Quantum speedup of Monte Carlo methods
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm wh...
Uloženo v:
| Vydáno v: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Ročník 471; číslo 2181; s. 20150301 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
08.09.2015
|
| Témata: | |
| ISSN: | 1364-5021 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. |
|---|---|
| AbstractList | Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. |
| Author | Montanaro, Ashley |
| Author_xml | – sequence: 1 givenname: Ashley surname: Montanaro fullname: Montanaro, Ashley organization: Department of Computer Science , University of Bristol , Woodland Road, Bristol, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26528079$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1jztLxEAURqdYcR_aWkoqsUm89yYzmSllcVVYEUHrMK_gSpKJmUzhv3fBtTrN4Xx8a7YYwuAZu0IoEJS8m-KoCwLkBZSAC7bCUlQ5B8IlW8f4BQCKy_qcLUlwklCrFbt5S3qYU5_F0XuXxiy02UsYZp9t9dSFrPfzZ3Dxgp21uov-8sQN-9g9vG-f8v3r4_P2fp9bDjDnqpLSViCVsyBaMMcNbitO3JBTQuhWGaPqCslgCYDWtajJONQCW6VJ0Ibd_nXHKXwnH-emP0Tru04PPqTYoCQhSl6X9VG9PqnJ9N4143To9fTT_H-jX8wZTpk |
| CitedBy_id | crossref_primary_10_1017_dce_2022_36 crossref_primary_10_1103_PhysRevResearch_7_013231 crossref_primary_10_1364_PRJ_493865 crossref_primary_10_1088_2058_9565_abb003 crossref_primary_10_1021_prechem_5c00025 crossref_primary_10_1103_PhysRevA_110_052434 crossref_primary_10_1186_s40854_025_00751_6 crossref_primary_10_3390_math13111828 crossref_primary_10_1016_j_jedc_2023_104680 crossref_primary_10_1103_PhysRevResearch_5_033114 crossref_primary_10_1002_qute_202500084 crossref_primary_10_1002_qute_202400126 crossref_primary_10_1007_s11128_022_03809_x crossref_primary_10_1088_1367_2630_ac19da crossref_primary_10_1016_j_epsr_2025_111409 crossref_primary_10_1038_s41598_025_96817_7 crossref_primary_10_1145_3748666 crossref_primary_10_1103_PhysRevA_111_012434 crossref_primary_10_1103_PhysRevResearch_1_033063 crossref_primary_10_3390_ma17061436 crossref_primary_10_1007_s11128_024_04373_2 crossref_primary_10_1088_1367_2630_ac7f26 crossref_primary_10_1103_z9hk_f37h crossref_primary_10_1088_2058_9565_ac47f0 crossref_primary_10_1007_s10614_025_10894_4 crossref_primary_10_1007_s11128_022_03453_5 crossref_primary_10_1088_2399_6528_acd2a4 crossref_primary_10_1145_3689731 crossref_primary_10_1016_j_compfluid_2023_106148 crossref_primary_10_1080_09537325_2021_1921137 crossref_primary_10_1103_PhysRevResearch_5_043220 crossref_primary_10_1109_TC_2020_3038063 crossref_primary_10_1080_10618600_2023_2195890 crossref_primary_10_1103_PhysRevResearch_5_033059 crossref_primary_10_1109_TCAD_2023_3297972 crossref_primary_10_1109_ACCESS_2024_3383313 crossref_primary_10_1109_TITS_2021_3132161 crossref_primary_10_1007_s11128_023_03844_2 crossref_primary_10_1103_PhysRevApplied_16_044057 crossref_primary_10_1007_s42484_023_00129_w crossref_primary_10_1007_s11128_021_03215_9 crossref_primary_10_1007_s11128_019_2565_2 crossref_primary_10_1088_2632_2153_ad1007 crossref_primary_10_1103_PhysRevA_106_032402 crossref_primary_10_1109_TQE_2024_3476929 crossref_primary_10_1214_25_BA1546 crossref_primary_10_1140_epjqt_s40507_024_00253_x crossref_primary_10_1103_PhysRevResearch_4_033150 crossref_primary_10_1088_2058_9565_aca821 crossref_primary_10_1063_5_0066059 crossref_primary_10_1063_5_0173591 crossref_primary_10_1088_1402_4896_ab0254 crossref_primary_10_1109_TIT_2024_3393756 crossref_primary_10_1080_13647830_2019_1626025 crossref_primary_10_1103_PhysRevResearch_6_013235 crossref_primary_10_1109_TIT_2018_2883306 crossref_primary_10_1109_TIT_2022_3203985 crossref_primary_10_1007_s42967_023_00336_z crossref_primary_10_1088_1367_2630_ac5003 crossref_primary_10_1103_PhysRevA_111_042431 crossref_primary_10_1103_PRXQuantum_2_010103 crossref_primary_10_1109_TQE_2023_3293562 crossref_primary_10_1038_s41598_023_35625_3 crossref_primary_10_1080_01605682_2022_2115415 crossref_primary_10_1038_s41534_025_01093_y crossref_primary_10_1103_PhysRevResearch_4_033034 crossref_primary_10_1103_dwdv_89bj crossref_primary_10_1007_s10915_025_02970_6 crossref_primary_10_1145_3588579 crossref_primary_10_1109_TQE_2021_3138453 crossref_primary_10_1103_PhysRevA_105_022415 crossref_primary_10_1088_2058_9565_ada6f8 crossref_primary_10_1016_j_future_2025_107975 crossref_primary_10_1109_TQE_2021_3128643 crossref_primary_10_22331_q_2025_05_28_1755 crossref_primary_10_1145_3636516 crossref_primary_10_1038_s42005_023_01202_3 crossref_primary_10_1088_2058_9565_ac546a crossref_primary_10_3390_nano12020243 crossref_primary_10_1007_s42484_023_00119_y crossref_primary_10_1103_PRXQuantum_1_020312 crossref_primary_10_1021_acs_jctc_4c01657 crossref_primary_10_1038_s41534_019_0130_6 crossref_primary_10_1038_s41598_024_68838_1 crossref_primary_10_1088_2058_9565_adf771 crossref_primary_10_1103_PhysRevA_110_062423 crossref_primary_10_1109_TPWRS_2022_3204393 crossref_primary_10_1038_s41534_022_00555_x crossref_primary_10_1103_PhysRevResearch_2_043102 crossref_primary_10_1002_qute_202500029 crossref_primary_10_22331_q_2025_09_11_1856 crossref_primary_10_1103_PhysRevD_111_116001 crossref_primary_10_1103_PhysRevA_111_042608 crossref_primary_10_1109_TQE_2024_3425969 crossref_primary_10_1145_3626570_3626596 crossref_primary_10_1103_PhysRevResearch_6_013200 crossref_primary_10_3390_risks10120221 crossref_primary_10_1109_TIT_2024_3382037 crossref_primary_10_1103_PhysRevD_111_054509 crossref_primary_10_1088_2058_9565_ada08c crossref_primary_10_1007_s11831_022_09732_9 crossref_primary_10_1109_TIT_2024_3399014 crossref_primary_10_1103_PhysRevApplied_15_034027 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1098/rspa.2015.0301 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| ExternalDocumentID | 26528079 |
| Genre | Journal Article |
| GroupedDBID | 18M 4.4 5VS AACGO AANCE AAWIL ABBHK ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACHIC ACIPV ACIWK ACMTB ACNCT ACQIA ACTMH ADBBV ADODI ADQXQ ADULT AEUPB AEXZC AFVYC AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALMYZ ALRMG AQVQM BTFSW DCCCD DQDLB DSRWC EBS ECEWR EJD FRP H13 HQ6 IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JST K-O KQ8 MRS MV1 NPM NSAHA RNS RRY SA0 TR2 V1E W8F XSW YF5 ~02 7X8 |
| ID | FETCH-LOGICAL-c500t-9488c4089dc06f0b8075c4525b2d966af9bb97412b13001cdf1a2bd1a61f9a262 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 217 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363482200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1364-5021 |
| IngestDate | Thu Jul 10 17:03:44 EDT 2025 Thu Apr 03 07:05:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2181 |
| Keywords | quantum algorithms Monte Carlo methods partition functions |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c500t-9488c4089dc06f0b8075c4525b2d966af9bb97412b13001cdf1a2bd1a61f9a262 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://royalsocietypublishing.org/doi/full/10.1098/rspa.2015.0301 |
| PMID | 26528079 |
| PQID | 1826635737 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1826635737 pubmed_primary_26528079 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-08 |
| PublicationDateYYYYMMDD | 2015-09-08 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
| PublicationTitleAlternate | Proc Math Phys Eng Sci |
| PublicationYear | 2015 |
| References | 22215584 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):754-9 20366078 - Phys Rev Lett. 2009 Nov 27;103(22):220502 18851429 - Phys Rev Lett. 2008 Sep 26;101(13):130504 21368829 - Nature. 2011 Mar 3;471(7336):87-90 |
| References_xml | – reference: 20366078 - Phys Rev Lett. 2009 Nov 27;103(22):220502 – reference: 21368829 - Nature. 2011 Mar 3;471(7336):87-90 – reference: 22215584 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):754-9 – reference: 18851429 - Phys Rev Lett. 2008 Sep 26;101(13):130504 |
| SSID | ssj0009587 |
| Score | 2.6191459 |
| Snippet | Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 20150301 |
| Title | Quantum speedup of Monte Carlo methods |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26528079 https://www.proquest.com/docview/1826635737 |
| Volume | 471 |
| WOSCitedRecordID | wos000363482200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UetCD2vqqL1YQ0cPabJ6bk0ixeLClgkpvZR9ZEDSJTePvdyaJ1YsgeMklZAkzOzvz7QzfR8iZDBLIaoFgnu8mzDfGYVIC5hHWD1FGWgWVWsPzfTQaickkHjcXbkUzVvl1JlYHtck03pH3sA5G7jQvus7fGapGYXe1kdBYJi0PShkc6Yom4gfpbiWQx73QZwEkswVpo-gBaETWIR5cISb4vbys0sxg878_uEU2mgKT3tQ7ok2WkrRD1ocLdtaiQ9pNQBf0omGdvtwm5w8lGLl8o0UOCa3MaWbpEKmraF_OXjNaS00XO-RpcPvYv2ONiALTgePMWQwRqn1HxEY7oXUUkg9rbGYq1wDUkTZWCjAFdxU2trg2lktXGS5DbmPphu4uWUmzNNkn1FgFC6kIMAn4F95qR0EFwxNrAWeKqEtOvywzhU2KnQeZJllZTL9t0yV7tXmnec2mMXXDABl54oM_fH1I1tBn1YyXOCItCyGaHJNV_TF_KWYnlffhORoPPwEltLbC |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+speedup+of+Monte+Carlo+methods&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Montanaro%2C+Ashley&rft.date=2015-09-08&rft.issn=1364-5021&rft.volume=471&rft.issue=2181&rft.spage=20150301&rft_id=info:doi/10.1098%2Frspa.2015.0301&rft_id=info%3Apmid%2F26528079&rft_id=info%3Apmid%2F26528079&rft.externalDocID=26528079 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon |