The myotomal diwanka (lh3) glycosyltransferase and type XVIII collagen are critical for motor growth cone migration

The initial migration of motor growth cones from the spinal cord into the periphery requires extrinsic cues, yet their identities are largely unknown. In zebrafish diwanka mutants, motor growth cones are motile but fail to pioneer into the periphery. Here, we report on the positional cloning of diwa...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Vol. 50; no. 5; p. 683
Main Authors: Schneider, Valerie A, Granato, Michael
Format: Journal Article
Language:English
Published: United States 01.06.2006
Subjects:
ISSN:0896-6273
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The initial migration of motor growth cones from the spinal cord into the periphery requires extrinsic cues, yet their identities are largely unknown. In zebrafish diwanka mutants, motor growth cones are motile but fail to pioneer into the periphery. Here, we report on the positional cloning of diwanka and show that it encodes LH3, a myotomally expressed multifunctional enzyme with lysyl hydroxylase and glycosyltransferase domains. Cloning, expression analysis, and ubiquitous overexpression of other LH family members reveals that only diwanka (lh3) possesses a critical role in growth cone migration. We show that this unique role depends critically on the LH3 glycosyltransferase domain, and provide compelling evidence that diwanka (lh3) acts through myotomal type XVIII collagen, a ligand for neural-receptor protein tyrosine phosphatases that guide motor axons. Together, our results provide the first genetic evidence that glycosyltransferase modifications of the ECM play a critical role during vertebrate motor axon migration.
AbstractList The initial migration of motor growth cones from the spinal cord into the periphery requires extrinsic cues, yet their identities are largely unknown. In zebrafish diwanka mutants, motor growth cones are motile but fail to pioneer into the periphery. Here, we report on the positional cloning of diwanka and show that it encodes LH3, a myotomally expressed multifunctional enzyme with lysyl hydroxylase and glycosyltransferase domains. Cloning, expression analysis, and ubiquitous overexpression of other LH family members reveals that only diwanka (lh3) possesses a critical role in growth cone migration. We show that this unique role depends critically on the LH3 glycosyltransferase domain, and provide compelling evidence that diwanka (lh3) acts through myotomal type XVIII collagen, a ligand for neural-receptor protein tyrosine phosphatases that guide motor axons. Together, our results provide the first genetic evidence that glycosyltransferase modifications of the ECM play a critical role during vertebrate motor axon migration.
The initial migration of motor growth cones from the spinal cord into the periphery requires extrinsic cues, yet their identities are largely unknown. In zebrafish diwanka mutants, motor growth cones are motile but fail to pioneer into the periphery. Here, we report on the positional cloning of diwanka and show that it encodes LH3, a myotomally expressed multifunctional enzyme with lysyl hydroxylase and glycosyltransferase domains. Cloning, expression analysis, and ubiquitous overexpression of other LH family members reveals that only diwanka (lh3) possesses a critical role in growth cone migration. We show that this unique role depends critically on the LH3 glycosyltransferase domain, and provide compelling evidence that diwanka (lh3) acts through myotomal type XVIII collagen, a ligand for neural-receptor protein tyrosine phosphatases that guide motor axons. Together, our results provide the first genetic evidence that glycosyltransferase modifications of the ECM play a critical role during vertebrate motor axon migration.The initial migration of motor growth cones from the spinal cord into the periphery requires extrinsic cues, yet their identities are largely unknown. In zebrafish diwanka mutants, motor growth cones are motile but fail to pioneer into the periphery. Here, we report on the positional cloning of diwanka and show that it encodes LH3, a myotomally expressed multifunctional enzyme with lysyl hydroxylase and glycosyltransferase domains. Cloning, expression analysis, and ubiquitous overexpression of other LH family members reveals that only diwanka (lh3) possesses a critical role in growth cone migration. We show that this unique role depends critically on the LH3 glycosyltransferase domain, and provide compelling evidence that diwanka (lh3) acts through myotomal type XVIII collagen, a ligand for neural-receptor protein tyrosine phosphatases that guide motor axons. Together, our results provide the first genetic evidence that glycosyltransferase modifications of the ECM play a critical role during vertebrate motor axon migration.
Author Schneider, Valerie A
Granato, Michael
Author_xml – sequence: 1
  givenname: Valerie A
  surname: Schneider
  fullname: Schneider, Valerie A
  organization: Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
– sequence: 2
  givenname: Michael
  surname: Granato
  fullname: Granato, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16731508$$D View this record in MEDLINE/PubMed
BookMark eNo1kDtPwzAYRT0U0Qf8A4Q8IRgSbCd20hFVPCJVYimILXLsL2lKYhfbUZV_TyTKdJejc6_uEs2MNYDQDSUxJVQ8HmIDg7MmZoSImKQxYekMLUi-FpFgWTJHS-8PhNCUr-klmlORJZSTfIH8bg-4H22wveywbk_SfEt83-2TB9x0o7J-7IKTxtfgpAcsjcZhPAL--iyKAivbdbIBg6UDrFwbWjVpautwPykdbpw9hf2EmamlbZwMrTVX6KKWnYfrc67Qx8vzbvMWbd9fi83TNlKckBDlIq-SWlNaKy0qkdJMgxKac5ZWwPWaU1BUUb5OeKJzQmVeKc6FZmld11lSsRW6-_Menf0ZwIeyb72CabEBO_hS5IQxytkE3p7BoepBl0fX9tKN5f9N7BfFKW1d
CitedBy_id crossref_primary_10_1016_j_neuron_2015_10_004
crossref_primary_10_1111_j_1440_169X_2009_01111_x
crossref_primary_10_2353_ajpath_2009_090210
crossref_primary_10_3390_cells12212540
crossref_primary_10_1242_dev_071555
crossref_primary_10_1523_JNEUROSCI_1322_14_2014
crossref_primary_10_1016_j_cell_2007_02_035
crossref_primary_10_1038_s42003_021_01982_w
crossref_primary_10_1242_dev_02559
crossref_primary_10_1016_j_ydbio_2009_10_028
crossref_primary_10_1016_j_cell_2008_04_037
crossref_primary_10_1016_j_ceb_2021_04_003
crossref_primary_10_1016_j_matbio_2006_08_260
crossref_primary_10_1242_dev_201304
crossref_primary_10_3389_fcell_2024_1457506
crossref_primary_10_1016_j_brainresbull_2019_03_004
crossref_primary_10_1523_JNEUROSCI_5179_11_2012
crossref_primary_10_1016_j_taap_2015_01_022
crossref_primary_10_1111_j_1460_9568_2008_06418_x
crossref_primary_10_1089_zeb_2006_3_387
crossref_primary_10_1016_j_matbio_2010_11_001
crossref_primary_10_1016_j_neuron_2008_12_025
crossref_primary_10_1016_j_scitotenv_2023_168221
crossref_primary_10_1016_j_ydbio_2017_08_011
crossref_primary_10_1186_1749_8104_3_24
crossref_primary_10_1242_dev_007559
crossref_primary_10_1523_JNEUROSCI_2179_09_2009
crossref_primary_10_1016_j_matbio_2010_10_002
crossref_primary_10_3389_fcell_2025_1563403
crossref_primary_10_1016_j_gep_2010_09_006
crossref_primary_10_1038_s41467_017_00143_0
crossref_primary_10_1002_jcp_21036
crossref_primary_10_1074_jbc_M109_038190
crossref_primary_10_1073_pnas_2314588121
crossref_primary_10_1038_cddis_2016_456
crossref_primary_10_3389_fnmol_2022_848257
crossref_primary_10_1016_j_matbio_2016_10_002
crossref_primary_10_1042_BST20200767
crossref_primary_10_1186_1756_0500_5_410
crossref_primary_10_1523_JNEUROSCI_2847_15_2016
crossref_primary_10_1002_dneu_20931
crossref_primary_10_1016_j_ydbio_2019_10_020
crossref_primary_10_1016_j_devcel_2012_12_005
crossref_primary_10_1038_s41467_025_61973_x
crossref_primary_10_1016_j_matbio_2006_09_007
crossref_primary_10_1016_j_ydbio_2014_12_022
crossref_primary_10_1371_journal_pgen_1006440
crossref_primary_10_1016_j_ceb_2008_05_003
crossref_primary_10_1080_10409238_2016_1269716
crossref_primary_10_3390_ijms12128539
crossref_primary_10_1016_j_ydbio_2008_11_007
crossref_primary_10_1242_dev_072256
crossref_primary_10_1016_j_cub_2012_01_040
crossref_primary_10_1242_dev_051730
crossref_primary_10_1523_JNEUROSCI_3694_12_2013
crossref_primary_10_1016_j_semcdb_2018_10_002
crossref_primary_10_1371_journal_pone_0054609
crossref_primary_10_1242_dev_004267
crossref_primary_10_1016_j_isci_2025_113395
crossref_primary_10_1093_toxsci_kfv184
crossref_primary_10_1007_s10439_011_0505_0
crossref_primary_10_3389_fnmol_2016_00050
crossref_primary_10_1016_j_ajhg_2015_04_010
crossref_primary_10_1126_science_aaw8231
crossref_primary_10_1242_dev_083055
crossref_primary_10_1016_j_devcel_2020_05_009
crossref_primary_10_1111_j_1582_4934_2008_00286_x
crossref_primary_10_1242_dev_067306
crossref_primary_10_1371_journal_pgen_1005587
crossref_primary_10_1016_j_neulet_2020_134822
crossref_primary_10_1155_2013_240570
crossref_primary_10_1002_dneu_20617
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2006.04.024
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
ExternalDocumentID 16731508
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD037975
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
123
1RT
1~5
26-
2WC
3O-
4.4
457
4G.
53G
5RE
62-
7-5
8FE
8FH
AAEDT
AAEDW
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGCQF
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M3Z
M41
MVM
N9A
NPM
O-L
O9-
OK1
OZT
P2P
P6G
PQQKQ
PROAC
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
X7M
7X8
AAFWJ
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
EFKBS
ID FETCH-LOGICAL-c500t-868b3fd11fcd6b6417dec6d5524be5d951ec1c159353d801a8bc556d24fff73b2
IEDL.DBID 7X8
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238165000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0896-6273
IngestDate Tue Oct 21 14:10:00 EDT 2025
Fri May 30 11:01:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-868b3fd11fcd6b6417dec6d5524be5d951ec1c159353d801a8bc556d24fff73b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.neuron.2006.04.024
PMID 16731508
PQID 68022152
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68022152
pubmed_primary_16731508
PublicationCentury 2000
PublicationDate 2006-06-01
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2006
SSID ssj0014591
Score 2.1637077
Snippet The initial migration of motor growth cones from the spinal cord into the periphery requires extrinsic cues, yet their identities are largely unknown. In...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 683
SubjectTerms Animals
Cell Movement - physiology
Cloning, Molecular
Collagen Type XVIII - metabolism
Collagen Type XVIII - physiology
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - enzymology
Extracellular Matrix - enzymology
Gene Expression Regulation, Developmental
Gene Expression Regulation, Enzymologic
Glycosyltransferases - chemistry
Glycosyltransferases - genetics
Glycosyltransferases - physiology
Growth Cones - enzymology
Growth Cones - ultrastructure
HeLa Cells
Humans
Microscopy, Electron
Molecular Sequence Data
Motor Neurons - enzymology
Motor Neurons - ultrastructure
Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase - chemistry
Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase - genetics
Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase - physiology
Protein Structure, Tertiary
Zebrafish
Zebrafish Proteins - chemistry
Zebrafish Proteins - genetics
Zebrafish Proteins - physiology
Title The myotomal diwanka (lh3) glycosyltransferase and type XVIII collagen are critical for motor growth cone migration
URI https://www.ncbi.nlm.nih.gov/pubmed/16731508
https://www.proquest.com/docview/68022152
Volume 50
WOSCitedRecordID wos000238165000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLkhcSulS6At8QAgOgSR-xJGQqqpqxUqw6gGqva3i13bVbVI2gSr_vmMnESfUQy8-2XLk-eL5PE-A9ypPY2uVi1DgKmI6NpEUCgVSZNIwkyse6nRffs-mUzmb5Rcb8HXIhfFhlcOdGC5qU2lvI_8ifE4oKpvj29-R7xnlfat9A40nMKJIZDyms9k_HwLjXb88mYtIoJYeEudCdFeoFln2zgj2OfYZ7_-jmEHVnL943Eduw1ZPMclJh4mXsGHLHRiflPi8vmnJBxKCPoM1fQeedb0o2zHUCBhy01Y4CReb5V1RXhfk4-qKfiKLVaurul01geXaNWo-UpSGePstmV1OJhMS8IRgJMXaEt33TyDIiAliAccFPvebK5xW4i7LRYe7V_Dr_Ozn6beo78gQaR7HDYpRKupMkjhthBIsyYzVwnCeMmW5QbZmdaKRIVFODeq-QirNuTApc85lVKW7sFniRm-ASEE1FXGuqaJMKVPwLJeKqVwrqVPn9uDdcMRzRLx3YxSlrf7U8-GQ9-B1J6X5bVeYY56IjPr69vsPrj2A550txZtTDmHk8F-3R_BU_22W9fptABKO04sf98ek1Og
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+myotomal+diwanka+%28lh3%29+glycosyltransferase+and+type+XVIII+collagen+are+critical+for+motor+growth+cone+migration&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Schneider%2C+Valerie+A&rft.au=Granato%2C+Michael&rft.date=2006-06-01&rft.issn=0896-6273&rft.volume=50&rft.issue=5&rft.spage=683&rft_id=info:doi/10.1016%2Fj.neuron.2006.04.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon