Brain–Computer Interface for EEG-Based Authentication: Advancements and Practical Implications

Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 25; číslo 16; s. 4946
Hlavní autoři: Alahaideb, Lamia, Al-Nafjan, Abeer, Aljumah, Hessah, Aldayel, Mashael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 10.08.2025
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions.
AbstractList Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions.
Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions.Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions.
Audience Academic
Author Aljumah, Hessah
Aldayel, Mashael
Alahaideb, Lamia
Al-Nafjan, Abeer
AuthorAffiliation 1 Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
2 Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
AuthorAffiliation_xml – name: 1 Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
– name: 2 Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
Author_xml – sequence: 1
  givenname: Lamia
  surname: Alahaideb
  fullname: Alahaideb, Lamia
– sequence: 2
  givenname: Abeer
  orcidid: 0000-0003-4186-9805
  surname: Al-Nafjan
  fullname: Al-Nafjan, Abeer
– sequence: 3
  givenname: Hessah
  surname: Aljumah
  fullname: Aljumah, Hessah
– sequence: 4
  givenname: Mashael
  orcidid: 0000-0001-6054-4534
  surname: Aldayel
  fullname: Aldayel, Mashael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40871810$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhi1URNvAghdAI7GhixTf5mI2VRqFEqkSLGBtzviSOpqxgz1TiR3vwBv2SXBICA1ClmzrnM-_z2-fc3TigzcIvST4kjGB3yZakooLXj1BZ4RTPm0oxSeP9qfoPKU1xpQx1jxDpxw3NWkIPkNfryM4__Dj5zz0m3EwsVj6PFtQprAhFovFzfQaktHFbBzujB-cgsEF_66Y6XvwyvQ5lgrwuvgUQW3TXbHsN92eS8_RUwtdMi_26wR9eb_4PP8wvf14s5zPbqeKCzFMdVtC9mCMbRrGRfbDWsssr1lVVbjM9bBcvAbNdFsLUwoAyysqNNC6VVqzCVrudHWAtdxE10P8LgM4-TsQ4kpCzOV1RtJWCEUEp62qeak4lLTWnLGWtI1tqyprXe20NmPbG62yxQjdkehxxrs7uQr3ktD8HSw7mKA3e4UYvo0mDbJ3SZmuA2_CmCSjvGKYYcwz-vofdB3G6PNbbSmOK0JJ-ZdaQXbgvA35YrUVlbOmZA0RhIpMXf6HykOb3qncNNbl-NGBV4-dHiz-aZAMXOwAFUNK0dgDQrDcNp88NB_7BWCAylI
Cites_doi 10.1109/ACCESS.2021.3093391
10.1109/ACCESS.2025.3539502
10.18280/ts.400106
10.4015/S1016237220500258
10.3390/s23094239
10.1109/ACCESS.2021.3135805
10.1007/s11042-019-07905-6
10.3390/bs13090765
10.1109/PST58708.2023.10320167
10.1109/ACCESS.2021.3092840
10.1109/TIM.2023.3326234
10.3390/axioms12010074
10.1016/j.cose.2023.103198
10.1016/j.cose.2023.103520
10.1109/ACCESS.2023.3268551
10.1109/TDSC.2021.3060775
10.1109/JIOT.2020.3044726
10.1109/TCE.2021.3055419
10.1109/ACCESS.2024.3517639
10.1101/2023.02.16.23284115
10.37936/ecti-eec.2022202.246906
10.3390/brainsci11060698
10.3390/s18020335
10.1088/1741-2560/11/4/046018
10.1109/TSMC.2017.2756673
10.20944/preprints202407.2370.v2
10.1109/TIFS.2017.2763124
10.3390/s22093331
10.1007/s00521-020-05247-1
10.1049/iet-bmt.2019.0158
10.1007/s11571-021-09664-3
10.1186/s12938-018-0483-7
10.3390/electronics14061108
10.1109/TNSRE.2016.2627556
10.1080/09720529.2020.1859798
10.1002/spy2.345
10.1109/THMS.2023.3267898
10.1109/TAFFC.2021.3133443
10.1016/j.neucom.2018.01.074
10.1109/IWW-BCI.2016.7457443
10.3390/s19050987
10.14311/NNW.2022.32.016
10.1080/08839514.2021.1981660
10.1109/ACCESS.2023.3253026
10.1109/BigData50022.2020.9377861
10.3390/brainsci12081072
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25164946
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2b99c1942bc745c4a527d433b1b8fb66
PMC12390388
A853819129
40871810
10_3390_s25164946
Genre Systematic Review
Journal Article
GrantInformation_xml – fundername: The Research, Development, and Innovation Authority (RDIA) - Kingdom of Saudi Arabia
  grantid: (13461-imamu-2023-IMIU-R-3-1-HW-).
– fundername: The Research, Development, and Innovation Authority (RDIA)—Kingdom of Saudi Arabia
  grantid: 13461-imamu-2023-IMIU-R-3-1-HW-
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c499t-db5a164eef883495163bf3f47366605fac3233dad3db79e59aaf4629da27bcdd3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001558436700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:32:14 EST 2025
Tue Nov 04 02:05:34 EST 2025
Thu Oct 02 21:36:43 EDT 2025
Sat Nov 01 15:15:55 EDT 2025
Tue Nov 11 10:47:18 EST 2025
Tue Nov 04 18:11:48 EST 2025
Wed Sep 10 03:23:39 EDT 2025
Sat Nov 29 07:17:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords brain–computer interface (BCI)
electroencephalography (EEG)
event-related potentials (ERP)
convolutional neural networks (CNN)
authentication
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-db5a164eef883495163bf3f47366605fac3233dad3db79e59aaf4629da27bcdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-6054-4534
0000-0003-4186-9805
OpenAccessLink https://doaj.org/article/2b99c1942bc745c4a527d433b1b8fb66
PMID 40871810
PQID 3244061215
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2b99c1942bc745c4a527d433b1b8fb66
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12390388
proquest_miscellaneous_3246303004
proquest_journals_3244061215
gale_infotracmisc_A853819129
gale_infotracacademiconefile_A853819129
pubmed_primary_40871810
crossref_primary_10_3390_s25164946
PublicationCentury 2000
PublicationDate 2025-08-10
PublicationDateYYYYMMDD 2025-08-10
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Rathi (ref_20) 2021; 15
Brunner (ref_48) 2008; 16
Shams (ref_55) 2022; 20
Farik (ref_1) 2016; 5
Rahman (ref_15) 2021; 9
Debie (ref_28) 2022; 19
Kasim (ref_35) 2021; 35
ref_58
ref_57
ref_10
ref_54
ref_53
ref_51
Vadher (ref_31) 2024; 7
Monsy (ref_34) 2020; 9
Alyasseri (ref_12) 2022; 10
Rakshe (ref_25) 2025; 13
Alomari (ref_24) 2022; 2022
Sharma (ref_42) 2025; 13
ref_29
Sooriyaarachchi (ref_17) 2021; 8
ref_26
Das (ref_38) 2019; 78
Fidas (ref_3) 2023; 11
Kang (ref_5) 2018; 287
(ref_39) 2023; 40
Habrich (ref_45) 2021; 21
Wang (ref_52) 2017; 25
Bak (ref_11) 2023; 11
ref_36
Buzzelli (ref_27) 2023; 53
ref_33
Elshenaway (ref_37) 2021; 9
ref_30
Seha (ref_21) 2020; 15
Xu (ref_41) 2023; 14
TajDini (ref_8) 2023; 129
Kaongoen (ref_22) 2020; 50
Albermany (ref_13) 2022; 25
ref_47
ref_46
Nakamura (ref_4) 2018; 13
ref_44
ref_43
ref_40
Fallahi (ref_14) 2023; 26
Yousefi (ref_18) 2023; 135
Shrivastava (ref_19) 2018; 10
Hairston (ref_56) 2014; 11
ref_2
Cheng (ref_16) 2023; 72
Behera (ref_23) 2021; 67
ref_49
Yousefi (ref_9) 2021; 33
Cui (ref_32) 2022; 32
ref_7
ref_6
References_xml – volume: 9
  start-page: 100294
  year: 2021
  ident: ref_37
  article-title: Adaptive Thresholds of EEG Brain Signals for IoT Devices Authentication
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093391
– volume: 13
  start-page: 27537
  year: 2025
  ident: ref_25
  article-title: Fine-Tuning EEG Channel Utilization for Emotionally Stimulated Biometric Authentication
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3539502
– ident: ref_49
– volume: 16
  start-page: 34
  year: 2008
  ident: ref_48
  article-title: BCI Competition 2008—Graz Data Set A
  publication-title: Graz Univ. Technol.
– ident: ref_51
– volume: 40
  start-page: 65
  year: 2023
  ident: ref_39
  article-title: DM-EEGID: EEG-Based Biometric Authentication System Using Hybrid Attention-Based LSTM and MLP Algorithm
  publication-title: Trait. Du Signal
  doi: 10.18280/ts.400106
– ident: ref_44
  doi: 10.4015/S1016237220500258
– ident: ref_10
  doi: 10.3390/s23094239
– volume: 10
  start-page: 10500
  year: 2022
  ident: ref_12
  article-title: EEG Channel Selection for Person Identification Using Binary Grey Wolf Optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3135805
– volume: 78
  start-page: 28157
  year: 2019
  ident: ref_38
  article-title: A Spatio-Temporal Model for EEG-Based Person Identification Multimedia Tools and Applications
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-07905-6
– ident: ref_30
  doi: 10.3390/bs13090765
– ident: ref_29
  doi: 10.1109/PST58708.2023.10320167
– volume: 9
  start-page: 94625
  year: 2021
  ident: ref_15
  article-title: Multimodal EEG and Keystroke Dynamics Based Biometric System Using Machine Learning Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3092840
– volume: 72
  start-page: 1
  year: 2023
  ident: ref_16
  article-title: Identification With Your Mind: A Hybrid BCI-Based Authentication Approach for Anti-Shoulder-Surfing Attacks Using EEG and Eye Movement Data
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3326234
– ident: ref_33
  doi: 10.3390/axioms12010074
– volume: 129
  start-page: 103198
  year: 2023
  ident: ref_8
  article-title: Brainwave-Based Authentication Using Features Fusion
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103198
– volume: 135
  start-page: 103520
  year: 2023
  ident: ref_18
  article-title: A Robust Brain Pattern for Brain-Based Authentication Methods Using Deep Breath
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103520
– volume: 10
  start-page: 52
  year: 2018
  ident: ref_19
  article-title: On the Potential of EEG for Biometrics: Combining Power Spectral Density with a Statistical Test
  publication-title: Int. J. Biom.
– volume: 11
  start-page: 41303
  year: 2023
  ident: ref_11
  article-title: User Biometric Identification Methodology via EEG-Based Motor Imagery Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3268551
– volume: 19
  start-page: 2488
  year: 2022
  ident: ref_28
  article-title: Session Invariant EEG Signatures Using Elicitation Protocol Fusion and Convolutional Neural Network
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2021.3060775
– volume: 8
  start-page: 8304
  year: 2021
  ident: ref_17
  article-title: MusicID: A Brainwave-Based User Authentication System for Internet of Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3044726
– volume: 67
  start-page: 58
  year: 2021
  ident: ref_23
  article-title: A Robust Biometric Authentication System for Handheld Electronic Devices by Intelligently Combining 3D Finger Motions and Cerebral Responses
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2021.3055419
– volume: 13
  start-page: 2141
  year: 2025
  ident: ref_42
  article-title: A Spatiotemporal Feature Extraction Technique Using Superlet-CNN Fusion for Improved Motor Imagery Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3517639
– ident: ref_57
  doi: 10.1101/2023.02.16.23284115
– volume: 20
  start-page: 225
  year: 2022
  ident: ref_55
  article-title: EEG-Based Biometric Authentication Using Machine Learning: A Comprehensive Survey
  publication-title: ECTI Trans. Electr. Eng. Electron. Commun.
  doi: 10.37936/ecti-eec.2022202.246906
– ident: ref_58
  doi: 10.3390/brainsci11060698
– ident: ref_36
  doi: 10.3390/s18020335
– volume: 11
  start-page: 046018
  year: 2014
  ident: ref_56
  article-title: Usability of Four Commercially-Oriented EEG Systems
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/4/046018
– volume: 2022
  start-page: 5974634
  year: 2022
  ident: ref_24
  article-title: EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications
  publication-title: Comput. Intell. Neurosci.
– volume: 50
  start-page: 1178
  year: 2020
  ident: ref_22
  article-title: Two-Factor Authentication System Using P300 Response to a Sequence of Human Photographs
  publication-title: IEEE Trans. Syst. Man. Cybern. Syst.
  doi: 10.1109/TSMC.2017.2756673
– ident: ref_54
  doi: 10.20944/preprints202407.2370.v2
– volume: 13
  start-page: 648
  year: 2018
  ident: ref_4
  article-title: In-Ear EEG Biometrics for Feasible and Readily Collectable Real-World Person Authentication
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2763124
– ident: ref_7
  doi: 10.3390/s22093331
– volume: 33
  start-page: 4283
  year: 2021
  ident: ref_9
  article-title: SaS-BCI: A New Strategy to Predict Image Memorability and Use Mental Imagery as a Brain-Based Biometric Authentication
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05247-1
– volume: 9
  start-page: 251
  year: 2020
  ident: ref_34
  article-title: EEG-Based Biometric Identification Using Frequency-Weighted Power Feature
  publication-title: IET Biom.
  doi: 10.1049/iet-bmt.2019.0158
– ident: ref_47
– volume: 15
  start-page: 805
  year: 2021
  ident: ref_20
  article-title: A Novel Approach for Designing Authentication System Using a Picture Based P300 Speller Cognitive Neurodynamics
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-021-09664-3
– ident: ref_6
  doi: 10.1186/s12938-018-0483-7
– ident: ref_26
  doi: 10.3390/electronics14061108
– volume: 25
  start-page: 1746
  year: 2017
  ident: ref_52
  article-title: A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2627556
– volume: 25
  start-page: 2405
  year: 2022
  ident: ref_13
  article-title: EEG Authentication System Using Fuzzy Vault Scheme
  publication-title: J. Discret. Math. Sci. Cryptogr.
  doi: 10.1080/09720529.2020.1859798
– volume: 7
  start-page: e345
  year: 2024
  ident: ref_31
  article-title: EEG-Based Biometric Authentication System Using Convolutional Neural Network for Military Applications
  publication-title: Secur. Priv.
  doi: 10.1002/spy2.345
– volume: 53
  start-page: 529
  year: 2023
  ident: ref_27
  article-title: Unified Framework for Identity and Imagined Action Recognition from EEG Patterns
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2023.3267898
– volume: 26
  start-page: 1
  year: 2023
  ident: ref_14
  article-title: Performance and Usability Evaluation of Brainwave Authentication Techniques with Consumer Devices
  publication-title: ACM Trans. Priv. Secur.
– volume: 14
  start-page: 864
  year: 2023
  ident: ref_41
  article-title: E-Key: An EEG-Based Biometric Authentication and Driving Fatigue Detection System
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2021.3133443
– volume: 15
  start-page: 3901
  year: 2020
  ident: ref_21
  article-title: EEG-Based Human Recognition Using Steady-State AEPs and Subject-Unique Spatial Filters
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 287
  start-page: 93
  year: 2018
  ident: ref_5
  article-title: Electroencephalographic Feature Evaluation for Improving Personal Authentication Performance
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.074
– ident: ref_50
– ident: ref_2
  doi: 10.1109/IWW-BCI.2016.7457443
– volume: 5
  start-page: 246
  year: 2016
  ident: ref_1
  article-title: A Review of Authentication Methods
  publication-title: Int. J. Sci. Technol. Res.
– ident: ref_46
– ident: ref_53
  doi: 10.3390/s19050987
– volume: 32
  start-page: 269
  year: 2022
  ident: ref_32
  article-title: EEG AUTHENTICATION BASED on DEEP LEARNING of TRIPLET LOSS
  publication-title: Neural Netw. World
  doi: 10.14311/NNW.2022.32.016
– volume: 35
  start-page: 1407
  year: 2021
  ident: ref_35
  article-title: Biometric Authentication from Photic Stimulated EEG Records
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2021.1981660
– volume: 11
  start-page: 22917
  year: 2023
  ident: ref_3
  article-title: A Review of EEG-Based User Authentication: Trends and Future Research Directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3253026
– volume: 21
  start-page: 55
  year: 2021
  ident: ref_45
  article-title: Inexpensive Brainwave Authentication: New Techniques and Insights on User Acceptance
  publication-title: USENIX Secur. Symp.
– ident: ref_43
  doi: 10.1109/BigData50022.2020.9377861
– ident: ref_40
  doi: 10.3390/brainsci12081072
SSID ssj0023338
Score 2.4567297
SecondaryResourceType review_article
Snippet Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4946
SubjectTerms Accuracy
Adaptive technology
Algorithms
Analysis
authentication
Biometric identification
Biometrics
Brain research
Brain-Computer Interfaces
brain–computer interface (BCI)
Classification
Computer Security
convolutional neural networks (CNN)
Data encryption chips
Datasets
Electroencephalography
electroencephalography (EEG)
Electroencephalography - methods
event-related potentials (ERP)
Fourier transforms
Humans
Literature reviews
Machine learning
Neural Networks, Computer
Neurophysiology
Rapid serial visual presentation
Safety and security measures
Security management
Security systems
Signal processing
Support Vector Machine
Support vector machines
Systematic review
Systems and data security software
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BlgMcKP8ECjIIiVPUrO04MRe0i7bAZVUhkHoL_i29ZMvuljPvwBv2STqTZNNESFy4xk7iZGY8800m3wC8CV4VMWYhNTEzqTQqpqXnLg1uqoyShmeybTZRLJflyYk-7hJum66scrcnNhu1XznKkR-i4yffgx7q_fnPlLpG0dfVroXGTdgjpjI5gb35Ynn8pYdcAhFYyyckENwfbtCbK6kp2h14oYas_-8teeCTxvWSAwd0tP-_S78Hd7vQk81aXbkPN0L9AO4MCAkfwvc5dYy4_P1n1-yBNRnDaFxgGN2yxeJjOke_5xml1qjQqM34vWOztpag-WGOmdqzlggJNYB9HhStP4JvR4uvHz6lXQ-G1CEW2qbe5gZfWQixLAWCKQzfbBRRFgJxT5bj_QW-ZG888TTrkGtjolRce8ML67wXj2FSr-rwFJiysXDcCW29kEWhS1_mhczzGJTSkfsEXu9kUp23VBsVQhQSXNULLoE5SaufQOzYzYHV-rTqjK3iVmuH6sCtwxs4aXJeeCmEndoyWoUXeUuyrsiGUaDOdL8i4DqJDauaYQxDQJbrBA5GM9H23Hh4J_Gqs_1NdS3uBF71w3Qm1bPVYXXRzFEYPOAOlcCTVrn6R5IZgthymiVQjtRu9MzjkfrsR8MMjmGIJnqfZ_9e13O4zamNccPsewCT7foivIBb7tf2bLN-2dnQFWoqKTk
  priority: 102
  providerName: ProQuest
Title Brain–Computer Interface for EEG-Based Authentication: Advancements and Practical Implications
URI https://www.ncbi.nlm.nih.gov/pubmed/40871810
https://www.proquest.com/docview/3244061215
https://www.proquest.com/docview/3246303004
https://pubmed.ncbi.nlm.nih.gov/PMC12390388
https://doaj.org/article/2b99c1942bc745c4a527d433b1b8fb66
Volume 25
WOSCitedRecordID wos001558436700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwEB7BQcEViDeBY2UQElV0Wdvxg24X7cEVt1ohkJYqOH6Ia3Lodu9KxH_gH_JLGNvZVSIKGpoUtqPEM7Hn-6zJNwCvvRMyhMqXJlSm5EaEUjlqS2-nwghuaMVzsQm5XKr1Wq8Gpb5iTliWB86GO6at1haZNm2t5LXlpqbSccbaaatCK5LYNqKeHZnqqRZD5pV1hBiS-uMNRnHBdUS5g-iTRPr_3ooHsWicJzkIPCf34G6PGMksv-l9uOG7B3A40BF8CF_nsdDD75-_djUaSDroC8Z6gqCULBbvyzmGK0fiiVjMD8oHdW_JLKcApP_ciOkcyfpF6DhyOsg1fwSfTxaf3n0o-9IJpUUKsy1dWxucsfdBKYYcCFFXG1jgkiFdqWp8PkMbOeOivLL2tTYmcEG1M1S21jn2GA66i84_BSLaIC21TLeOcSm1cqpGT9TBC6EDdQW82pm0-Z4VMhpkFtHuzd7uBcyjsfcDoqh1akBXN72rm3-5uoA30VVNXHroD2v6PwjwPaOIVTND6BH5J9UFHI1G4pKx4-6ds5t-yW4aRJYR3CAEKuDlvjveGdPQOn9xlcYIjPm4sRTwJH8b-ynxCrmnmlYFqNFXM5rzuKc7_5YEvRE96KjK8-x_WOk53KGxRnGS7T2Cg-3llX8Bt-319nxzOYGbci3TVU3g1nyxXH2cpKWD17MfC2xbnZ6tvvwBz_kgAQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQIC9RQ1azt2jITQLmzpqmXFoUh7Sx0_oJds2d2CuPEf-B_8KH4JM8lmuxEStx64xs7DyeeZb5zxNwDPvZMqhNQnJqQmEUaGJHfMJt72pJHCsFQ0xSbUeJxPJvrDBvxq98JQWmVrE2tD7aaW1sh30PGT70EP9frkS0JVo-jvaltCo4HFvv_-DUO2-avRW_y-LxjbHR6-2UuWVQUSi-x-kbgyMxgjeB_ynGN4gISkDDwIxZHJp1kwljPOnXGkPKx9po0JQjLtDFOldY7jdS_ARbTjilLI1OQswOMY7zXqRZzrdGeO3EEKTdx6zefVpQH-dgBrHrCbnbnm7nav_28v6gZcWxLruN_MhJuw4atbcHVNbvE2HA2oHsbvHz_bUhZxvR6Kt_Axcvd4OHyXDNCru5gWDimNqlnPfBn3m0yJejtgbCoXNzJPiO94tJaSfwc-nssQ78JmNa38fYhlGZRlluvScaGUzl2eKZFlwUupA3MRPGsxUJw0QiIFBmAElGIFlAgGhI5VB9L-rg9MZ5-KpSkpWKm17WnBSos3sMJkTDnBedkr81BKvMg2YasgC4UAsma50QKfk7S-ij4yNArTmY5gq9MTLYvtNrcIK5aWbV6cwSuCp6tmOpOy9So_Pa37SKRGaH8juNeAeTUkkWKInvfSCPIOzDtj7rZUx59r3XMkWZrEix78-7mewOW9w_cHxcFovP8QrjAq2FxrGG_B5mJ26h_BJft1cTyfPa5nbwxH5z0L_gBhCYZi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aZhCCBe9HYACDQKyiprbjxEgItUwL1UDVBUgzq4zjB8wmHdoOiB3_wN_wOXwJ13mRCIndLNjGzsPJ8b3nOtfnAjyxRiTORTZULlIhV8KFqaE6tHoolOCKRrwqNpHM5-nBgVxswc9mL4xPq2xsYmmozVL7NfIBOn7ve9BDDVydFrHYm748-Rz6ClL-T2tTTqOCyL799hXDt_WL2R5-66eUTifvX70J6woDoUamvwlNHiuMF6x1acowVEBykjvmeMKQ1UexU5pRxowyXoVY2lgq5big0iia5NoYhtc9BztIyTnOsZ3F7N3isA33GEZ_lZYRYzIarJFJCC490-54wLJQwN_uoOMP-7maHec3vfI_v7arcLmm3GRUzZFrsGWL63CpI8R4A47GvlLGr-8_miIXpFwpxVtYgqyeTCavwzH6e0P8kqJPsKpWOp-TUZVDUW4UJKowpBKAQuSTWSdZ_yZ8OJMh3oLtYlnYO0BE7hJNNZO5YTxJZGrSOOFx7KwQ0lETwOMGD9lJJTGSYWjmQZO1oAlg7JHSdvCq4OWB5epjVhuZjOZS6qHkNNd4A81VTBPDGcuHeepygRd55nGWeduFYNKq3oKBz-lVwLIRcjcfwFMZwG6vJ9oc3W9u0JbVNm-d_YFaAI_aZn-mz-Mr7PK07COQNKFlDuB2Bex2SDzC4D0dRgGkPcj3xtxvKY4_lYroSL-klzW6--_neggXEPzZ29l8_x5cpL6ScyluvAvbm9WpvQ_n9ZfN8Xr1oJ7KBI7Oehr8BkpckLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain%E2%80%93Computer+Interface+for+EEG-Based+Authentication%3A+Advancements+and+Practical+Implications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alahaideb%2C+Lamia&rft.au=Al-Nafjan%2C+Abeer&rft.au=Aljumah%2C+Hessah&rft.au=Aldayel%2C+Mashael&rft.date=2025-08-10&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=16&rft_id=info:doi/10.3390%2Fs25164946&rft.externalDocID=A853819129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon