Unsupervised Structural Damage Detection Technique Based on a Deep Convolutional Autoencoder
Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major focus of SHM studies in recent years has been on developing vibration-based damage detection algorithms and using machine learning, especially...
Gespeichert in:
| Veröffentlicht in: | Shock and vibration Jg. 2021; H. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cairo
Hindawi
2021
John Wiley & Sons, Inc Wiley |
| Schlagworte: | |
| ISSN: | 1070-9622, 1875-9203 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major focus of SHM studies in recent years has been on developing vibration-based damage detection algorithms and using machine learning, especially deep learning-based approaches. Most of the deep learning-based methods proposed for damage detection in civil structures are based on supervised algorithms that require data from the healthy state and different damaged states of the structure in the training phase. As it is not usually possible to collect data from damaged states of a large civil structure, using such algorithms for these structures may be impractical. This paper proposes a new unsupervised deep learning-based method for structural damage detection based on convolutional autoencoders (CAEs). The main objective of the proposed method is to identify and quantify structural damage using a CAE network that employs raw vibration signals from the structure and is trained by the signals solely acquired from the healthy state of the structure. The CAE is chosen to take advantage of high feature extraction capability of convolution layers and at the same time use the advantages of an autoencoder as an unsupervised algorithm that does not need data from damaged states in the training phase. Applications on the two numerical models of IASC-ASCE benchmark structure and a grid structure located at the University of Central Florida, as well as the full-scale Tianjin Yonghe Bridge, prove the efficiency of the proposed algorithm in assessing the global health state of the structures and quantifying the damage. |
|---|---|
| AbstractList | Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major focus of SHM studies in recent years has been on developing vibration-based damage detection algorithms and using machine learning, especially deep learning-based approaches. Most of the deep learning-based methods proposed for damage detection in civil structures are based on supervised algorithms that require data from the healthy state and different damaged states of the structure in the training phase. As it is not usually possible to collect data from damaged states of a large civil structure, using such algorithms for these structures may be impractical. This paper proposes a new unsupervised deep learning-based method for structural damage detection based on convolutional autoencoders (CAEs). The main objective of the proposed method is to identify and quantify structural damage using a CAE network that employs raw vibration signals from the structure and is trained by the signals solely acquired from the healthy state of the structure. The CAE is chosen to take advantage of high feature extraction capability of convolution layers and at the same time use the advantages of an autoencoder as an unsupervised algorithm that does not need data from damaged states in the training phase. Applications on the two numerical models of IASC-ASCE benchmark structure and a grid structure located at the University of Central Florida, as well as the full-scale Tianjin Yonghe Bridge, prove the efficiency of the proposed algorithm in assessing the global health state of the structures and quantifying the damage. |
| Audience | Academic |
| Author | Rastin, Zahra Ghodrati Amiri, Gholamreza Darvishan, Ehsan |
| Author_xml | – sequence: 1 givenname: Zahra orcidid: 0000-0001-9018-3960 surname: Rastin fullname: Rastin, Zahra organization: Natural Disasters Prevention Research CenterSchool of Civil EngineeringIran University of Science & TechnologyTehranIraniust.ac.ir – sequence: 2 givenname: Gholamreza orcidid: 0000-0003-3244-0943 surname: Ghodrati Amiri fullname: Ghodrati Amiri, Gholamreza organization: Natural Disasters Prevention Research CenterSchool of Civil EngineeringIran University of Science & TechnologyTehranIraniust.ac.ir – sequence: 3 givenname: Ehsan orcidid: 0000-0003-2010-8919 surname: Darvishan fullname: Darvishan, Ehsan organization: Department of Civil EngineeringRoudehen BranchIslamic Azad UniversityRoudehenIranazad.ac.ir |
| BookMark | eNp9Uctu1DAUtVCRaAs7PiASS0jrR2wny2EKbaVKLGh3SNaNfTP1KBMPtlPE3-OQigUSLCxbx-fh63NGTqYwISFvGb1gTMpLTjm7VEq2UssX5JS1WtYdp-KknKmmdac4f0XOUtpTSqVQzSn59jCl-YjxySd01dccZ5vnCGN1BQfYYXWFGW32Yaru0T5O_vuM1UdYuAWCco3HahumpzDOC6sIN3MOONngML4mLwcYE7553s_Jw-dP99ub-u7L9e12c1dbSWmuQTeu1YKCUlpC0_Sq4w04LUQvrEbdWSaHQQLvetUWwLW2Bcot5ZR1wAZxTm5XXxdgb47RHyD-NAG8-Q2EuDMQs7cjmlb2g0VEyyVtGmdBQ1kadC-FLHHF693qdYyhDJuy2Yc5lsGS4ZJTpZUQXWFdrKwdFFM_DSHHYmTB4cHb0srgC75pWaOEVLwpgg-rwMaQUsThzzMZNUt5ZinPPJdX6PwvuvUZlh8uOX78l-j9Knr0k4Mf_v8RvwC5u6ri |
| CitedBy_id | crossref_primary_10_3389_fbuil_2022_816644 crossref_primary_10_1177_14759217241289575 crossref_primary_10_1155_2024_8846470 crossref_primary_10_3390_s23218824 crossref_primary_10_3390_s22072482 crossref_primary_10_1007_s13198_023_02020_0 crossref_primary_10_3390_s23136152 crossref_primary_10_1007_s10999_023_09692_3 crossref_primary_10_1177_14759217251369727 crossref_primary_10_1142_S175882512550019X crossref_primary_10_1186_s43251_022_00078_7 crossref_primary_10_1080_17686733_2024_2432079 crossref_primary_10_1371_journal_pone_0324816 crossref_primary_10_1007_s42107_025_01511_8 crossref_primary_10_1007_s13349_025_01009_6 crossref_primary_10_1016_j_ymssp_2023_110789 crossref_primary_10_3390_app15168884 crossref_primary_10_3390_s23063290 crossref_primary_10_1007_s13349_022_00627_8 crossref_primary_10_3390_polym14193947 crossref_primary_10_1016_j_ymssp_2024_111653 crossref_primary_10_1142_S0219876225500203 crossref_primary_10_1177_14759217251348421 crossref_primary_10_1016_j_sna_2025_116886 crossref_primary_10_1007_s42417_023_01116_y crossref_primary_10_1061__ASCE_SC_1943_5576_0000703 crossref_primary_10_1177_13694332241260133 crossref_primary_10_1002_zamm_202400481 crossref_primary_10_1111_mice_12943 crossref_primary_10_1016_j_autcon_2021_103973 crossref_primary_10_1109_ACCESS_2023_3291674 crossref_primary_10_3390_app15084098 crossref_primary_10_1002_nag_70063 crossref_primary_10_1177_87552930251327226 crossref_primary_10_3390_s24216825 crossref_primary_10_1080_17499518_2023_2251128 crossref_primary_10_3390_app13095683 crossref_primary_10_1177_14759217231216694 |
| Cites_doi | 10.1016/j.jsv.2004.01.003 10.1016/j.engstruct.2014.01.044 10.1504/ijsn.2019.100087 10.3390/ijgi5120222 10.1016/j.ymssp.2017.11.040 10.1007/s11831-014-9135-7 10.1145/3234150 10.1061/(asce)0733-9399(2004)130:1(3) 10.1016/j.measurement.2020.107811 10.1061/(asce)cp.1943-5487.0000820 10.1016/j.jsv.2016.10.043 10.1061/(asce)ae.1943-5568.0000205 10.1002/stc.116 10.3390/min9050270 10.1016/s0141-0296(00)00067-5 10.1177/1369433220921000 10.1061/(asce)cf.1943-5509.0001256 10.1088/1361-6501/ab393c 10.1007/978-3-319-67443-8_14 10.1111/j.1467-8667.2012.00777.x 10.1002/stc.369 10.1177/1475921716639587 10.1088/1361-6501/ab0793 10.1155/2019/9859281 10.1016/j.eswa.2010.06.093 10.1007/BFb0030439 10.1002/stc.319 10.1016/j.asoc.2017.11.040 10.1177/1475921720934051 10.1080/15732479.2019.1599964 10.1155/2020/6380486 10.1016/j.inffus.2017.12.007 10.1177/1475921718799070 10.1002/tal.1777 10.1155/2015/102680 10.1007/s12205-017-1518-5 10.1155/2014/624949 10.1016/j.engstruct.2017.10.070 10.1088/1361-6501/ab79c8 10.1002/stc.1559 10.1111/mice.12313 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Zahra Rastin et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Zahra Rastin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2021 Zahra Rastin et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Zahra Rastin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1155/2021/6658575 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics Public Health |
| EISSN | 1875-9203 |
| Editor | Caddemi, Salvatore |
| Editor_xml | – sequence: 1 givenname: Salvatore surname: Caddemi fullname: Caddemi, Salvatore |
| ExternalDocumentID | oai_doaj_org_article_85bfceeec25044dca7aca77a7b535b3c A814635624 10_1155_2021_6658575 |
| GroupedDBID | 0R~ 123 4.4 5VS 8FE 8FG AAFWJ AAJEY ABDBF ABJCF ABJNI ACGFS ACIWK ADBBV AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU DU5 EAD EAP EBS EMK EPL EST ESX FRP GROUPED_DOAJ HCIFZ HZ~ I-F IAO IOS ITC KQ8 L6V M7S O9- OK1 PIMPY PROAC PTHSS RHU RHW RHX TUS ~02 1OB 24P AAMMB AAYXX ABUBZ ACCMX ACPQW ACUHS ADMLS AEFGJ AFFHD AFRHK AGIAB AGXDD AIDQK AIDYY ALUQN CAG CITATION COF EJD FEDTE H13 IL9 IPNFZ MET MIO PHGZM PHGZT PQGLB RIG 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c500t-a74d8730a6675a44b6924ad733b3c7e79c15ff5a29b68c7ed8c8a02c02019a1f3 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664870700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1070-9622 |
| IngestDate | Tue Oct 14 19:06:20 EDT 2025 Fri Jul 25 11:58:48 EDT 2025 Tue Nov 04 18:14:32 EST 2025 Sat Nov 29 02:36:14 EST 2025 Tue Nov 18 21:51:55 EST 2025 Sun Jun 02 18:54:57 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c500t-a74d8730a6675a44b6924ad733b3c7e79c15ff5a29b68c7ed8c8a02c02019a1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9018-3960 0000-0003-2010-8919 0000-0003-3244-0943 |
| OpenAccessLink | https://dx.doi.org/10.1155/2021/6658575 |
| PQID | 2520676339 |
| PQPubID | 2037353 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_85bfceeec25044dca7aca77a7b535b3c proquest_journals_2520676339 gale_infotracacademiconefile_A814635624 crossref_primary_10_1155_2021_6658575 crossref_citationtrail_10_1155_2021_6658575 hindawi_primary_10_1155_2021_6658575 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Cairo |
| PublicationPlace_xml | – name: Cairo |
| PublicationTitle | Shock and vibration |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_42_2 Adeli H. (e_1_2_8_4_2) 1995 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 |
| References_xml | – ident: e_1_2_8_6_2 doi: 10.1016/j.jsv.2004.01.003 – ident: e_1_2_8_9_2 doi: 10.1016/j.engstruct.2014.01.044 – ident: e_1_2_8_19_2 doi: 10.1504/ijsn.2019.100087 – ident: e_1_2_8_41_2 doi: 10.3390/ijgi5120222 – ident: e_1_2_8_18_2 doi: 10.1016/j.ymssp.2017.11.040 – ident: e_1_2_8_3_2 doi: 10.1007/s11831-014-9135-7 – ident: e_1_2_8_22_2 doi: 10.1145/3234150 – ident: e_1_2_8_37_2 doi: 10.1061/(asce)0733-9399(2004)130:1(3) – ident: e_1_2_8_34_2 doi: 10.1016/j.measurement.2020.107811 – ident: e_1_2_8_38_2 – ident: e_1_2_8_25_2 doi: 10.1061/(asce)cp.1943-5487.0000820 – ident: e_1_2_8_23_2 doi: 10.1016/j.jsv.2016.10.043 – ident: e_1_2_8_10_2 doi: 10.1061/(asce)ae.1943-5568.0000205 – ident: e_1_2_8_14_2 doi: 10.1002/stc.116 – ident: e_1_2_8_36_2 doi: 10.3390/min9050270 – ident: e_1_2_8_5_2 doi: 10.1016/s0141-0296(00)00067-5 – ident: e_1_2_8_21_2 doi: 10.1177/1369433220921000 – ident: e_1_2_8_1_2 doi: 10.1061/(asce)cf.1943-5509.0001256 – ident: e_1_2_8_32_2 doi: 10.1088/1361-6501/ab393c – ident: e_1_2_8_11_2 doi: 10.1007/978-3-319-67443-8_14 – ident: e_1_2_8_8_2 doi: 10.1111/j.1467-8667.2012.00777.x – ident: e_1_2_8_7_2 doi: 10.1002/stc.369 – ident: e_1_2_8_13_2 doi: 10.1177/1475921716639587 – ident: e_1_2_8_26_2 doi: 10.1088/1361-6501/ab0793 – ident: e_1_2_8_27_2 doi: 10.1155/2019/9859281 – ident: e_1_2_8_15_2 doi: 10.1016/j.eswa.2010.06.093 – volume-title: Machine Learning‐Neural Networks, Genetic Algorithms and Fuzzy Systems year: 1995 ident: e_1_2_8_4_2 – ident: e_1_2_8_2_2 doi: 10.1007/BFb0030439 – ident: e_1_2_8_39_2 doi: 10.1002/stc.319 – ident: e_1_2_8_17_2 doi: 10.1016/j.asoc.2017.11.040 – ident: e_1_2_8_33_2 doi: 10.1177/1475921720934051 – ident: e_1_2_8_42_2 doi: 10.1080/15732479.2019.1599964 – ident: e_1_2_8_29_2 doi: 10.1155/2020/6380486 – ident: e_1_2_8_35_2 doi: 10.1016/j.inffus.2017.12.007 – ident: e_1_2_8_31_2 doi: 10.1177/1475921718799070 – ident: e_1_2_8_20_2 doi: 10.1002/tal.1777 – ident: e_1_2_8_43_2 doi: 10.1155/2015/102680 – ident: e_1_2_8_12_2 doi: 10.1007/s12205-017-1518-5 – ident: e_1_2_8_16_2 doi: 10.1155/2014/624949 – ident: e_1_2_8_30_2 doi: 10.1016/j.engstruct.2017.10.070 – ident: e_1_2_8_28_2 doi: 10.1088/1361-6501/ab79c8 – ident: e_1_2_8_40_2 doi: 10.1002/stc.1559 – ident: e_1_2_8_24_2 doi: 10.1111/mice.12313 |
| SSID | ssj0005364 |
| Score | 2.4446523 |
| Snippet | Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major... |
| SourceID | doaj proquest gale crossref hindawi |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Analysis Concrete Convolution Damage detection Data collection Deep learning Fault diagnosis Feature extraction Fuzzy logic Localization Machine learning Methods Neural networks Numerical models Prestressed concrete Principal components analysis Public health Structural damage Structural health monitoring Support vector machines Training Vibration Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlNNAeSpu0dNu0-JCSQzCxLcmSjnmSQwiFJpBDQIwepoHWu8Sb9O93RpaXhRJy6cFg5AHL85I-Mf6GsV3JmzrWnShD5XUpfBSl8wHvQte6ThinXeKZvVCXl_rmxnxfa_VFNWEjPfCouAMtXYeJPHri2hLBgwK8FCgnuXTcU_atlJnA1FTcwRNxFGKbqjRt00wl71IS2q8PWlx4JdUWri1GibN_lZk3fxIm_nP3T45OC8_ZW_Ym7xiLw3Gm79iL2G-x12s8gltsM9Vx-mGb3V73w8OC4n-IofiRyGGJWKM4gd-YOYqTuEy1V31xNZG3FkdAsjgE-DguiuN5_5gdkt77sJwT2WWI9-_Z9dnp1fF5mRsolF5W1bIEJYLGEIYWYQEI4VpEWxAU56g4FZXxtew6CY1xrcaBoL2GqvG4hawN1B3_wDb6eR8_ssJoh5EKaEtqmN4okGTIWPFgQCEmmrH9SZPWZ3ZxanLxyyaUIaUlvdus9xn7tpJejKwaT8gdkVFWMsSFnQbQQ2z2EPuch8zYHpnUUsTilDzkHw_ww4j7yh7SKSjHfaCYsd1s9WdmtTO5hM0RP9hGEhF-y7n59D8m_Zm9oleOhz07bAP9JX5hL_3j8m64_5qc_S-o5QDm priority: 102 providerName: Directory of Open Access Journals – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFD_odKCIH1fFq1PyMPFBytomadon2YfDBxnCNtiDEPJVHWh7vb2b_77npOndQNQHHwolCSUhv_ySc3ryOwDbkpdFKFqR-dzVmXBBZNZ5fPNtZVvR2NpGndmP6uioPjtrPiWH25DCKidOjETte0c-8p1SktB4xXnzbvEjo6xR9Hc1pdC4CbdIJaGIoXvHVyEePMpHoYWTZ01VllPgu5Rk8xc7FW6_kiIMr21JUbl_zc-bX8ky_nn-G1PH7efwwf92_CHcTwdPtjsi5RHcCN0M7l6TI5zBZgwHdcMM7o3ePDZeUnoMn0-74WJBtDIEz46j5izpdbAD8x0JiR2EVQzp6tjJpAnL9gy1xSKD1WHB9vvuMuGc-nGx6klD04flEzg9fH-y_yFLeRkyJ_N8lRklfI3MYCq0NowQtkIjznjFueVOBdW4QratNGVjqxoLfO1qk5cOT6ZFY4qWP4WNru_CM2BNbZEADEKE8rCXykjCR8i5b4xCU2sOb6ep0S6JllPujG86Gi9SappInSZyDq_XrRejWMcf2u3RLK_bkMR2LOiXX3RasbqWtsUTRHAk8ia8M8rgo4yykksc6BzeEEY0EQF2yZl0nwEHRpJaepecqxyPl2IO2wlG_-jV1gQgnYhk0Ffoef736hdwhz42eoe2YAOREF7CbXe5Oh-Wr-K6-AUOKBIL priority: 102 providerName: ProQuest |
| Title | Unsupervised Structural Damage Detection Technique Based on a Deep Convolutional Autoencoder |
| URI | https://dx.doi.org/10.1155/2021/6658575 https://www.proquest.com/docview/2520676339 https://doaj.org/article/85bfceeec25044dca7aca77a7b535b3c |
| Volume | 2021 |
| WOSCitedRecordID | wos000664870700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005364 issn: 1070-9622 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005364 issn: 1070-9622 databaseCode: M7S dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005364 issn: 1070-9622 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005364 issn: 1070-9622 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005364 issn: 1070-9622 databaseCode: 24P dateStart: 19930101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9stVAfRKvS03rkoeKDBJPsbnbz2OsHFfQ4-gEnCMt-BQuaO5pr_fed2ds7P4roQyCZTJLNzszOzGbyW4B9waoylC3PfeFUzl3guXUe93xb25Y3VtmIM_tBjsdqOm0mCSSpv_sJH70dpefluxo9JUYWG7ChBFVunZ1Of1ZysIgShYlMkTd1Va3q2_-49jfPEwH618Pw1hdKgL9f3RmQo5c5eQyPUniYHSzl-QTuhW4HHv4CGrgDW7Fo0_VP4fNl19_Mydj74LPziARLKBrZkfmGw0R2FBax0KrLLlZIrdnIEC-SDJ4O8-xw1t0m7aPn3ixmhGzpw_UzuDw5vjg8zdNqCbkTRbHIjeReob2aGnMAw7mtMbUyXjJmmZNBNq4UbStM1dhaIcErp0xROYwXy8aULXsOm92sC7uQNcqiWRoUHK2OXkkjSGqhYL4xEhOgAbxd9aR2CUqcVrT4qmNKIYSmftep3wfwes09X0Jo_IVvREJZ8xDwdSSgMuhkR1oJ26JfD46g17h3RhrcpJFWMIEvOoA3JFJN5olNcib9ZYAvRkBX-oCmPBkGfXwA-0nq_2jV3koldDLvXleCUO9rxpoX_3eXl7BNh8u5mz3YRI0Ir-CBu11c9ddDuD86Hk_OhnFCYEjlp-dIm7z_OPk0jKr-A0fQ8Xc |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFH_UalERP9aKq1Xn0OJBQpNMJpMcRNqupaXrInQLPQjjZGZiC5pdN9sW_yn_Rt-bJNuCqKcePATCzBBmkt-8r7z5PYB1wePIRWUS2NBkQWJcEhTG4p0t06JM8iIrPM_sUI5G2fFx_nEJfnZnYSitspOJXlDbiaEY-WYsiGg85Tx_N_0eUNUo-rvaldBoYHHgflygy1a_3R_g992I49334529oK0qEBgRhvNAy8RmiGudoq2sk6RI0QXRVnJecCOdzE0kylLoOC_SDBtsZjIdxgbtqijXUcnxuTfgJpoRce5TBQ8vU0q4p6tCjyoM8jSOu0R7ISjGEG2mqO4FZTReUYG-UsBCH6yckCd-cfqbZvDqbvfB__aiHsL91rBmW81OeARLrurB3St0iz1Y8emupu7BvSZayZpDWI_h01FVn01JbNbOskPPqUt8JGygv6HAZQM39ylrFRt3nLdsW9NYbNLY7aZsZ1Kdt_uY5nE2nxBHqHWzVTi6loU_geVqUrmnwPKsQAGncQtQnflYakH4dyG3uZboSvbhTQcFZVpSdqoN8lV550wIRcBRLXD6sLEYPW3ISP4wbptQtRhDFOK-YTL7olqJpDJRlGghOUMkdok1Wmq8pJaF4AIX2ofXhElFgg6nZHR7XgMXRpRhaouCxxzN56QP6y1s_zGrtQ6wqhWUtbpE67O_d7-C23vjD0M13B8dPIc79OAmErYGy4gK9wJumfP5aT176fckg8_Xje1fWnVuDw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UrRVFvKwVV6vmocUHCZtkMrk8iLRdF5fWZcEWWhDGucUWNLtuti3-NX-d5ySTbUHUpz74EAiTIczsfueaM98B2OQsCm1YxL4JdObH2sa-0gbvTJGoIs5Vpmqe2f10PM6OjvLJCvxsz8JQWWWrE2tFbaaacuT9iBPReMJY3i9cWcRkMHw7--5TByn60tq202ggsmd_XGD4Vr0ZDfC_3oqi4buD3fe-6zDgax4EC1-msckQ4zJBv1nGsUowHJEmZUwxndo01yEvCi6jXCUZDphMZzKINPpYYS7DguF7b8AquuRx1IHVyejD5PiywITV5FUYXwV-nkRRW3bPOWUcwn6Cxp9TfeMVg1j3DVhah7UTissvTn-zE7XxG97_n3-2B3DPudzediMjD2HFll24c4WIsQtrdSGsrrpwt8ljes3xrEfw6bCszmakUCtrvI812y4xlXgD-Q1VsTewi7qYrfQOWjZcb0fSXByS-NjOvN1pee4knNZxtpgSe6ix83U4vJaNP4ZOOS3tE_DyTKHqkygc1IE-SiUnybABM7lMMcjswesWFkI7unbqGvJV1GEb54JAJByIerC1nD1raEr-MG-HELacQ-Ti9cB0_kU4XSUyrgr0nawmervYaJlKvFKZKs44brQHrwifglQgLklLd5IDN0ZkYmKb0soMHeu4B5sOwv9Y1UYLXuFUaCUukfv0749fwi2EtNgfjfeewW16b5Mi24AOgsI-h5v6fHFazV84AfXg83WD-xc3onhF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Structural+Damage+Detection+Technique+Based+on+a+Deep+Convolutional+Autoencoder&rft.jtitle=Shock+and+vibration&rft.au=Rastin%2C+Zahra&rft.au=Ghodrati+Amiri%2C+Gholamreza&rft.au=Darvishan%2C+Ehsan&rft.date=2021&rft.pub=Hindawi&rft.issn=1070-9622&rft.eissn=1875-9203&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6658575&rft.externalDocID=10_1155_2021_6658575 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9622&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9622&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9622&client=summon |