Unsupervised Structural Damage Detection Technique Based on a Deep Convolutional Autoencoder

Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major focus of SHM studies in recent years has been on developing vibration-based damage detection algorithms and using machine learning, especially...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Shock and vibration Ročník 2021; číslo 1
Hlavní autoři: Rastin, Zahra, Ghodrati Amiri, Gholamreza, Darvishan, Ehsan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo Hindawi 2021
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:1070-9622, 1875-9203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major focus of SHM studies in recent years has been on developing vibration-based damage detection algorithms and using machine learning, especially deep learning-based approaches. Most of the deep learning-based methods proposed for damage detection in civil structures are based on supervised algorithms that require data from the healthy state and different damaged states of the structure in the training phase. As it is not usually possible to collect data from damaged states of a large civil structure, using such algorithms for these structures may be impractical. This paper proposes a new unsupervised deep learning-based method for structural damage detection based on convolutional autoencoders (CAEs). The main objective of the proposed method is to identify and quantify structural damage using a CAE network that employs raw vibration signals from the structure and is trained by the signals solely acquired from the healthy state of the structure. The CAE is chosen to take advantage of high feature extraction capability of convolution layers and at the same time use the advantages of an autoencoder as an unsupervised algorithm that does not need data from damaged states in the training phase. Applications on the two numerical models of IASC-ASCE benchmark structure and a grid structure located at the University of Central Florida, as well as the full-scale Tianjin Yonghe Bridge, prove the efficiency of the proposed algorithm in assessing the global health state of the structures and quantifying the damage.
AbstractList Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major focus of SHM studies in recent years has been on developing vibration‐based damage detection algorithms and using machine learning, especially deep learning‐based approaches. Most of the deep learning‐based methods proposed for damage detection in civil structures are based on supervised algorithms that require data from the healthy state and different damaged states of the structure in the training phase. As it is not usually possible to collect data from damaged states of a large civil structure, using such algorithms for these structures may be impractical. This paper proposes a new unsupervised deep learning‐based method for structural damage detection based on convolutional autoencoders (CAEs). The main objective of the proposed method is to identify and quantify structural damage using a CAE network that employs raw vibration signals from the structure and is trained by the signals solely acquired from the healthy state of the structure. The CAE is chosen to take advantage of high feature extraction capability of convolution layers and at the same time use the advantages of an autoencoder as an unsupervised algorithm that does not need data from damaged states in the training phase. Applications on the two numerical models of IASC‐ASCE benchmark structure and a grid structure located at the University of Central Florida, as well as the full‐scale Tianjin Yonghe Bridge, prove the efficiency of the proposed algorithm in assessing the global health state of the structures and quantifying the damage.
Audience Academic
Author Rastin, Zahra
Ghodrati Amiri, Gholamreza
Darvishan, Ehsan
Author_xml – sequence: 1
  givenname: Zahra
  orcidid: 0000-0001-9018-3960
  surname: Rastin
  fullname: Rastin, Zahra
  organization: Natural Disasters Prevention Research CenterSchool of Civil EngineeringIran University of Science & TechnologyTehranIraniust.ac.ir
– sequence: 2
  givenname: Gholamreza
  orcidid: 0000-0003-3244-0943
  surname: Ghodrati Amiri
  fullname: Ghodrati Amiri, Gholamreza
  organization: Natural Disasters Prevention Research CenterSchool of Civil EngineeringIran University of Science & TechnologyTehranIraniust.ac.ir
– sequence: 3
  givenname: Ehsan
  orcidid: 0000-0003-2010-8919
  surname: Darvishan
  fullname: Darvishan, Ehsan
  organization: Department of Civil EngineeringRoudehen BranchIslamic Azad UniversityRoudehenIranazad.ac.ir
BookMark eNp9Uctu1DAUtVCRaAs7PiASS0jrR2wny2EKbaVKLGh3SNaNfTP1KBMPtlPE3-OQigUSLCxbx-fh63NGTqYwISFvGb1gTMpLTjm7VEq2UssX5JS1WtYdp-KknKmmdac4f0XOUtpTSqVQzSn59jCl-YjxySd01dccZ5vnCGN1BQfYYXWFGW32Yaru0T5O_vuM1UdYuAWCco3HahumpzDOC6sIN3MOONngML4mLwcYE7553s_Jw-dP99ub-u7L9e12c1dbSWmuQTeu1YKCUlpC0_Sq4w04LUQvrEbdWSaHQQLvetUWwLW2Bcot5ZR1wAZxTm5XXxdgb47RHyD-NAG8-Q2EuDMQs7cjmlb2g0VEyyVtGmdBQ1kadC-FLHHF693qdYyhDJuy2Yc5lsGS4ZJTpZUQXWFdrKwdFFM_DSHHYmTB4cHb0srgC75pWaOEVLwpgg-rwMaQUsThzzMZNUt5ZinPPJdX6PwvuvUZlh8uOX78l-j9Knr0k4Mf_v8RvwC5u6ri
CitedBy_id crossref_primary_10_3389_fbuil_2022_816644
crossref_primary_10_1177_14759217241289575
crossref_primary_10_1155_2024_8846470
crossref_primary_10_3390_s23218824
crossref_primary_10_3390_s22072482
crossref_primary_10_1007_s13198_023_02020_0
crossref_primary_10_3390_s23136152
crossref_primary_10_1007_s10999_023_09692_3
crossref_primary_10_1177_14759217251369727
crossref_primary_10_1142_S175882512550019X
crossref_primary_10_1186_s43251_022_00078_7
crossref_primary_10_1080_17686733_2024_2432079
crossref_primary_10_1371_journal_pone_0324816
crossref_primary_10_1007_s42107_025_01511_8
crossref_primary_10_1007_s13349_025_01009_6
crossref_primary_10_1016_j_ymssp_2023_110789
crossref_primary_10_3390_app15168884
crossref_primary_10_3390_s23063290
crossref_primary_10_1007_s13349_022_00627_8
crossref_primary_10_3390_polym14193947
crossref_primary_10_1016_j_ymssp_2024_111653
crossref_primary_10_1142_S0219876225500203
crossref_primary_10_1177_14759217251348421
crossref_primary_10_1016_j_sna_2025_116886
crossref_primary_10_1007_s42417_023_01116_y
crossref_primary_10_1061__ASCE_SC_1943_5576_0000703
crossref_primary_10_1177_13694332241260133
crossref_primary_10_1002_zamm_202400481
crossref_primary_10_1111_mice_12943
crossref_primary_10_1016_j_autcon_2021_103973
crossref_primary_10_1109_ACCESS_2023_3291674
crossref_primary_10_3390_app15084098
crossref_primary_10_1002_nag_70063
crossref_primary_10_1177_87552930251327226
crossref_primary_10_3390_s24216825
crossref_primary_10_1080_17499518_2023_2251128
crossref_primary_10_3390_app13095683
crossref_primary_10_1177_14759217231216694
Cites_doi 10.1016/j.jsv.2004.01.003
10.1016/j.engstruct.2014.01.044
10.1504/ijsn.2019.100087
10.3390/ijgi5120222
10.1016/j.ymssp.2017.11.040
10.1007/s11831-014-9135-7
10.1145/3234150
10.1061/(asce)0733-9399(2004)130:1(3)
10.1016/j.measurement.2020.107811
10.1061/(asce)cp.1943-5487.0000820
10.1016/j.jsv.2016.10.043
10.1061/(asce)ae.1943-5568.0000205
10.1002/stc.116
10.3390/min9050270
10.1016/s0141-0296(00)00067-5
10.1177/1369433220921000
10.1061/(asce)cf.1943-5509.0001256
10.1088/1361-6501/ab393c
10.1007/978-3-319-67443-8_14
10.1111/j.1467-8667.2012.00777.x
10.1002/stc.369
10.1177/1475921716639587
10.1088/1361-6501/ab0793
10.1155/2019/9859281
10.1016/j.eswa.2010.06.093
10.1007/BFb0030439
10.1002/stc.319
10.1016/j.asoc.2017.11.040
10.1177/1475921720934051
10.1080/15732479.2019.1599964
10.1155/2020/6380486
10.1016/j.inffus.2017.12.007
10.1177/1475921718799070
10.1002/tal.1777
10.1155/2015/102680
10.1007/s12205-017-1518-5
10.1155/2014/624949
10.1016/j.engstruct.2017.10.070
10.1088/1361-6501/ab79c8
10.1002/stc.1559
10.1111/mice.12313
ContentType Journal Article
Copyright Copyright © 2021 Zahra Rastin et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Zahra Rastin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Zahra Rastin et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Zahra Rastin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1155/2021/6658575
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Public Health
EISSN 1875-9203
Editor Caddemi, Salvatore
Editor_xml – sequence: 1
  givenname: Salvatore
  surname: Caddemi
  fullname: Caddemi, Salvatore
ExternalDocumentID oai_doaj_org_article_85bfceeec25044dca7aca77a7b535b3c
A814635624
10_1155_2021_6658575
GroupedDBID 0R~
123
4.4
5VS
8FE
8FG
AAFWJ
AAJEY
ABDBF
ABJCF
ABJNI
ACGFS
ACIWK
ADBBV
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
DU5
EAD
EAP
EBS
EMK
EPL
EST
ESX
FRP
GROUPED_DOAJ
HCIFZ
HZ~
I-F
IAO
IOS
ITC
KQ8
L6V
M7S
O9-
OK1
PIMPY
PROAC
PTHSS
RHU
RHW
RHX
TUS
~02
1OB
24P
AAMMB
AAYXX
ABUBZ
ACCMX
ACPQW
ACUHS
ADMLS
AEFGJ
AFFHD
AFRHK
AGIAB
AGXDD
AIDQK
AIDYY
ALUQN
CAG
CITATION
COF
EJD
FEDTE
H13
IL9
IPNFZ
MET
MIO
PHGZM
PHGZT
PQGLB
RIG
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c500t-a74d8730a6675a44b6924ad733b3c7e79c15ff5a29b68c7ed8c8a02c02019a1f3
IEDL.DBID DOA
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664870700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9622
IngestDate Tue Oct 14 19:06:20 EDT 2025
Fri Jul 25 11:58:48 EDT 2025
Tue Nov 04 18:14:32 EST 2025
Sat Nov 29 02:36:14 EST 2025
Tue Nov 18 21:51:55 EST 2025
Sun Jun 02 18:54:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-a74d8730a6675a44b6924ad733b3c7e79c15ff5a29b68c7ed8c8a02c02019a1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9018-3960
0000-0003-2010-8919
0000-0003-3244-0943
OpenAccessLink https://doaj.org/article/85bfceeec25044dca7aca77a7b535b3c
PQID 2520676339
PQPubID 2037353
ParticipantIDs doaj_primary_oai_doaj_org_article_85bfceeec25044dca7aca77a7b535b3c
proquest_journals_2520676339
gale_infotracacademiconefile_A814635624
crossref_primary_10_1155_2021_6658575
crossref_citationtrail_10_1155_2021_6658575
hindawi_primary_10_1155_2021_6658575
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Cairo
PublicationPlace_xml – name: Cairo
PublicationTitle Shock and vibration
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
Adeli H. (e_1_2_8_4_2) 1995
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – ident: e_1_2_8_6_2
  doi: 10.1016/j.jsv.2004.01.003
– ident: e_1_2_8_9_2
  doi: 10.1016/j.engstruct.2014.01.044
– ident: e_1_2_8_19_2
  doi: 10.1504/ijsn.2019.100087
– ident: e_1_2_8_41_2
  doi: 10.3390/ijgi5120222
– ident: e_1_2_8_18_2
  doi: 10.1016/j.ymssp.2017.11.040
– ident: e_1_2_8_3_2
  doi: 10.1007/s11831-014-9135-7
– ident: e_1_2_8_22_2
  doi: 10.1145/3234150
– ident: e_1_2_8_37_2
  doi: 10.1061/(asce)0733-9399(2004)130:1(3)
– ident: e_1_2_8_34_2
  doi: 10.1016/j.measurement.2020.107811
– ident: e_1_2_8_38_2
– ident: e_1_2_8_25_2
  doi: 10.1061/(asce)cp.1943-5487.0000820
– ident: e_1_2_8_23_2
  doi: 10.1016/j.jsv.2016.10.043
– ident: e_1_2_8_10_2
  doi: 10.1061/(asce)ae.1943-5568.0000205
– ident: e_1_2_8_14_2
  doi: 10.1002/stc.116
– ident: e_1_2_8_36_2
  doi: 10.3390/min9050270
– ident: e_1_2_8_5_2
  doi: 10.1016/s0141-0296(00)00067-5
– ident: e_1_2_8_21_2
  doi: 10.1177/1369433220921000
– ident: e_1_2_8_1_2
  doi: 10.1061/(asce)cf.1943-5509.0001256
– ident: e_1_2_8_32_2
  doi: 10.1088/1361-6501/ab393c
– ident: e_1_2_8_11_2
  doi: 10.1007/978-3-319-67443-8_14
– ident: e_1_2_8_8_2
  doi: 10.1111/j.1467-8667.2012.00777.x
– ident: e_1_2_8_7_2
  doi: 10.1002/stc.369
– ident: e_1_2_8_13_2
  doi: 10.1177/1475921716639587
– ident: e_1_2_8_26_2
  doi: 10.1088/1361-6501/ab0793
– ident: e_1_2_8_27_2
  doi: 10.1155/2019/9859281
– ident: e_1_2_8_15_2
  doi: 10.1016/j.eswa.2010.06.093
– volume-title: Machine Learning‐Neural Networks, Genetic Algorithms and Fuzzy Systems
  year: 1995
  ident: e_1_2_8_4_2
– ident: e_1_2_8_2_2
  doi: 10.1007/BFb0030439
– ident: e_1_2_8_39_2
  doi: 10.1002/stc.319
– ident: e_1_2_8_17_2
  doi: 10.1016/j.asoc.2017.11.040
– ident: e_1_2_8_33_2
  doi: 10.1177/1475921720934051
– ident: e_1_2_8_42_2
  doi: 10.1080/15732479.2019.1599964
– ident: e_1_2_8_29_2
  doi: 10.1155/2020/6380486
– ident: e_1_2_8_35_2
  doi: 10.1016/j.inffus.2017.12.007
– ident: e_1_2_8_31_2
  doi: 10.1177/1475921718799070
– ident: e_1_2_8_20_2
  doi: 10.1002/tal.1777
– ident: e_1_2_8_43_2
  doi: 10.1155/2015/102680
– ident: e_1_2_8_12_2
  doi: 10.1007/s12205-017-1518-5
– ident: e_1_2_8_16_2
  doi: 10.1155/2014/624949
– ident: e_1_2_8_30_2
  doi: 10.1016/j.engstruct.2017.10.070
– ident: e_1_2_8_28_2
  doi: 10.1088/1361-6501/ab79c8
– ident: e_1_2_8_40_2
  doi: 10.1002/stc.1559
– ident: e_1_2_8_24_2
  doi: 10.1111/mice.12313
SSID ssj0005364
Score 2.4447327
Snippet Structural health monitoring (SHM) is a hot research topic with the main purpose of damage detection in a structure and assessing its health state. The major...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Analysis
Concrete
Convolution
Damage detection
Data collection
Deep learning
Fault diagnosis
Feature extraction
Fuzzy logic
Localization
Machine learning
Methods
Neural networks
Numerical models
Prestressed concrete
Principal components analysis
Public health
Structural damage
Structural health monitoring
Support vector machines
Training
Vibration
Wavelet transforms
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RikrtoYJCxbYF5VDEAUUkcWwnxz6oekAVghbtAckaO7ZaqWRXzbb8fWa83i2lQnDIIc4ksefhmXEmnwH2gyu0bSXmTnQir4MtcuuszNtQO18Fr23cM_LbJ3121ozH7ecEkjQ8_oRP3o7T8_KDIk9JkcUKrDSSK7e-nI7vKzlERImiRKbIW1VVi_r2P-594HkiQP9yGl675AT459WjCTl6mZNnsJnCw-xgLs_n8MT3W7DxG2jgFqzFok03vIDvF_1wO2VjH3yXfY1IsIyikR3jD5omsmM_i4VWfXa-QGrNDpFpqQnpsp9mR5P-Lmkfv_d2NmFky87fvISLk4_nR6d52i0hd7IoZjnqumvIXlFRDoB1bRWlVthpIaxw2uvWlTIEiVVrVUMNXeMaLCpH8WLZYhnENqz2k96_gsxXTmGHTRAUntReY-kEKk3RXbBalX4E7xecNC5BifOOFtcmphRSGua7SXwfwdsl9XQOofEXukMWypKGga9jAymDSXZkGmkD-XXvGHqt7hxqpEOjtlJIGugI3rFIDZsndclh-suABsZAV-aAlzwFBX31CPaT1P_Rq72FSphk3oOpJKPeKyHanf97yi6s8-l87WYPVkkj_Gt46u5mV8PNm6jOvwANv-0h
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BoVIR4rEUsVBQDkUcUNQkjuPkhPqg4oAqpLaoByRr7NilEiTLZlv-PjOOd1sJAQcOuTijyNaMP89Mxt8AbHubKdNITK1oRVp6k6XGGpk2vrSu8E6Z0DPy80d1dFSfnTWfYsJtiGWVS0wMQN32lnPkO4VkovFKiObd7EfKXaP472psoXEb7jBLQh5K946vSzxEoI-iCCdLm6ooloXvUnLMn-9UdPxKrjC8cSQF5v4VPq9_5cj458VvSB2On8OH_zvxR_AgOp7J7mgpj-GW6yZw7wYd4QTWQzmoHSZwf8zmJeMlpSfw5bQbLmcMK4Nrk-PAOct8HckBfidASg7cIpR0dcnJkhM22UOWpSGk126W7PfdVbRznsflomcOzdbNN-H08P3J_oc09mVIrcyyRYqqbGtCBqwo2sCyNBUFcdgqIYywyqnG5tJ7iUVjqpoG2trWmBWWPNO8wdyLp7DW9Z17BokrbIUt1l6QI1Q6hbkVWCnyI71RVe6m8HapGm0jaTn3zvimQ_AipWZF6qjIKbxeSc9Gso4_yO2xllcyTLEdBvr5uY47VtfSePIgnGWSt7K1qJAehcpIIWmhU3jDNqIZCGhKFuN9BloYU2rpXU6uCnIvyylsRzP6x6y2lgakI5AM-tp6nv_99QvY4I-N2aEtWCNLcC_hrr1aXAzzV2Ff_AIQvhLu
  priority: 102
  providerName: ProQuest
Title Unsupervised Structural Damage Detection Technique Based on a Deep Convolutional Autoencoder
URI https://dx.doi.org/10.1155/2021/6658575
https://www.proquest.com/docview/2520676339
https://doaj.org/article/85bfceeec25044dca7aca77a7b535b3c
Volume 2021
WOSCitedRecordID wos000664870700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: DOA
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: M7S
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1070-9622
  databaseCode: 24P
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kWrAPolXxaj3yUPFBQpNsNpt97PWDCnoc_ZAThGV2s4sFzR3Ntf77zmw2x4FIX3zIQyYDmczOzM4sk98wduBtJo0SkFre8LT0JkuNNSJVvrSu8E6aMDPy62c5ndbzuZptjPqinrAeHrhX3GEtjMdA7ixhbZWNBQl4SZBGcGG4peibSTUUU0NzBw_AUVjbZKmqimJoeReCqv38sMKNV1Bv4cZmFDD715F5-wfVxL9v_orRYeM5e86exYwxOeolfcEeuXaX7WzgCO6y7dDHabuX7Pt1290tyf871ySXARyWgDWSE_iFkSM5cavQe9UmVwN4azIB4kUS4GO3TI4X7X00SHrv3WpBYJeNu33Frs9Or47P0zhAIbUiy1YpyLKp0YWhwrIAytJUWG1BIzlHxUknlc2F9wIKZaoaCU1ta8gKiylkriD3_DXbahete8MSV9gKGqg9x4yldBJyy6GSmPB5I6vcjdjHQZPaRnRxGnLxU4cqQwhNetdR7yP2fs297FE1_sE3oUVZ8xAWdiCghehoIfohCxmxD7SkmjwWRbIQfzzADyPsK31Ep6Ac88ByxA7iqj8g1f5gEjp6fKcLQUD4Fedq738I_ZY9pVf2hz37bAvtxb1jT-z96qa7HbPHk9Pp7GIcjH5M_aqXSJt9-jL7hncX5_M_KkoHIA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VQgUI8VhALBTIoRUHFDWx4zg5INR2qVp1WSF1i3qoZGzHgUqQXTbbVvwpfiMzTrKthIBTDxxysS3LTj7PK-NvANZKG0mTCx1aXvAwKU0UGmtEmJeJdax00viakR-HcjTKjo7yD0vws7sLQ2mVnUz0grqYWIqRbzBBROMp5_nb6feQqkbR39WuhEYDi3334xxdtvrN3gC_7zpjO-_G27thW1UgtCKK5qGWSZEhrnWKtrJOEpOiC6ILybnhVjqZ21iUpdAsN2mGDUVmMx0xi3ZVnOu45DjvNbiOZgTLfargwUVKCfd0VehRRWGeMtYl2gtBMYZ4I0V1Lyij8ZIK9JUCFvpg5Qt54ucnv2kGr-527v1vL-o-3G0N62CzOQkPYMlVPbh9iW6xBys-3dXWPbjTRCuD5hLWQzg-rOrTKYnN2hXBgefUJT6SYKC_ocANBm7uU9aqYNxx3gZbmsZik8ZuNw22J9VZe45pHafzCXGEFm72CA6vZOOPYbmaVO4JBI7ZVBc6KzkaeomTOrZcpxLt5NLINHZ9eN1BQdmWlJ1qg3xV3jkTQhFwVAucPqwvRk8bMpI_jNsiVC3GEIW4b5jMPqtWIqlMmBItJGeJxC4prJYaH6mlEVzgRvvwijCpSNDhkqxu72vgxogyTG1S8Jij-Zz0Ya2F7T9WtdoBVrWCslYXaH369-6XcHN3_H6ohnuj_WdwiyZuImGrsIyocM_hhj2bn9SzF_5MBvDpqrH9Cw5HbvI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHUMgxEcBURiQwyYOKGoSx3FyQNO2UlFtVJXY0JCQjOPYMAnS0nSb-Nf46_Ze4nSTEHDagUMutmXZyc_vK8-_B7BhdSDyjCtfs4L5sc0DP9c59zMbaxNZI_K6ZuSHfTEep0dH2WQFfrV3YSitspWJtaAupppi5P2IE9F4wljWty4tYjIYbs1--FRBiv60tuU0GojsmZ9n6L5Vr0cD_NabUTR8c7D71ncVBnzNg2DhKxEXKWJcJWg3qzjOE3RHVCEYy5kWRmQ65NZyFWV5kmJDkepUBZFGGyvMVGgZznsNVtEkj6MOrE5G7yYfLxJMWE1ehf5V4GdJFLVp95xTxCHsJ6j8OeU3XlKIdd2ApXZY-0p--dnxb3qiVn7Du__za7sHd5zJ7W03Z-Q-rJiyC7cuETF2Ya1OhNVVF243cUyvuZ71AD4dltXJjARqZQrvfc22S0wl3kB9R1HsDcyiTmYrvYOWDdfbUTQWmxR2m5m3Oy1P3QmndZwspsQeWpj5Qzi8ko0_gk45Lc1j8EykE1Wo1DI0AWMjVKiZSgRa0DYXSWh68KqFhdSOrp2qhnyTtdvGuSQQSQeiHmwuR88ampI_jNshhC3HELl43TCdf5FOVsmU5xZtJ6OJ3i4utBIKH6FEzhnHjfbgJeFTkgjEJWnlbnLgxohMTG5TWJmhYR33YMNB-B-rWm_BK50IreQFcp_8vfsF3EBIy_3ReO8p3KR5mxDZOnQQFOYZXNeni-Nq_twdUA8-XzW4zwH1bHko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Structural+Damage+Detection+Technique+Based+on+a+Deep+Convolutional+Autoencoder&rft.jtitle=Shock+and+vibration&rft.au=Rastin%2C+Zahra&rft.au=Ghodrati+Amiri%2C+Gholamreza&rft.au=Darvishan%2C+Ehsan&rft.date=2021&rft.issn=1070-9622&rft.eissn=1875-9203&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1155%2F2021%2F6658575&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_6658575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9622&client=summon