad.2020.07.098_bib0040
  article-title: mice: multivariate imputation by chained equations in R
  publication-title: J. Stat. Softw.
– start-page: 1
  year: 2018
  ident: 10.1016/j.jad.2020.07.098_bib0008
  article-title: Predicting antidepressant response by monitoring early improvement of individual symptoms of depression: individual patient data meta-analysis
  publication-title: Br. J. Psychiatry
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.jad.2020.07.098_bib0052
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 2
  start-page: 230
  year: 2017
  ident: 10.1016/j.jad.2020.07.098_bib0018
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc. Neurol.
  doi: 10.1136/svn-2017-000101
– volume: 135
  start-page: 100
  year: 2011
  ident: 10.1016/j.jad.2020.07.098_bib0050
  article-title: The relationship between neuroticism, major depressive disorder and comorbid disorders in Chinese women
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2011.06.053
– volume: 101
  start-page: 57
  year: 2007
  ident: 10.1016/j.jad.2020.07.098_bib0013
  article-title: Clinical factors associated with relapse in primary care patients with chronic or recurrent depression
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2006.10.023
– volume: 35
  start-page: 1573
  year: 2005
  ident: 10.1016/j.jad.2020.07.098_bib0021
  article-title: Age at onset and familial risk for major depression in a Swedish national twin sample
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291705005714
– volume: 180
  start-page: 52
  year: 2015
  ident: 10.1016/j.jad.2020.07.098_bib0042
  article-title: Multiple risk factors predict recurrence of major depressive disorder in women
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2015.03.045
– start-page: 1
  year: 2018
  ident: 10.1016/j.jad.2020.07.098_bib0049
  article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression
  publication-title: Nat. Genet.
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.jad.2020.07.098_bib0011
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– year: 2016
  ident: 10.1016/j.jad.2020.07.098_bib0034
  article-title: The genetic architecture of major depressive disorder in Han Chinese women
  publication-title: JAMA psychiatry.
– volume: 315
  start-page: 551
  year: 2016
  ident: 10.1016/j.jad.2020.07.098_bib0007
  article-title: Machine learning and the profession of medicine
  publication-title: JAMA
  doi: 10.1001/jama.2015.18421
– volume: 13
  start-page: 33
  year: 2013
  ident: 10.1016/j.jad.2020.07.098_bib0036
  article-title: External validation of a Cox prognostic model: principles and methods
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-13-33
– ident: 10.1016/j.jad.2020.07.098_bib0001
– ident: 10.1016/j.jad.2020.07.098_bib0028
  doi: 10.32614/CRAN.package.rcompanion
– volume: 23
  start-page: 1450
  year: 2014
  ident: 10.1016/j.jad.2020.07.098_bib0039
  article-title: Risk prediction models for melanoma: a systematic review
  publication-title: Cancer Epidemiol. Biomark. Prev.
  doi: 10.1158/1055-9965.EPI-14-0295
– volume: 44
  start-page: 3289
  year: 2014
  ident: 10.1016/j.jad.2020.07.098_bib0047
  article-title: The effects of co-morbidity in defining major depression subtypes associated with long-term course and severity
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291714000993
– volume: 97
  start-page: 576
  year: 2015
  ident: 10.1016/j.jad.2020.07.098_bib0045
  article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.09.001
– volume: 43
  start-page: 39
  year: 2013
  ident: 10.1016/j.jad.2020.07.098_bib0015
  article-title: Recurrence of major depressive disorder and its predictors in the general population: results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS)
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291712002395
– volume: 3
  start-page: 243
  year: 2016
  ident: 10.1016/j.jad.2020.07.098_bib0005
  article-title: Cross-trial prediction of treatment outcome in depression: a machine learning approach
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(15)00471-X
– volume: 18
  start-page: 34
  year: 2017
  ident: 10.1016/j.jad.2020.07.098_bib0012
  article-title: What big data can do for treatment in psychiatry
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2017.07.003
– ident: 10.1016/j.jad.2020.07.098_bib0035
– volume: 48
  start-page: 1685
  year: 2018
  ident: 10.1016/j.jad.2020.07.098_bib0041
  article-title: Sex similarities and differences in risk factors for recurrence of major depression
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291717003178
– volume: 12
  start-page: 242
  year: 2014
  ident: 10.1016/j.jad.2020.07.098_bib0044
  article-title: Sex dependent risk factors for mortality after myocardial infarction: individual patient data meta-analysis
  publication-title: BMC Med.
  doi: 10.1186/s12916-014-0242-y
– volume: 17
  start-page: 121
  year: 2008
  ident: 10.1016/j.jad.2020.07.098_bib0032
  article-title: The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods
  publication-title: Int. J. Methods Psychiatr. Res.
  doi: 10.1002/mpr.256
– volume: 39
  start-page: 1
  year: 2011
  ident: 10.1016/j.jad.2020.07.098_bib0037
  article-title: Regularization paths for Cox's proportional hazards model via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v039.i05
– volume: 74
  start-page: 7
  year: 2013
  ident: 10.1016/j.jad.2020.07.098_bib0033
  article-title: A clinical risk stratification tool for predicting treatment resistance in major depressive disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.12.007
– year: 2006
  ident: 10.1016/j.jad.2020.07.098_bib0022
– volume: 48
  start-page: 851
  year: 1991
  ident: 10.1016/j.jad.2020.07.098_bib0010
  article-title: Conceptualization and rationale for consensus definitions of terms in major depressive disorder
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1991.01810330075011
– volume: 47
  start-page: 263
  year: 1979
  ident: 10.1016/j.jad.2020.07.098_bib0019
  article-title: Prospect theory: an analysis of decision under risk
  publication-title: Econometrica
  doi: 10.2307/1914185
– year: 1987
  ident: 10.1016/j.jad.2020.07.098_bib0002
– volume: 315
  start-page: 1735
  year: 2016
  ident: 10.1016/j.jad.2020.07.098_bib0051
  article-title: Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention
  publication-title: JAMA
  doi: 10.1001/jama.2016.3775
– volume: 31
  start-page: 765
  year: 2014
  ident: 10.1016/j.jad.2020.07.098_bib0043
  article-title: Major depressive disorder subtypes to predict long-term course
  publication-title: Depress. Anxiety
  doi: 10.1002/da.22233
– volume: 21
  start-page: 1366
  year: 2016
  ident: 10.1016/j.jad.2020.07.098_bib0025
  article-title: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2015.198
– volume: 147
  start-page: 225
  year: 2013
  ident: 10.1016/j.jad.2020.07.098_bib0014
  article-title: Recurrence of major depressive disorder across different treatment settings: results from the NESDA study
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2012.11.008
– volume: 168
  start-page: 29
  year: 2011
  ident: 10.1016/j.jad.2020.07.098_bib0020
  article-title: The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2010.10030340
– volume: 46
  start-page: 2883
  year: 2016
  ident: 10.1016/j.jad.2020.07.098_bib0017
  article-title: Neuroticism's prospective association with mental disorders halves after adjustment for baseline symptoms and psychiatric history, but the adjusted association hardly decays with time: a meta-analysis on 59 longitudinal/prospective studies with 443 313 pa
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291716001653
– year: 2014
  ident: 10.1016/j.jad.2020.07.098_bib0026
  article-title: Effect size
  publication-title: Encycl. Clin. Psychol.
  doi: 10.1002/9781118625392.wbecp048
– volume: 31
  start-page: 451
  year: 2014
  ident: 10.1016/j.jad.2020.07.098_bib0046
  article-title: Development and validation of a prediction algorithm for use by health professionals in prediction of recurrence of major depression
  publication-title: Depress. Anxiety
  doi: 10.1002/da.22215
– volume: 344
  start-page: e3318
  year: 2012
  ident: 10.1016/j.jad.2020.07.098_bib0038
  article-title: Comparisons of established risk prediction models for cardiovascular disease: systematic review
  publication-title: BMJ
  doi: 10.1136/bmj.e3318
– volume: 64
  start-page: 651
  year: 2007
  ident: 10.1016/j.jad.2020.07.098_bib0030
  article-title: Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.64.6.651
– volume: 72
  start-page: 341
  year: 2011
  ident: 10.1016/j.jad.2020.07.098_bib0027
  article-title: Comorbidity patterns of anxiety and depressive disorders in a large cohort study
  publication-title: J. Clin. Psychiatry
  doi: 10.4088/JCP.10m06176blu
– year: 2013
  ident: 10.1016/j.jad.2020.07.098_bib0003
– volume: 17
  start-page: 113
  year: 2017
  ident: 10.1016/j.jad.2020.07.098_bib0031
  article-title: Childhood neglect predicts the course of major depression in a tertiary care sample: a follow-up study
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-017-1270-x
– year: 2017
  ident: 10.1016/j.jad.2020.07.098_bib0004
  article-title: Epi: a package for statistical analysis in epidemiology [WWW Document]
  publication-title: R Packag.
SSID ssj0006970
Score 2.402842
Snippet •The course of major depression is highly varied.•Genetic and environmental risk factors influence the course of depression.•Data mining techniques can be used...
Highlights•The course of major depression is highly varied. •Genetic and environmental risk factors influence the course of depression. •Data mining techniques...
Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all'...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 945
SubjectTerms Algorithms
Anxiety Disorders - diagnosis
Anxiety Disorders - epidemiology
Course of illness
Data Mining
Data mining, prediction
Depression
Depressive Disorder, Major - diagnosis
Humans
Major depression
Psychiatric/Mental Health
Recurrence
Replication
Title Data mining algorithm predicts a range of adverse outcomes in major depression
URI https://www.clinicalkey.com/#!/content/1-s2.0-S016503272032543X
https://www.clinicalkey.es/playcontent/1-s2.0-S016503272032543X
https://dx.doi.org/10.1016/j.jad.2020.07.098
https://www.ncbi.nlm.nih.gov/pubmed/32745831
https://www.proquest.com/docview/2430374858
Volume 276
WOSCitedRecordID wos000565874400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1573-2517
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006970
  issn: 0165-0327
  databaseCode: AIEXJ
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgdeEIhbYUxG4okolZ2b7ccBQwVpFRJDKk-WEyddqjadepkm8ed3bCdpWem4SLxEaRL3xD5fjo-PzwWhN1pTQvI08ougUH7Ek8IXLBZ-kmZJphKTsCS1xSbYcMhHI_Gl0_nRxMJcTVlV8etrcflfWQ3XgNkmdPYv2N3-KVyAc2A6HIHtcPwjxn9QK-XNbN0HT03Hc1j9X8xMLgBdGscN5S1MPEG9_w_KH5yuV_Ai1jPLm6nJfLHxj632KK_KuoEYryNdp-9sdXNXCNhaYAeqqpR31t-yxOvcxWMDRrx37Y2z0vjcwkLb3vu-XpQtEMdjJxhd-TVv0N-2U8CilP5kp9gNoHH2zCT2SejSAzQCOWDbIlW4dJP17CxcauEdwe9sEJP-RJn0rwGxGVldfetb-bS_GpqGpKkdH0fh6AAdBgBP3kWHJ59OR5_biTwRttZg-47Nprh1D7xFaJ9as2_ZYtWX84foQc06fOLw8gh18uoxGhqsYIcV3GIFN1jBClus4HmBa6zgBiu4rLDFCt5g5Qn69vH0_P3Arwts-FlM6MqPqTYLZg06d8ELnigaqCCPNI8KFiXwk4dJRhTXQuQZEyzM41RBZ7XmtGCchk9Rt5pX-XOEk1QLzsNMUJ5GKQh10MxTXsQkVzFJqegh0oyPzOrs86YIylQ2boYTCUMqzZBKwiRQ6aG3bZNLl3rlroeDZtBlE1MMs6AEfNzViP2qUb6sP-elpHIZSCJ3MNNDUduyVlWdCvo7gq8bPEgQ42ZvDr6u-Xopgyi0maBieOaZA0rbaaBrvBvoi3_p40t0f_M1HqHuarHOX6F72dWqXC6O0QEb8eMa-Dc9T8ns
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+algorithm+predicts+a+range+of+adverse+outcomes+in+major+depression&rft.jtitle=Journal+of+affective+disorders&rft.au=van+Loo%2C+Hanna+M.&rft.au=Bigdeli%2C+Tim+B.&rft.au=Milaneschi%2C+Yuri&rft.au=Aggen%2C+Steven+H.&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0165-0327&rft.volume=276&rft.spage=945&rft.epage=953&rft_id=info:doi/10.1016%2Fj.jad.2020.07.098&rft.externalDocID=S016503272032543X
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01650327%2FS0165032720X00139%2Fcov150h.gif