Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism
The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn,...
Saved in:
| Published in: | Applied and environmental microbiology Vol. 77; no. 19; p. 6788 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.10.2011
|
| Subjects: | |
| ISSN: | 1098-5336, 1098-5336 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn, this is the first report confirming the transfer of bifidobacteria at the strain level. Here, we investigated the mother-to-infant transmission of Bifidobacterium longum subsp. longum by genotyping bacterial isolates from the feces of mothers before delivery and of their infants after delivery. Two hundred seven isolates from 8 pairs of mothers and infants were discriminated by multilocus sequencing typing (MLST) and amplified fragment length polymorphism (AFLP) analysis. By both methods, 11 strains of B. longum subsp. longum were found to be monophyletic for the feces of the mother and her infant. This finding confirms that these strains were transferred from the intestine of the mother to that of the infant. These strains were found in the first feces (meconium) of the infant and in the feces at days 3, 7, 30, and 90 after birth, indicating that they stably colonize the infant's intestine immediately after birth. The strains isolated from each family did not belong to clusters derived from any of the other families, suggesting that each mother-infant pair might have unique family-specific strains. |
|---|---|
| AbstractList | The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn, this is the first report confirming the transfer of bifidobacteria at the strain level. Here, we investigated the mother-to-infant transmission of Bifidobacterium longum subsp. longum by genotyping bacterial isolates from the feces of mothers before delivery and of their infants after delivery. Two hundred seven isolates from 8 pairs of mothers and infants were discriminated by multilocus sequencing typing (MLST) and amplified fragment length polymorphism (AFLP) analysis. By both methods, 11 strains of B. longum subsp. longum were found to be monophyletic for the feces of the mother and her infant. This finding confirms that these strains were transferred from the intestine of the mother to that of the infant. These strains were found in the first feces (meconium) of the infant and in the feces at days 3, 7, 30, and 90 after birth, indicating that they stably colonize the infant's intestine immediately after birth. The strains isolated from each family did not belong to clusters derived from any of the other families, suggesting that each mother-infant pair might have unique family-specific strains. The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn, this is the first report confirming the transfer of bifidobacteria at the strain level. Here, we investigated the mother-to-infant transmission of Bifidobacterium longum subsp. longum by genotyping bacterial isolates from the feces of mothers before delivery and of their infants after delivery. Two hundred seven isolates from 8 pairs of mothers and infants were discriminated by multilocus sequencing typing (MLST) and amplified fragment length polymorphism (AFLP) analysis. By both methods, 11 strains of B. longum subsp. longum were found to be monophyletic for the feces of the mother and her infant. This finding confirms that these strains were transferred from the intestine of the mother to that of the infant. These strains were found in the first feces (meconium) of the infant and in the feces at days 3, 7, 30, and 90 after birth, indicating that they stably colonize the infant's intestine immediately after birth. The strains isolated from each family did not belong to clusters derived from any of the other families, suggesting that each mother-infant pair might have unique family-specific strains.The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates includes strains transferred from the mothers. Although some studies have indicated possible bacterial transfer from the mother to the newborn, this is the first report confirming the transfer of bifidobacteria at the strain level. Here, we investigated the mother-to-infant transmission of Bifidobacterium longum subsp. longum by genotyping bacterial isolates from the feces of mothers before delivery and of their infants after delivery. Two hundred seven isolates from 8 pairs of mothers and infants were discriminated by multilocus sequencing typing (MLST) and amplified fragment length polymorphism (AFLP) analysis. By both methods, 11 strains of B. longum subsp. longum were found to be monophyletic for the feces of the mother and her infant. This finding confirms that these strains were transferred from the intestine of the mother to that of the infant. These strains were found in the first feces (meconium) of the infant and in the feces at days 3, 7, 30, and 90 after birth, indicating that they stably colonize the infant's intestine immediately after birth. The strains isolated from each family did not belong to clusters derived from any of the other families, suggesting that each mother-infant pair might have unique family-specific strains. |
| Author | Sakai, Takafumi Martin, Rocio Kushiro, Akira Ben Amor, Kaouther Oozeer, Raish Muylaert, Delphine Ishikawa, Eiji Oishi, Kenji Makino, Hiroshi Tanaka, Ryuichiro Knol, Jan Kubota, Hiroyuki |
| Author_xml | – sequence: 1 givenname: Hiroshi surname: Makino fullname: Makino, Hiroshi email: hiroshi.makino@yher.be organization: Yakult Honsha European Research Center for Microbiology, ESV, Technologiepark 4, 9052 Ghent-Zwijnaarde, Belgium. hiroshi.makino@yher.be – sequence: 2 givenname: Akira surname: Kushiro fullname: Kushiro, Akira – sequence: 3 givenname: Eiji surname: Ishikawa fullname: Ishikawa, Eiji – sequence: 4 givenname: Delphine surname: Muylaert fullname: Muylaert, Delphine – sequence: 5 givenname: Hiroyuki surname: Kubota fullname: Kubota, Hiroyuki – sequence: 6 givenname: Takafumi surname: Sakai fullname: Sakai, Takafumi – sequence: 7 givenname: Kenji surname: Oishi fullname: Oishi, Kenji – sequence: 8 givenname: Rocio surname: Martin fullname: Martin, Rocio – sequence: 9 givenname: Kaouther surname: Ben Amor fullname: Ben Amor, Kaouther – sequence: 10 givenname: Raish surname: Oozeer fullname: Oozeer, Raish – sequence: 11 givenname: Jan surname: Knol fullname: Knol, Jan – sequence: 12 givenname: Ryuichiro surname: Tanaka fullname: Tanaka, Ryuichiro |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21821739$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDlPxDAQhS0E4ljoqJE7GrLYiZONS0Bc0iIaqFe2M9418hFsp9j_xQ_EiENUb0Z682bmO0K7PnhA6JSSOaV1f3l1-zQnbcO6itIddEgJ76u2abrdf_UBOkrpjRDCSNfvo4Oa9jVdNPwQfbxE4ZMzKZngcdDY-AwpGy8svjbaDEEKlSGayWEb_LpImmQa539djsL4hHUMDruQNxBxDiVGC58v8ABl2BkPA5Zb7CabjQ1qSjjB-wReGb_GeTt-ifADFm60ZWtx6yjWDnzGFvw6b_AY7NaFOG5McsdoTwub4ORHZ-j17vbl5qFaPt8_3lwtK9USkisYNGF0kAQaonTdK85Y16iuFVwSqvqFUrLptGQtMNJKrjnndXmXME3btpf1DJ1_544xlGtTXhVQCqwVHsKUVj1nhSjli-I8-3FO0sGwGqNxIm5Xv6DrT0Ngh1I |
| CitedBy_id | crossref_primary_10_1016_j_jaci_2011_12_993 crossref_primary_10_1371_journal_pone_0275908 crossref_primary_10_4303_jem_235975 crossref_primary_10_3109_1040841X_2013_763220 crossref_primary_10_1016_j_chom_2024_05_005 crossref_primary_10_1016_j_bbi_2013_12_005 crossref_primary_10_1080_1040841X_2019_1680601 crossref_primary_10_3390_microorganisms8121855 crossref_primary_10_1371_journal_pone_0078331 crossref_primary_10_1007_s00248_025_02520_5 crossref_primary_10_1111_imr_13392 crossref_primary_10_1016_j_cell_2017_11_024 crossref_primary_10_1146_annurev_food_041715_033151 crossref_primary_10_1093_nutrit_nuab008 crossref_primary_10_1038_s41598_017_18391_x crossref_primary_10_3390_nu12041039 crossref_primary_10_1093_femsre_fuab001 crossref_primary_10_1016_j_micpath_2021_104966 crossref_primary_10_1002_imt2_167 crossref_primary_10_1186_s40168_017_0282_6 crossref_primary_10_1016_j_meegid_2013_01_009 crossref_primary_10_3389_fimmu_2018_00361 crossref_primary_10_3390_ijms25189776 crossref_primary_10_3390_microorganisms12050879 crossref_primary_10_1177_0193945917697223 crossref_primary_10_3390_ijms24043722 crossref_primary_10_1038_s41522_025_00720_y crossref_primary_10_1002_kjm2_12147 crossref_primary_10_1016_j_molmed_2014_12_002 crossref_primary_10_1111_1462_2920_12238 crossref_primary_10_3390_nu14112297 crossref_primary_10_3390_ph5060629 crossref_primary_10_1038_pr_2014_173 crossref_primary_10_4137_NMI_S29530 crossref_primary_10_1016_j_jinf_2020_01_023 crossref_primary_10_3945_ajcn_112_054262 crossref_primary_10_1093_nutrit_nuu016 crossref_primary_10_1038_s41467_023_39931_2 crossref_primary_10_1017_S0007114513000597 crossref_primary_10_1111_1574_6941_12223 crossref_primary_10_1093_femsre_fuac004 crossref_primary_10_1111_jog_16180 crossref_primary_10_1186_1471_2180_13_303 crossref_primary_10_1007_s12304_015_9232_5 crossref_primary_10_3389_fcimb_2021_630052 crossref_primary_10_1039_D1FO03131G crossref_primary_10_3390_nu7085314 crossref_primary_10_1186_s40168_021_01108_8 crossref_primary_10_1007_s00404_024_07843_1 crossref_primary_10_1080_10408398_2015_1023761 crossref_primary_10_1515_biol_2018_0025 crossref_primary_10_3945_an_114_007229 crossref_primary_10_1016_j_bcdf_2024_100419 crossref_primary_10_1080_19490976_2021_1908100 crossref_primary_10_1016_j_syapm_2015_05_001 crossref_primary_10_3390_genes8120364 crossref_primary_10_1016_j_phrs_2012_09_001 crossref_primary_10_1038_s43705_021_00021_3 crossref_primary_10_3390_microorganisms11041008 crossref_primary_10_3390_microorganisms13091995 crossref_primary_10_3389_fphys_2025_1544216 crossref_primary_10_1128_msystems_00480_25 crossref_primary_10_1080_10408398_2018_1485628 crossref_primary_10_1038_s41467_024_49559_5 crossref_primary_10_1097_MPG_0000000000000560 crossref_primary_10_3390_nu13020606 crossref_primary_10_1186_s12866_018_1358_6 crossref_primary_10_1111_apm_13326 crossref_primary_10_22207_JPAM_16_1_48 crossref_primary_10_3945_ajcn_115_117309 crossref_primary_10_1038_s41366_023_01438_7 crossref_primary_10_1128_JB_00691_12 crossref_primary_10_1186_s40168_017_0332_0 crossref_primary_10_1017_S0007114514001275 crossref_primary_10_1016_j_nut_2013_05_011 crossref_primary_10_1128_spectrum_01442_21 crossref_primary_10_1007_s00284_017_1272_4 crossref_primary_10_1128_mSystems_00164_16 crossref_primary_10_3945_an_111_001586 crossref_primary_10_1017_S0007114514001949 crossref_primary_10_1007_s00394_022_03020_9 crossref_primary_10_3390_nu11061390 crossref_primary_10_3390_microorganisms7110544 crossref_primary_10_1128_AEM_02359_12 crossref_primary_10_3390_nu16234242 crossref_primary_10_1016_j_jri_2025_104423 crossref_primary_10_3390_microorganisms7090293 crossref_primary_10_3389_fmicb_2020_00060 crossref_primary_10_1007_s11032_014_0113_4 crossref_primary_10_1371_journal_pone_0158498 crossref_primary_10_1007_s13213_015_1036_y crossref_primary_10_1038_s41396_023_01525_7 crossref_primary_10_1111_1440_1703_70001 crossref_primary_10_1016_j_mimet_2018_02_016 crossref_primary_10_1371_journal_pone_0080299 crossref_primary_10_3389_fcimb_2020_573735 crossref_primary_10_1097_MPG_0000000000000347 crossref_primary_10_1016_j_tim_2017_07_008 crossref_primary_10_3390_cells9030575 crossref_primary_10_3390_microorganisms9122415 crossref_primary_10_1080_87559129_2024_2383854 crossref_primary_10_3402_mehd_v26_26309 crossref_primary_10_3945_ajcn_112_038893 crossref_primary_10_1016_j_idairyj_2021_105251 crossref_primary_10_1371_journal_pone_0134050 crossref_primary_10_1016_j_cll_2014_08_006 crossref_primary_10_1007_s10096_018_3193_y crossref_primary_10_1038_pr_2014_169 crossref_primary_10_1002_mnfr_202400077 crossref_primary_10_3389_fmicb_2022_932495 crossref_primary_10_1097_INF_0000000000002103 crossref_primary_10_1016_j_jff_2018_12_022 crossref_primary_10_1097_INF_0000000000004769 crossref_primary_10_1080_19490976_2024_2430418 crossref_primary_10_1080_10408398_2015_1108957 crossref_primary_10_3390_microorganisms11020487 crossref_primary_10_1080_87559129_2020_1728308 crossref_primary_10_1186_s12866_021_02230_1 crossref_primary_10_1016_j_rvsc_2019_08_013 crossref_primary_10_1128_AEM_00249_15 crossref_primary_10_1155_2014_725406 crossref_primary_10_3390_microorganisms8091401 crossref_primary_10_3390_nu10010014 crossref_primary_10_1016_j_semperi_2021_151452 crossref_primary_10_1016_j_micres_2024_127966 crossref_primary_10_1016_j_jff_2018_08_014 crossref_primary_10_1007_s00203_021_02310_w crossref_primary_10_3389_fcimb_2020_586667 crossref_primary_10_3390_nu15163647 crossref_primary_10_1128_spectrum_00614_23 crossref_primary_10_1136_archdischild_2018_316659 crossref_primary_10_1016_j_chom_2018_06_005 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/AEM.05346-11 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Economics Engineering Biology |
| EISSN | 1098-5336 |
| ExternalDocumentID | 21821739 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ABTAH ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFFNX AFRAH AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CGR CS3 CUY CVF D0L DIK E.- E3Z EBS ECM EIF EJD F5P GX1 H13 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ NPM O9- OHT P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XJT YV5 ZCG ZGI ZXP ZY4 ~02 ~KM 7X8 AAGFI |
| ID | FETCH-LOGICAL-c500t-edf041db0e30cf28c94463c65a9b01c87ccb36fb45e405b9f9992bac04f1558b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 170 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295123300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-5336 |
| IngestDate | Fri Sep 05 09:32:54 EDT 2025 Thu Apr 03 06:56:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c500t-edf041db0e30cf28c94463c65a9b01c87ccb36fb45e405b9f9992bac04f1558b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3187114 |
| PMID | 21821739 |
| PQID | 894040197 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_894040197 pubmed_primary_21821739 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-01 |
| PublicationDateYYYYMMDD | 2011-10-01 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Applied and environmental microbiology |
| PublicationTitleAlternate | Appl Environ Microbiol |
| PublicationYear | 2011 |
| References | 7501463 - Nucleic Acids Res. 1995 Nov 11;23(21):4407-14 11957119 - J Infect Chemother. 2002 Mar;8(1):43-9 19088308 - Appl Environ Microbiol. 2009 Feb;75(4):965-9 19719575 - FEMS Microbiol Ecol. 2003 Nov 1;46(2):213-9 17332189 - Pediatrics. 2007 Mar;119(3):e724-32 20421439 - J Clin Microbiol. 2010 Jul;48(7):2350-6 17158978 - Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2783-92 10461381 - J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38 10508082 - Appl Environ Microbiol. 1999 Oct;65(10):4506-12 11876360 - Syst Appl Microbiol. 2001 Dec;24(4):520-38 16506376 - Hepatogastroenterology. 2006 Jan-Feb;53(67):55-9 16887708 - Anaerobe. 2003 Oct;9(5):219-29 14752001 - Bioinformatics. 2004 Mar 22;20(5):798-9 8757752 - Microbiology. 1996 Jul;142 ( Pt 7):1881-93 19060069 - Int J Syst Evol Microbiol. 2008 Dec;58(Pt 12):2839-49 15591256 - J Med Microbiol. 2005 Jan;54(Pt 1):55-61 20890213 - J Pediatr Gastroenterol Nutr. 2010 Nov;51(5):653-60 15186354 - Environ Microbiol. 2004 Jul;6(7):754-9 9858460 - Microbiol Immunol. 1998;42(10):661-7 18338233 - Antonie Van Leeuwenhoek. 2008 Jun;94(1):35-50 20176122 - Anaerobe. 2010 Jun;16(3):307-10 19114515 - Appl Environ Microbiol. 2009 Mar;75(5):1291-300 14711639 - Appl Environ Microbiol. 2004 Jan;70(1):167-73 17704267 - Appl Environ Microbiol. 2007 Oct;73(20):6601-11 17596738 - Neonatology. 2007;92(1):64-6 14657823 - J Pediatr. 2003 Dec;143(6):754-8 8255788 - Nucleic Acids Res. 1993 Nov 11;21(22):5279-80 11150002 - J Allergy Clin Immunol. 2001 Jan;107(1):129-34 16650661 - Vet Microbiol. 2006 Aug 25;116(1-3):158-65 19430378 - Pediatr Res. 2009 Jun;65(6):669-74 12583961 - Lancet. 2003 Feb 8;361(9356):512-9 20060895 - Res Microbiol. 2010 Mar;161(2):82-90 21300508 - Syst Appl Microbiol. 2011 Apr;34(2):148-55 19542117 - Int J Syst Evol Microbiol. 2009 Jul;59(Pt 7):1771-86 14766571 - Appl Environ Microbiol. 2004 Feb;70(2):913-20 |
| References_xml | – reference: 21300508 - Syst Appl Microbiol. 2011 Apr;34(2):148-55 – reference: 11150002 - J Allergy Clin Immunol. 2001 Jan;107(1):129-34 – reference: 8757752 - Microbiology. 1996 Jul;142 ( Pt 7):1881-93 – reference: 9858460 - Microbiol Immunol. 1998;42(10):661-7 – reference: 10461381 - J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38 – reference: 14657823 - J Pediatr. 2003 Dec;143(6):754-8 – reference: 16650661 - Vet Microbiol. 2006 Aug 25;116(1-3):158-65 – reference: 8255788 - Nucleic Acids Res. 1993 Nov 11;21(22):5279-80 – reference: 20890213 - J Pediatr Gastroenterol Nutr. 2010 Nov;51(5):653-60 – reference: 20176122 - Anaerobe. 2010 Jun;16(3):307-10 – reference: 20060895 - Res Microbiol. 2010 Mar;161(2):82-90 – reference: 19088308 - Appl Environ Microbiol. 2009 Feb;75(4):965-9 – reference: 10508082 - Appl Environ Microbiol. 1999 Oct;65(10):4506-12 – reference: 11876360 - Syst Appl Microbiol. 2001 Dec;24(4):520-38 – reference: 15186354 - Environ Microbiol. 2004 Jul;6(7):754-9 – reference: 18338233 - Antonie Van Leeuwenhoek. 2008 Jun;94(1):35-50 – reference: 17332189 - Pediatrics. 2007 Mar;119(3):e724-32 – reference: 19060069 - Int J Syst Evol Microbiol. 2008 Dec;58(Pt 12):2839-49 – reference: 16887708 - Anaerobe. 2003 Oct;9(5):219-29 – reference: 20421439 - J Clin Microbiol. 2010 Jul;48(7):2350-6 – reference: 17704267 - Appl Environ Microbiol. 2007 Oct;73(20):6601-11 – reference: 15591256 - J Med Microbiol. 2005 Jan;54(Pt 1):55-61 – reference: 7501463 - Nucleic Acids Res. 1995 Nov 11;23(21):4407-14 – reference: 17158978 - Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2783-92 – reference: 19430378 - Pediatr Res. 2009 Jun;65(6):669-74 – reference: 11957119 - J Infect Chemother. 2002 Mar;8(1):43-9 – reference: 12583961 - Lancet. 2003 Feb 8;361(9356):512-9 – reference: 19114515 - Appl Environ Microbiol. 2009 Mar;75(5):1291-300 – reference: 16506376 - Hepatogastroenterology. 2006 Jan-Feb;53(67):55-9 – reference: 14766571 - Appl Environ Microbiol. 2004 Feb;70(2):913-20 – reference: 14711639 - Appl Environ Microbiol. 2004 Jan;70(1):167-73 – reference: 19719575 - FEMS Microbiol Ecol. 2003 Nov 1;46(2):213-9 – reference: 19542117 - Int J Syst Evol Microbiol. 2009 Jul;59(Pt 7):1771-86 – reference: 14752001 - Bioinformatics. 2004 Mar 22;20(5):798-9 – reference: 17596738 - Neonatology. 2007;92(1):64-6 |
| SSID | ssj0004068 |
| Score | 2.4661071 |
| Snippet | The gastrointestinal tracts of neonates are colonized by bacteria immediately after birth. It has been discussed that the intestinal microbiota of neonates... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 6788 |
| SubjectTerms | Amplified Fragment Length Polymorphism Analysis - methods Bifidobacteriales Infections - microbiology Bifidobacteriales Infections - transmission Bifidobacterium - classification Bifidobacterium - genetics Bifidobacterium - isolation & purification Carrier State - microbiology Carrier State - transmission Cluster Analysis Feces - microbiology Genotype Humans Infant Molecular Typing - methods Multilocus Sequence Typing - methods |
| Title | Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21821739 https://www.proquest.com/docview/894040197 |
| Volume | 77 |
| WOSCitedRecordID | wos000295123300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFkQ5FFjoE9AcOOLWcV72qWqrVly66gGkva3iV7tSN1maLNL-r_5Axt6k6gVx4JIoh1hJvvHMF_ubGYCvRWorm_qcaSVKlnljmRZeMGd1IlVlrLY2Npsox2M5maibXpvT9rLKwSdGR20bE9bIT6TKyN4SVZ4ufrHQNCpsrvYdNF7AVkpMJii6ysmzYuG8z4RTkhGrKQbdu5AnZ5fXx2R-WcGS5O_cMsaYq7f_-XTvYKcnl3i2tob3sOHqEbxat5tcjeD1kIXcjuDNs0KEH-AxhiyCPKydYeMxVJGgyR9GO5_5maVZH6s6L-d439S3dGrJ4yyOn65iq4kWQ7YKzmNWF3YNDeMJuW9oe9GNs6hXGEWMFESXLfZKbnoI7FYhdQur2mIVZO6eyDGNV92G9UsMDV-6O1w096t5Q7Yxa-cf4efV5Y-L76zv58BMznlH-HueJVZzl3LjhTSK_kVTU-SV0jwxsjRGp4XXWe6IRmrlibwKej2eeWI9Uotd2Kyb2u0DptZxo_OyLDJLYVhIL0NCSsaNlYQrPwAccJrSxwubIFXtmmU7fULqAPbWWE8X67oe01DMPilTdfjvm49gWwxiwOQTbHnyFe4zvDS_u1n78CXaIR3HN9d_AKb-7ls |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmission+of+intestinal+Bifidobacterium+longum+subsp.+longum+strains+from+mother+to+infant%2C+determined+by+multilocus+sequencing+typing+and+amplified+fragment+length+polymorphism&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Makino%2C+Hiroshi&rft.au=Kushiro%2C+Akira&rft.au=Ishikawa%2C+Eiji&rft.au=Muylaert%2C+Delphine&rft.date=2011-10-01&rft.eissn=1098-5336&rft.volume=77&rft.issue=19&rft.spage=6788&rft_id=info:doi/10.1128%2FAEM.05346-11&rft_id=info%3Apmid%2F21821739&rft_id=info%3Apmid%2F21821739&rft.externalDocID=21821739 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5336&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5336&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5336&client=summon |