Quantum speedup of Monte Carlo methods

Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm wh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Ročník 471; číslo 2181; s. 20150301
Hlavní autor: Montanaro, Ashley
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 08.09.2015
Témata:
ISSN:1364-5021
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
AbstractList Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Author Montanaro, Ashley
Author_xml – sequence: 1
  givenname: Ashley
  surname: Montanaro
  fullname: Montanaro, Ashley
  organization: Department of Computer Science , University of Bristol , Woodland Road, Bristol, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26528079$$D View this record in MEDLINE/PubMed
BookMark eNo1jztLxEAURqdYcR_aWkoqsUm89yYzmSllcVVYEUHrMK_gSpKJmUzhv3fBtTrN4Xx8a7YYwuAZu0IoEJS8m-KoCwLkBZSAC7bCUlQ5B8IlW8f4BQCKy_qcLUlwklCrFbt5S3qYU5_F0XuXxiy02UsYZp9t9dSFrPfzZ3Dxgp21uov-8sQN-9g9vG-f8v3r4_P2fp9bDjDnqpLSViCVsyBaMMcNbitO3JBTQuhWGaPqCslgCYDWtajJONQCW6VJ0Ibd_nXHKXwnH-emP0Tru04PPqTYoCQhSl6X9VG9PqnJ9N4143To9fTT_H-jX8wZTpk
CitedBy_id crossref_primary_10_1017_dce_2022_36
crossref_primary_10_1103_PhysRevResearch_7_013231
crossref_primary_10_1364_PRJ_493865
crossref_primary_10_1088_2058_9565_abb003
crossref_primary_10_1021_prechem_5c00025
crossref_primary_10_1103_PhysRevA_110_052434
crossref_primary_10_1186_s40854_025_00751_6
crossref_primary_10_3390_math13111828
crossref_primary_10_1016_j_jedc_2023_104680
crossref_primary_10_1103_PhysRevResearch_5_033114
crossref_primary_10_1002_qute_202500084
crossref_primary_10_1002_qute_202400126
crossref_primary_10_1007_s11128_022_03809_x
crossref_primary_10_1088_1367_2630_ac19da
crossref_primary_10_1016_j_epsr_2025_111409
crossref_primary_10_1038_s41598_025_96817_7
crossref_primary_10_1145_3748666
crossref_primary_10_1103_PhysRevA_111_012434
crossref_primary_10_1103_PhysRevResearch_1_033063
crossref_primary_10_3390_ma17061436
crossref_primary_10_1007_s11128_024_04373_2
crossref_primary_10_1088_1367_2630_ac7f26
crossref_primary_10_1103_z9hk_f37h
crossref_primary_10_1088_2058_9565_ac47f0
crossref_primary_10_1007_s10614_025_10894_4
crossref_primary_10_1007_s11128_022_03453_5
crossref_primary_10_1088_2399_6528_acd2a4
crossref_primary_10_1145_3689731
crossref_primary_10_1016_j_compfluid_2023_106148
crossref_primary_10_1080_09537325_2021_1921137
crossref_primary_10_1103_PhysRevResearch_5_043220
crossref_primary_10_1109_TC_2020_3038063
crossref_primary_10_1080_10618600_2023_2195890
crossref_primary_10_1103_PhysRevResearch_5_033059
crossref_primary_10_1109_TCAD_2023_3297972
crossref_primary_10_1109_ACCESS_2024_3383313
crossref_primary_10_1109_TITS_2021_3132161
crossref_primary_10_1007_s11128_023_03844_2
crossref_primary_10_1103_PhysRevApplied_16_044057
crossref_primary_10_1007_s42484_023_00129_w
crossref_primary_10_1007_s11128_021_03215_9
crossref_primary_10_1007_s11128_019_2565_2
crossref_primary_10_1088_2632_2153_ad1007
crossref_primary_10_1103_PhysRevA_106_032402
crossref_primary_10_1109_TQE_2024_3476929
crossref_primary_10_1214_25_BA1546
crossref_primary_10_1140_epjqt_s40507_024_00253_x
crossref_primary_10_1103_PhysRevResearch_4_033150
crossref_primary_10_1088_2058_9565_aca821
crossref_primary_10_1063_5_0066059
crossref_primary_10_1063_5_0173591
crossref_primary_10_1088_1402_4896_ab0254
crossref_primary_10_1109_TIT_2024_3393756
crossref_primary_10_1080_13647830_2019_1626025
crossref_primary_10_1103_PhysRevResearch_6_013235
crossref_primary_10_1109_TIT_2018_2883306
crossref_primary_10_1109_TIT_2022_3203985
crossref_primary_10_1007_s42967_023_00336_z
crossref_primary_10_1088_1367_2630_ac5003
crossref_primary_10_1103_PhysRevA_111_042431
crossref_primary_10_1103_PRXQuantum_2_010103
crossref_primary_10_1109_TQE_2023_3293562
crossref_primary_10_1038_s41598_023_35625_3
crossref_primary_10_1080_01605682_2022_2115415
crossref_primary_10_1038_s41534_025_01093_y
crossref_primary_10_1103_PhysRevResearch_4_033034
crossref_primary_10_1103_dwdv_89bj
crossref_primary_10_1007_s10915_025_02970_6
crossref_primary_10_1145_3588579
crossref_primary_10_1109_TQE_2021_3138453
crossref_primary_10_1103_PhysRevA_105_022415
crossref_primary_10_1088_2058_9565_ada6f8
crossref_primary_10_1016_j_future_2025_107975
crossref_primary_10_1109_TQE_2021_3128643
crossref_primary_10_22331_q_2025_05_28_1755
crossref_primary_10_1145_3636516
crossref_primary_10_1038_s42005_023_01202_3
crossref_primary_10_1088_2058_9565_ac546a
crossref_primary_10_3390_nano12020243
crossref_primary_10_1007_s42484_023_00119_y
crossref_primary_10_1103_PRXQuantum_1_020312
crossref_primary_10_1021_acs_jctc_4c01657
crossref_primary_10_1038_s41534_019_0130_6
crossref_primary_10_1038_s41598_024_68838_1
crossref_primary_10_1088_2058_9565_adf771
crossref_primary_10_1103_PhysRevA_110_062423
crossref_primary_10_1109_TPWRS_2022_3204393
crossref_primary_10_1038_s41534_022_00555_x
crossref_primary_10_1103_PhysRevResearch_2_043102
crossref_primary_10_1002_qute_202500029
crossref_primary_10_22331_q_2025_09_11_1856
crossref_primary_10_1103_PhysRevD_111_116001
crossref_primary_10_1103_PhysRevA_111_042608
crossref_primary_10_1109_TQE_2024_3425969
crossref_primary_10_1145_3626570_3626596
crossref_primary_10_1103_PhysRevResearch_6_013200
crossref_primary_10_3390_risks10120221
crossref_primary_10_1109_TIT_2024_3382037
crossref_primary_10_1103_PhysRevD_111_054509
crossref_primary_10_1088_2058_9565_ada08c
crossref_primary_10_1007_s11831_022_09732_9
crossref_primary_10_1109_TIT_2024_3399014
crossref_primary_10_1103_PhysRevApplied_15_034027
ContentType Journal Article
DBID NPM
7X8
DOI 10.1098/rspa.2015.0301
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 26528079
Genre Journal Article
GroupedDBID 18M
4.4
5VS
AACGO
AANCE
AAWIL
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACHIC
ACIPV
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
ADODI
ADQXQ
ADULT
AEUPB
AEXZC
AFVYC
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
ALRMG
AQVQM
BTFSW
DCCCD
DQDLB
DSRWC
EBS
ECEWR
EJD
FRP
H13
HQ6
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JST
K-O
KQ8
MRS
MV1
NPM
NSAHA
RNS
RRY
SA0
TR2
V1E
W8F
XSW
YF5
~02
7X8
ID FETCH-LOGICAL-c500t-9488c4089dc06f0b8075c4525b2d966af9bb97412b13001cdf1a2bd1a61f9a262
IEDL.DBID 7X8
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363482200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-5021
IngestDate Thu Jul 10 17:03:44 EDT 2025
Thu Apr 03 07:05:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2181
Keywords quantum algorithms
Monte Carlo methods
partition functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-9488c4089dc06f0b8075c4525b2d966af9bb97412b13001cdf1a2bd1a61f9a262
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://royalsocietypublishing.org/doi/full/10.1098/rspa.2015.0301
PMID 26528079
PQID 1826635737
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1826635737
pubmed_primary_26528079
PublicationCentury 2000
PublicationDate 2015-09-08
PublicationDateYYYYMMDD 2015-09-08
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-08
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
PublicationTitleAlternate Proc Math Phys Eng Sci
PublicationYear 2015
References 22215584 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):754-9
20366078 - Phys Rev Lett. 2009 Nov 27;103(22):220502
18851429 - Phys Rev Lett. 2008 Sep 26;101(13):130504
21368829 - Nature. 2011 Mar 3;471(7336):87-90
References_xml – reference: 20366078 - Phys Rev Lett. 2009 Nov 27;103(22):220502
– reference: 21368829 - Nature. 2011 Mar 3;471(7336):87-90
– reference: 22215584 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):754-9
– reference: 18851429 - Phys Rev Lett. 2008 Sep 26;101(13):130504
SSID ssj0009587
Score 2.6190925
Snippet Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 20150301
Title Quantum speedup of Monte Carlo methods
URI https://www.ncbi.nlm.nih.gov/pubmed/26528079
https://www.proquest.com/docview/1826635737
Volume 471
WOSCitedRecordID wos000363482200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UetCD2vqqLyKI6GFtNpvXnkSKxYMtFRR6K_vIgqBJbBp_vztJWr0IgpfcFsLMzs7jG74P4EIIqXXEDIn8JCB-mHDCjXRJIATiXixhtacfo9Eonkz4uBm4Fc1a5eJNrB5qnSmckfewDkbuNBbd5h8EVaMQXW0kNFahxWwpgytd0ST-QbpbCeRRFvoksMlsSdoY92zTiKxDNLjBnuD38rJKM4Pt__7gDmw1BaZzV9-INqwkaQc2h0t21qID7SagC-eqYZ2-3oXLp9IauXx3itwmtDJ3MuMMkbrK6YvZW-bUUtPFHrwM7p_7D6QRUSAqcN054TZCle_GXCs3NK5E8mGFYKb0tG11hOFS2p6CehKBLaq0ocKTmoqQGi680NuHtTRLk0NwKBOSidhIJV1fa8YFNcpXxjAcnNCgC-cLy0ztJUXkQaRJVhbTb9t04aA27zSv2TSmXhggIw8_-sPpY9hAn1U7XvEJtIwN0eQU1tXn_LWYnVXet9_RePgFUnK4GA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+speedup+of+Monte+Carlo+methods&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Montanaro%2C+Ashley&rft.date=2015-09-08&rft.issn=1364-5021&rft.volume=471&rft.issue=2181&rft.spage=20150301&rft_id=info:doi/10.1098%2Frspa.2015.0301&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon