Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism

The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn,...

Full description

Saved in:
Bibliographic Details
Published in:Applied and environmental microbiology Vol. 77; no. 19; p. 6788
Main Authors: Makino, Hiroshi, Kushiro, Akira, Ishikawa, Eiji, Muylaert, Delphine, Kubota, Hiroyuki, Sakai, Takafumi, Oishi, Kenji, Martin, Rocio, Ben Amor, Kaouther, Oozeer, Raish, Knol, Jan, Tanaka, Ryuichiro
Format: Journal Article
Language:English
Published: United States 01.10.2011
Subjects:
ISSN:1098-5336, 1098-5336
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn, this is the first report confirming the transfer of bifidobacteria at the strain level. Here, we investigated the mother-to-infant transmission of Bifidobacterium longum subsp. longum by genotyping bacterial isolates from the feces of mothers before delivery and of their infants after delivery. Two hundred seven isolates from 8 pairs of mothers and infants were discriminated by multilocus sequencing typing (MLST) and amplified fragment length polymorphism (AFLP) analysis. By both methods, 11 strains of B. longum subsp. longum were found to be monophyletic for the feces of the mother and her infant. This finding confirms that these strains were transferred from the intestine of the mother to that of the infant. These strains were found in the first feces (meconium) of the infant and in the feces at days 3, 7, 30, and 90 after birth, indicating that they stably colonize the infant's intestine immediately after birth. The strains isolated from each family did not belong to clusters derived from any of the other families, suggesting that each mother-infant pair might have unique family-specific strains.
AbstractList The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn, this is the first report confirming the transfer of bifidobacteria at the strain level. Here, we investigated the mother-to-infant transmission of Bifidobacterium longum subsp. longum by genotyping bacterial isolates from the feces of mothers before delivery and of their infants after delivery. Two hundred seven isolates from 8 pairs of mothers and infants were discriminated by multilocus sequencing typing (MLST) and amplified fragment length polymorphism (AFLP) analysis. By both methods, 11 strains of B. longum subsp. longum were found to be monophyletic for the feces of the mother and her infant. This finding confirms that these strains were transferred from the intestine of the mother to that of the infant. These strains were found in the first feces (meconium) of the infant and in the feces at days 3, 7, 30, and 90 after birth, indicating that they stably colonize the infant's intestine immediately after birth. The strains isolated from each family did not belong to clusters derived from any of the other families, suggesting that each mother-infant pair might have unique family-specific strains.
The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn, this is the first report confirming the transfer of bifidobacteria at the strain level. Here, we investigated the mother-to-infant transmission of Bifidobacterium longum subsp. longum by genotyping bacterial isolates from the feces of mothers before delivery and of their infants after delivery. Two hundred seven isolates from 8 pairs of mothers and infants were discriminated by multilocus sequencing typing (MLST) and amplified fragment length polymorphism (AFLP) analysis. By both methods, 11 strains of B. longum subsp. longum were found to be monophyletic for the feces of the mother and her infant. This finding confirms that these strains were transferred from the intestine of the mother to that of the infant. These strains were found in the first feces (meconium) of the infant and in the feces at days 3, 7, 30, and 90 after birth, indicating that they stably colonize the infant's intestine immediately after birth. The strains isolated from each family did not belong to clusters derived from any of the other families, suggesting that each mother-infant pair might have unique family-specific strains.The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn, this is the first report confirming the transfer of bifidobacteria at the strain level. Here, we investigated the mother-to-infant transmission of Bifidobacterium longum subsp. longum by genotyping bacterial isolates from the feces of mothers before delivery and of their infants after delivery. Two hundred seven isolates from 8 pairs of mothers and infants were discriminated by multilocus sequencing typing (MLST) and amplified fragment length polymorphism (AFLP) analysis. By both methods, 11 strains of B. longum subsp. longum were found to be monophyletic for the feces of the mother and her infant. This finding confirms that these strains were transferred from the intestine of the mother to that of the infant. These strains were found in the first feces (meconium) of the infant and in the feces at days 3, 7, 30, and 90 after birth, indicating that they stably colonize the infant's intestine immediately after birth. The strains isolated from each family did not belong to clusters derived from any of the other families, suggesting that each mother-infant pair might have unique family-specific strains.
Author Sakai, Takafumi
Martin, Rocio
Kushiro, Akira
Ben Amor, Kaouther
Oozeer, Raish
Muylaert, Delphine
Ishikawa, Eiji
Oishi, Kenji
Makino, Hiroshi
Tanaka, Ryuichiro
Knol, Jan
Kubota, Hiroyuki
Author_xml – sequence: 1
  givenname: Hiroshi
  surname: Makino
  fullname: Makino, Hiroshi
  email: hiroshi.makino@yher.be
  organization: Yakult Honsha European Research Center for Microbiology, ESV, Technologiepark 4, 9052 Ghent-Zwijnaarde, Belgium. hiroshi.makino@yher.be
– sequence: 2
  givenname: Akira
  surname: Kushiro
  fullname: Kushiro, Akira
– sequence: 3
  givenname: Eiji
  surname: Ishikawa
  fullname: Ishikawa, Eiji
– sequence: 4
  givenname: Delphine
  surname: Muylaert
  fullname: Muylaert, Delphine
– sequence: 5
  givenname: Hiroyuki
  surname: Kubota
  fullname: Kubota, Hiroyuki
– sequence: 6
  givenname: Takafumi
  surname: Sakai
  fullname: Sakai, Takafumi
– sequence: 7
  givenname: Kenji
  surname: Oishi
  fullname: Oishi, Kenji
– sequence: 8
  givenname: Rocio
  surname: Martin
  fullname: Martin, Rocio
– sequence: 9
  givenname: Kaouther
  surname: Ben Amor
  fullname: Ben Amor, Kaouther
– sequence: 10
  givenname: Raish
  surname: Oozeer
  fullname: Oozeer, Raish
– sequence: 11
  givenname: Jan
  surname: Knol
  fullname: Knol, Jan
– sequence: 12
  givenname: Ryuichiro
  surname: Tanaka
  fullname: Tanaka, Ryuichiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21821739$$D View this record in MEDLINE/PubMed
BookMark eNpNkDlPxDAQhS0E4ljoqJE7GrLYiZONS0Bc0iIaqFe2M9418hFsp9j_xQ_EiENUb0Z682bmO0K7PnhA6JSSOaV1f3l1-zQnbcO6itIddEgJ76u2abrdf_UBOkrpjRDCSNfvo4Oa9jVdNPwQfbxE4ZMzKZngcdDY-AwpGy8svjbaDEEKlSGayWEb_LpImmQa539djsL4hHUMDruQNxBxDiVGC58v8ABl2BkPA5Zb7CabjQ1qSjjB-wReGb_GeTt-ifADFm60ZWtx6yjWDnzGFvw6b_AY7NaFOG5McsdoTwub4ORHZ-j17vbl5qFaPt8_3lwtK9USkisYNGF0kAQaonTdK85Y16iuFVwSqvqFUrLptGQtMNJKrjnndXmXME3btpf1DJ1_544xlGtTXhVQCqwVHsKUVj1nhSjli-I8-3FO0sGwGqNxIm5Xv6DrT0Ngh1I
CitedBy_id crossref_primary_10_1016_j_jaci_2011_12_993
crossref_primary_10_1371_journal_pone_0275908
crossref_primary_10_4303_jem_235975
crossref_primary_10_3109_1040841X_2013_763220
crossref_primary_10_1016_j_chom_2024_05_005
crossref_primary_10_1016_j_bbi_2013_12_005
crossref_primary_10_1080_1040841X_2019_1680601
crossref_primary_10_3390_microorganisms8121855
crossref_primary_10_1371_journal_pone_0078331
crossref_primary_10_1007_s00248_025_02520_5
crossref_primary_10_1111_imr_13392
crossref_primary_10_1016_j_cell_2017_11_024
crossref_primary_10_1146_annurev_food_041715_033151
crossref_primary_10_1093_nutrit_nuab008
crossref_primary_10_1038_s41598_017_18391_x
crossref_primary_10_3390_nu12041039
crossref_primary_10_1093_femsre_fuab001
crossref_primary_10_1016_j_micpath_2021_104966
crossref_primary_10_1002_imt2_167
crossref_primary_10_1186_s40168_017_0282_6
crossref_primary_10_1016_j_meegid_2013_01_009
crossref_primary_10_3389_fimmu_2018_00361
crossref_primary_10_3390_ijms25189776
crossref_primary_10_3390_microorganisms12050879
crossref_primary_10_1177_0193945917697223
crossref_primary_10_3390_ijms24043722
crossref_primary_10_1038_s41522_025_00720_y
crossref_primary_10_1002_kjm2_12147
crossref_primary_10_1016_j_molmed_2014_12_002
crossref_primary_10_1111_1462_2920_12238
crossref_primary_10_3390_nu14112297
crossref_primary_10_3390_ph5060629
crossref_primary_10_1038_pr_2014_173
crossref_primary_10_4137_NMI_S29530
crossref_primary_10_1016_j_jinf_2020_01_023
crossref_primary_10_3945_ajcn_112_054262
crossref_primary_10_1093_nutrit_nuu016
crossref_primary_10_1038_s41467_023_39931_2
crossref_primary_10_1017_S0007114513000597
crossref_primary_10_1111_1574_6941_12223
crossref_primary_10_1093_femsre_fuac004
crossref_primary_10_1111_jog_16180
crossref_primary_10_1186_1471_2180_13_303
crossref_primary_10_1007_s12304_015_9232_5
crossref_primary_10_3389_fcimb_2021_630052
crossref_primary_10_1039_D1FO03131G
crossref_primary_10_3390_nu7085314
crossref_primary_10_1186_s40168_021_01108_8
crossref_primary_10_1007_s00404_024_07843_1
crossref_primary_10_1080_10408398_2015_1023761
crossref_primary_10_1515_biol_2018_0025
crossref_primary_10_3945_an_114_007229
crossref_primary_10_1016_j_bcdf_2024_100419
crossref_primary_10_1080_19490976_2021_1908100
crossref_primary_10_1016_j_syapm_2015_05_001
crossref_primary_10_3390_genes8120364
crossref_primary_10_1016_j_phrs_2012_09_001
crossref_primary_10_1038_s43705_021_00021_3
crossref_primary_10_3390_microorganisms11041008
crossref_primary_10_3390_microorganisms13091995
crossref_primary_10_3389_fphys_2025_1544216
crossref_primary_10_1128_msystems_00480_25
crossref_primary_10_1080_10408398_2018_1485628
crossref_primary_10_1038_s41467_024_49559_5
crossref_primary_10_1097_MPG_0000000000000560
crossref_primary_10_3390_nu13020606
crossref_primary_10_1186_s12866_018_1358_6
crossref_primary_10_1111_apm_13326
crossref_primary_10_22207_JPAM_16_1_48
crossref_primary_10_3945_ajcn_115_117309
crossref_primary_10_1038_s41366_023_01438_7
crossref_primary_10_1128_JB_00691_12
crossref_primary_10_1186_s40168_017_0332_0
crossref_primary_10_1017_S0007114514001275
crossref_primary_10_1016_j_nut_2013_05_011
crossref_primary_10_1128_spectrum_01442_21
crossref_primary_10_1007_s00284_017_1272_4
crossref_primary_10_1128_mSystems_00164_16
crossref_primary_10_3945_an_111_001586
crossref_primary_10_1017_S0007114514001949
crossref_primary_10_1007_s00394_022_03020_9
crossref_primary_10_3390_nu11061390
crossref_primary_10_3390_microorganisms7110544
crossref_primary_10_1128_AEM_02359_12
crossref_primary_10_3390_nu16234242
crossref_primary_10_1016_j_jri_2025_104423
crossref_primary_10_3390_microorganisms7090293
crossref_primary_10_3389_fmicb_2020_00060
crossref_primary_10_1007_s11032_014_0113_4
crossref_primary_10_1371_journal_pone_0158498
crossref_primary_10_1007_s13213_015_1036_y
crossref_primary_10_1038_s41396_023_01525_7
crossref_primary_10_1111_1440_1703_70001
crossref_primary_10_1016_j_mimet_2018_02_016
crossref_primary_10_1371_journal_pone_0080299
crossref_primary_10_3389_fcimb_2020_573735
crossref_primary_10_1097_MPG_0000000000000347
crossref_primary_10_1016_j_tim_2017_07_008
crossref_primary_10_3390_cells9030575
crossref_primary_10_3390_microorganisms9122415
crossref_primary_10_1080_87559129_2024_2383854
crossref_primary_10_3402_mehd_v26_26309
crossref_primary_10_3945_ajcn_112_038893
crossref_primary_10_1016_j_idairyj_2021_105251
crossref_primary_10_1371_journal_pone_0134050
crossref_primary_10_1016_j_cll_2014_08_006
crossref_primary_10_1007_s10096_018_3193_y
crossref_primary_10_1038_pr_2014_169
crossref_primary_10_1002_mnfr_202400077
crossref_primary_10_3389_fmicb_2022_932495
crossref_primary_10_1097_INF_0000000000002103
crossref_primary_10_1016_j_jff_2018_12_022
crossref_primary_10_1097_INF_0000000000004769
crossref_primary_10_1080_19490976_2024_2430418
crossref_primary_10_1080_10408398_2015_1108957
crossref_primary_10_3390_microorganisms11020487
crossref_primary_10_1080_87559129_2020_1728308
crossref_primary_10_1186_s12866_021_02230_1
crossref_primary_10_1016_j_rvsc_2019_08_013
crossref_primary_10_1128_AEM_00249_15
crossref_primary_10_1155_2014_725406
crossref_primary_10_3390_microorganisms8091401
crossref_primary_10_3390_nu10010014
crossref_primary_10_1016_j_semperi_2021_151452
crossref_primary_10_1016_j_micres_2024_127966
crossref_primary_10_1016_j_jff_2018_08_014
crossref_primary_10_1007_s00203_021_02310_w
crossref_primary_10_3389_fcimb_2020_586667
crossref_primary_10_3390_nu15163647
crossref_primary_10_1128_spectrum_00614_23
crossref_primary_10_1136_archdischild_2018_316659
crossref_primary_10_1016_j_chom_2018_06_005
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/AEM.05346-11
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
ExternalDocumentID 21821739
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ABTAH
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CGR
CS3
CUY
CVF
D0L
DIK
E.-
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
NPM
O9-
OHT
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
~02
~KM
7X8
AAGFI
ID FETCH-LOGICAL-c500t-edf041db0e30cf28c94463c65a9b01c87ccb36fb45e405b9f9992bac04f1558b2
IEDL.DBID 7X8
ISICitedReferencesCount 170
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295123300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5336
IngestDate Fri Sep 05 09:32:54 EDT 2025
Thu Apr 03 06:56:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-edf041db0e30cf28c94463c65a9b01c87ccb36fb45e405b9f9992bac04f1558b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3187114
PMID 21821739
PQID 894040197
PQPubID 23479
ParticipantIDs proquest_miscellaneous_894040197
pubmed_primary_21821739
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied and environmental microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2011
References 7501463 - Nucleic Acids Res. 1995 Nov 11;23(21):4407-14
11957119 - J Infect Chemother. 2002 Mar;8(1):43-9
19088308 - Appl Environ Microbiol. 2009 Feb;75(4):965-9
19719575 - FEMS Microbiol Ecol. 2003 Nov 1;46(2):213-9
17332189 - Pediatrics. 2007 Mar;119(3):e724-32
20421439 - J Clin Microbiol. 2010 Jul;48(7):2350-6
17158978 - Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2783-92
10461381 - J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38
10508082 - Appl Environ Microbiol. 1999 Oct;65(10):4506-12
11876360 - Syst Appl Microbiol. 2001 Dec;24(4):520-38
16506376 - Hepatogastroenterology. 2006 Jan-Feb;53(67):55-9
16887708 - Anaerobe. 2003 Oct;9(5):219-29
14752001 - Bioinformatics. 2004 Mar 22;20(5):798-9
8757752 - Microbiology. 1996 Jul;142 ( Pt 7):1881-93
19060069 - Int J Syst Evol Microbiol. 2008 Dec;58(Pt 12):2839-49
15591256 - J Med Microbiol. 2005 Jan;54(Pt 1):55-61
20890213 - J Pediatr Gastroenterol Nutr. 2010 Nov;51(5):653-60
15186354 - Environ Microbiol. 2004 Jul;6(7):754-9
9858460 - Microbiol Immunol. 1998;42(10):661-7
18338233 - Antonie Van Leeuwenhoek. 2008 Jun;94(1):35-50
20176122 - Anaerobe. 2010 Jun;16(3):307-10
19114515 - Appl Environ Microbiol. 2009 Mar;75(5):1291-300
14711639 - Appl Environ Microbiol. 2004 Jan;70(1):167-73
17704267 - Appl Environ Microbiol. 2007 Oct;73(20):6601-11
17596738 - Neonatology. 2007;92(1):64-6
14657823 - J Pediatr. 2003 Dec;143(6):754-8
8255788 - Nucleic Acids Res. 1993 Nov 11;21(22):5279-80
11150002 - J Allergy Clin Immunol. 2001 Jan;107(1):129-34
16650661 - Vet Microbiol. 2006 Aug 25;116(1-3):158-65
19430378 - Pediatr Res. 2009 Jun;65(6):669-74
12583961 - Lancet. 2003 Feb 8;361(9356):512-9
20060895 - Res Microbiol. 2010 Mar;161(2):82-90
21300508 - Syst Appl Microbiol. 2011 Apr;34(2):148-55
19542117 - Int J Syst Evol Microbiol. 2009 Jul;59(Pt 7):1771-86
14766571 - Appl Environ Microbiol. 2004 Feb;70(2):913-20
References_xml – reference: 21300508 - Syst Appl Microbiol. 2011 Apr;34(2):148-55
– reference: 11150002 - J Allergy Clin Immunol. 2001 Jan;107(1):129-34
– reference: 8757752 - Microbiology. 1996 Jul;142 ( Pt 7):1881-93
– reference: 9858460 - Microbiol Immunol. 1998;42(10):661-7
– reference: 10461381 - J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38
– reference: 14657823 - J Pediatr. 2003 Dec;143(6):754-8
– reference: 16650661 - Vet Microbiol. 2006 Aug 25;116(1-3):158-65
– reference: 8255788 - Nucleic Acids Res. 1993 Nov 11;21(22):5279-80
– reference: 20890213 - J Pediatr Gastroenterol Nutr. 2010 Nov;51(5):653-60
– reference: 20176122 - Anaerobe. 2010 Jun;16(3):307-10
– reference: 20060895 - Res Microbiol. 2010 Mar;161(2):82-90
– reference: 19088308 - Appl Environ Microbiol. 2009 Feb;75(4):965-9
– reference: 10508082 - Appl Environ Microbiol. 1999 Oct;65(10):4506-12
– reference: 11876360 - Syst Appl Microbiol. 2001 Dec;24(4):520-38
– reference: 15186354 - Environ Microbiol. 2004 Jul;6(7):754-9
– reference: 18338233 - Antonie Van Leeuwenhoek. 2008 Jun;94(1):35-50
– reference: 17332189 - Pediatrics. 2007 Mar;119(3):e724-32
– reference: 19060069 - Int J Syst Evol Microbiol. 2008 Dec;58(Pt 12):2839-49
– reference: 16887708 - Anaerobe. 2003 Oct;9(5):219-29
– reference: 20421439 - J Clin Microbiol. 2010 Jul;48(7):2350-6
– reference: 17704267 - Appl Environ Microbiol. 2007 Oct;73(20):6601-11
– reference: 15591256 - J Med Microbiol. 2005 Jan;54(Pt 1):55-61
– reference: 7501463 - Nucleic Acids Res. 1995 Nov 11;23(21):4407-14
– reference: 17158978 - Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2783-92
– reference: 19430378 - Pediatr Res. 2009 Jun;65(6):669-74
– reference: 11957119 - J Infect Chemother. 2002 Mar;8(1):43-9
– reference: 12583961 - Lancet. 2003 Feb 8;361(9356):512-9
– reference: 19114515 - Appl Environ Microbiol. 2009 Mar;75(5):1291-300
– reference: 16506376 - Hepatogastroenterology. 2006 Jan-Feb;53(67):55-9
– reference: 14766571 - Appl Environ Microbiol. 2004 Feb;70(2):913-20
– reference: 14711639 - Appl Environ Microbiol. 2004 Jan;70(1):167-73
– reference: 19719575 - FEMS Microbiol Ecol. 2003 Nov 1;46(2):213-9
– reference: 19542117 - Int J Syst Evol Microbiol. 2009 Jul;59(Pt 7):1771-86
– reference: 14752001 - Bioinformatics. 2004 Mar 22;20(5):798-9
– reference: 17596738 - Neonatology. 2007;92(1):64-6
SSID ssj0004068
Score 2.4661071
Snippet The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6788
SubjectTerms Amplified Fragment Length Polymorphism Analysis - methods
Bifidobacteriales Infections - microbiology
Bifidobacteriales Infections - transmission
Bifidobacterium - classification
Bifidobacterium - genetics
Bifidobacterium - isolation & purification
Carrier State - microbiology
Carrier State - transmission
Cluster Analysis
Feces - microbiology
Genotype
Humans
Infant
Molecular Typing - methods
Multilocus Sequence Typing - methods
Title Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism
URI https://www.ncbi.nlm.nih.gov/pubmed/21821739
https://www.proquest.com/docview/894040197
Volume 77
WOSCitedRecordID wos000295123300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFkQ5FFjoE9AcOOLWcV72qWqrVly66gGkva3iV7tSN1maLNL-r_5Axt6k6gVx4JIoh1hJvvHMF_ubGYCvRWorm_qcaSVKlnljmRZeMGd1IlVlrLY2Npsox2M5maibXpvT9rLKwSdGR20bE9bIT6TKyN4SVZ4ufrHQNCpsrvYdNF7AVkpMJii6ysmzYuG8z4RTkhGrKQbdu5AnZ5fXx2R-WcGS5O_cMsaYq7f_-XTvYKcnl3i2tob3sOHqEbxat5tcjeD1kIXcjuDNs0KEH-AxhiyCPKydYeMxVJGgyR9GO5_5maVZH6s6L-d439S3dGrJ4yyOn65iq4kWQ7YKzmNWF3YNDeMJuW9oe9GNs6hXGEWMFESXLfZKbnoI7FYhdQur2mIVZO6eyDGNV92G9UsMDV-6O1w096t5Q7Yxa-cf4efV5Y-L76zv58BMznlH-HueJVZzl3LjhTSK_kVTU-SV0jwxsjRGp4XXWe6IRmrlibwKej2eeWI9Uotd2Kyb2u0DptZxo_OyLDJLYVhIL0NCSsaNlYQrPwAccJrSxwubIFXtmmU7fULqAPbWWE8X67oe01DMPilTdfjvm49gWwxiwOQTbHnyFe4zvDS_u1n78CXaIR3HN9d_AKb-7ls
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmission+of+intestinal+Bifidobacterium+longum+subsp.+longum+strains+from+mother+to+infant%2C+determined+by+multilocus+sequencing+typing+and+amplified+fragment+length+polymorphism&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Makino%2C+Hiroshi&rft.au=Kushiro%2C+Akira&rft.au=Ishikawa%2C+Eiji&rft.au=Muylaert%2C+Delphine&rft.date=2011-10-01&rft.eissn=1098-5336&rft.volume=77&rft.issue=19&rft.spage=6788&rft_id=info:doi/10.1128%2FAEM.05346-11&rft_id=info%3Apmid%2F21821739&rft_id=info%3Apmid%2F21821739&rft.externalDocID=21821739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5336&client=summon