Brain–Computer Interface for EEG-Based Authentication: Advancements and Practical Implications
Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We co...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 25; H. 16; S. 4946 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
10.08.2025
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions. |
|---|---|
| AbstractList | Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions. Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions.Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions. |
| Audience | Academic |
| Author | Aljumah, Hessah Aldayel, Mashael Alahaideb, Lamia Al-Nafjan, Abeer |
| AuthorAffiliation | 1 Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia 2 Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia |
| AuthorAffiliation_xml | – name: 1 Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia – name: 2 Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia |
| Author_xml | – sequence: 1 givenname: Lamia surname: Alahaideb fullname: Alahaideb, Lamia – sequence: 2 givenname: Abeer orcidid: 0000-0003-4186-9805 surname: Al-Nafjan fullname: Al-Nafjan, Abeer – sequence: 3 givenname: Hessah surname: Aljumah fullname: Aljumah, Hessah – sequence: 4 givenname: Mashael orcidid: 0000-0001-6054-4534 surname: Aldayel fullname: Aldayel, Mashael |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40871810$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkstuEzEUhi1URNvAghdAI7GhixTf5mI2VRqFEqkSLGBtzviSOpqxgz1TiR3vwBv2SXBICA1ClmzrnM-_z2-fc3TigzcIvST4kjGB3yZakooLXj1BZ4RTPm0oxSeP9qfoPKU1xpQx1jxDpxw3NWkIPkNfryM4__Dj5zz0m3EwsVj6PFtQprAhFovFzfQaktHFbBzujB-cgsEF_66Y6XvwyvQ5lgrwuvgUQW3TXbHsN92eS8_RUwtdMi_26wR9eb_4PP8wvf14s5zPbqeKCzFMdVtC9mCMbRrGRfbDWsssr1lVVbjM9bBcvAbNdFsLUwoAyysqNNC6VVqzCVrudHWAtdxE10P8LgM4-TsQ4kpCzOV1RtJWCEUEp62qeak4lLTWnLGWtI1tqyprXe20NmPbG62yxQjdkehxxrs7uQr3ktD8HSw7mKA3e4UYvo0mDbJ3SZmuA2_CmCSjvGKYYcwz-vofdB3G6PNbbSmOK0JJ-ZdaQXbgvA35YrUVlbOmZA0RhIpMXf6HykOb3qncNNbl-NGBV4-dHiz-aZAMXOwAFUNK0dgDQrDcNp88NB_7BWCAylI |
| Cites_doi | 10.1109/ACCESS.2021.3093391 10.1109/ACCESS.2025.3539502 10.18280/ts.400106 10.4015/S1016237220500258 10.3390/s23094239 10.1109/ACCESS.2021.3135805 10.1007/s11042-019-07905-6 10.3390/bs13090765 10.1109/PST58708.2023.10320167 10.1109/ACCESS.2021.3092840 10.1109/TIM.2023.3326234 10.3390/axioms12010074 10.1016/j.cose.2023.103198 10.1016/j.cose.2023.103520 10.1109/ACCESS.2023.3268551 10.1109/TDSC.2021.3060775 10.1109/JIOT.2020.3044726 10.1109/TCE.2021.3055419 10.1109/ACCESS.2024.3517639 10.1101/2023.02.16.23284115 10.37936/ecti-eec.2022202.246906 10.3390/brainsci11060698 10.3390/s18020335 10.1088/1741-2560/11/4/046018 10.1109/TSMC.2017.2756673 10.20944/preprints202407.2370.v2 10.1109/TIFS.2017.2763124 10.3390/s22093331 10.1007/s00521-020-05247-1 10.1049/iet-bmt.2019.0158 10.1007/s11571-021-09664-3 10.1186/s12938-018-0483-7 10.3390/electronics14061108 10.1109/TNSRE.2016.2627556 10.1080/09720529.2020.1859798 10.1002/spy2.345 10.1109/THMS.2023.3267898 10.1109/TAFFC.2021.3133443 10.1016/j.neucom.2018.01.074 10.1109/IWW-BCI.2016.7457443 10.3390/s19050987 10.14311/NNW.2022.32.016 10.1080/08839514.2021.1981660 10.1109/ACCESS.2023.3253026 10.1109/BigData50022.2020.9377861 10.3390/brainsci12081072 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s25164946 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_2b99c1942bc745c4a527d433b1b8fb66 PMC12390388 A853819129 40871810 10_3390_s25164946 |
| Genre | Systematic Review Journal Article |
| GrantInformation_xml | – fundername: The Research, Development, and Innovation Authority (RDIA) - Kingdom of Saudi Arabia grantid: (13461-imamu-2023-IMIU-R-3-1-HW-). – fundername: The Research, Development, and Innovation Authority (RDIA)—Kingdom of Saudi Arabia grantid: 13461-imamu-2023-IMIU-R-3-1-HW- |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c499t-db5a164eef883495163bf3f47366605fac3233dad3db79e59aaf4629da27bcdd3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001558436700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:32:14 EST 2025 Tue Nov 04 02:05:34 EST 2025 Thu Oct 02 21:36:43 EDT 2025 Sat Nov 01 15:15:55 EDT 2025 Tue Nov 11 10:47:18 EST 2025 Tue Nov 04 18:11:48 EST 2025 Wed Sep 10 03:23:39 EDT 2025 Sat Nov 29 07:17:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | brain–computer interface (BCI) electroencephalography (EEG) event-related potentials (ERP) convolutional neural networks (CNN) authentication |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-db5a164eef883495163bf3f47366605fac3233dad3db79e59aaf4629da27bcdd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0001-6054-4534 0000-0003-4186-9805 |
| OpenAccessLink | https://www.proquest.com/docview/3244061215?pq-origsite=%requestingapplication% |
| PMID | 40871810 |
| PQID | 3244061215 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2b99c1942bc745c4a527d433b1b8fb66 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12390388 proquest_miscellaneous_3246303004 proquest_journals_3244061215 gale_infotracmisc_A853819129 gale_infotracacademiconefile_A853819129 pubmed_primary_40871810 crossref_primary_10_3390_s25164946 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-10 |
| PublicationDateYYYYMMDD | 2025-08-10 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Rathi (ref_20) 2021; 15 Brunner (ref_48) 2008; 16 Shams (ref_55) 2022; 20 Farik (ref_1) 2016; 5 Rahman (ref_15) 2021; 9 Debie (ref_28) 2022; 19 Kasim (ref_35) 2021; 35 ref_58 ref_57 ref_10 ref_54 ref_53 ref_51 Vadher (ref_31) 2024; 7 Monsy (ref_34) 2020; 9 Alyasseri (ref_12) 2022; 10 Rakshe (ref_25) 2025; 13 Alomari (ref_24) 2022; 2022 Sharma (ref_42) 2025; 13 ref_29 Sooriyaarachchi (ref_17) 2021; 8 ref_26 Das (ref_38) 2019; 78 Fidas (ref_3) 2023; 11 Kang (ref_5) 2018; 287 (ref_39) 2023; 40 Habrich (ref_45) 2021; 21 Wang (ref_52) 2017; 25 Bak (ref_11) 2023; 11 ref_36 Buzzelli (ref_27) 2023; 53 ref_33 Elshenaway (ref_37) 2021; 9 ref_30 Seha (ref_21) 2020; 15 Xu (ref_41) 2023; 14 TajDini (ref_8) 2023; 129 Kaongoen (ref_22) 2020; 50 Albermany (ref_13) 2022; 25 ref_47 ref_46 Nakamura (ref_4) 2018; 13 ref_44 ref_43 ref_40 Fallahi (ref_14) 2023; 26 Yousefi (ref_18) 2023; 135 Shrivastava (ref_19) 2018; 10 Hairston (ref_56) 2014; 11 ref_2 Cheng (ref_16) 2023; 72 Behera (ref_23) 2021; 67 ref_49 Yousefi (ref_9) 2021; 33 Cui (ref_32) 2022; 32 ref_7 ref_6 |
| References_xml | – volume: 9 start-page: 100294 year: 2021 ident: ref_37 article-title: Adaptive Thresholds of EEG Brain Signals for IoT Devices Authentication publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3093391 – volume: 13 start-page: 27537 year: 2025 ident: ref_25 article-title: Fine-Tuning EEG Channel Utilization for Emotionally Stimulated Biometric Authentication publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3539502 – ident: ref_49 – volume: 16 start-page: 34 year: 2008 ident: ref_48 article-title: BCI Competition 2008—Graz Data Set A publication-title: Graz Univ. Technol. – ident: ref_51 – volume: 40 start-page: 65 year: 2023 ident: ref_39 article-title: DM-EEGID: EEG-Based Biometric Authentication System Using Hybrid Attention-Based LSTM and MLP Algorithm publication-title: Trait. Du Signal doi: 10.18280/ts.400106 – ident: ref_44 doi: 10.4015/S1016237220500258 – ident: ref_10 doi: 10.3390/s23094239 – volume: 10 start-page: 10500 year: 2022 ident: ref_12 article-title: EEG Channel Selection for Person Identification Using Binary Grey Wolf Optimizer publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3135805 – volume: 78 start-page: 28157 year: 2019 ident: ref_38 article-title: A Spatio-Temporal Model for EEG-Based Person Identification Multimedia Tools and Applications publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-07905-6 – ident: ref_30 doi: 10.3390/bs13090765 – ident: ref_29 doi: 10.1109/PST58708.2023.10320167 – volume: 9 start-page: 94625 year: 2021 ident: ref_15 article-title: Multimodal EEG and Keystroke Dynamics Based Biometric System Using Machine Learning Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3092840 – volume: 72 start-page: 1 year: 2023 ident: ref_16 article-title: Identification With Your Mind: A Hybrid BCI-Based Authentication Approach for Anti-Shoulder-Surfing Attacks Using EEG and Eye Movement Data publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3326234 – ident: ref_33 doi: 10.3390/axioms12010074 – volume: 129 start-page: 103198 year: 2023 ident: ref_8 article-title: Brainwave-Based Authentication Using Features Fusion publication-title: Comput. Secur. doi: 10.1016/j.cose.2023.103198 – volume: 135 start-page: 103520 year: 2023 ident: ref_18 article-title: A Robust Brain Pattern for Brain-Based Authentication Methods Using Deep Breath publication-title: Comput. Secur. doi: 10.1016/j.cose.2023.103520 – volume: 10 start-page: 52 year: 2018 ident: ref_19 article-title: On the Potential of EEG for Biometrics: Combining Power Spectral Density with a Statistical Test publication-title: Int. J. Biom. – volume: 11 start-page: 41303 year: 2023 ident: ref_11 article-title: User Biometric Identification Methodology via EEG-Based Motor Imagery Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3268551 – volume: 19 start-page: 2488 year: 2022 ident: ref_28 article-title: Session Invariant EEG Signatures Using Elicitation Protocol Fusion and Convolutional Neural Network publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2021.3060775 – volume: 8 start-page: 8304 year: 2021 ident: ref_17 article-title: MusicID: A Brainwave-Based User Authentication System for Internet of Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3044726 – volume: 67 start-page: 58 year: 2021 ident: ref_23 article-title: A Robust Biometric Authentication System for Handheld Electronic Devices by Intelligently Combining 3D Finger Motions and Cerebral Responses publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2021.3055419 – volume: 13 start-page: 2141 year: 2025 ident: ref_42 article-title: A Spatiotemporal Feature Extraction Technique Using Superlet-CNN Fusion for Improved Motor Imagery Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3517639 – ident: ref_57 doi: 10.1101/2023.02.16.23284115 – volume: 20 start-page: 225 year: 2022 ident: ref_55 article-title: EEG-Based Biometric Authentication Using Machine Learning: A Comprehensive Survey publication-title: ECTI Trans. Electr. Eng. Electron. Commun. doi: 10.37936/ecti-eec.2022202.246906 – ident: ref_58 doi: 10.3390/brainsci11060698 – ident: ref_36 doi: 10.3390/s18020335 – volume: 11 start-page: 046018 year: 2014 ident: ref_56 article-title: Usability of Four Commercially-Oriented EEG Systems publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/4/046018 – volume: 2022 start-page: 5974634 year: 2022 ident: ref_24 article-title: EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications publication-title: Comput. Intell. Neurosci. – volume: 50 start-page: 1178 year: 2020 ident: ref_22 article-title: Two-Factor Authentication System Using P300 Response to a Sequence of Human Photographs publication-title: IEEE Trans. Syst. Man. Cybern. Syst. doi: 10.1109/TSMC.2017.2756673 – ident: ref_54 doi: 10.20944/preprints202407.2370.v2 – volume: 13 start-page: 648 year: 2018 ident: ref_4 article-title: In-Ear EEG Biometrics for Feasible and Readily Collectable Real-World Person Authentication publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2763124 – ident: ref_7 doi: 10.3390/s22093331 – volume: 33 start-page: 4283 year: 2021 ident: ref_9 article-title: SaS-BCI: A New Strategy to Predict Image Memorability and Use Mental Imagery as a Brain-Based Biometric Authentication publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05247-1 – volume: 9 start-page: 251 year: 2020 ident: ref_34 article-title: EEG-Based Biometric Identification Using Frequency-Weighted Power Feature publication-title: IET Biom. doi: 10.1049/iet-bmt.2019.0158 – ident: ref_47 – volume: 15 start-page: 805 year: 2021 ident: ref_20 article-title: A Novel Approach for Designing Authentication System Using a Picture Based P300 Speller Cognitive Neurodynamics publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-021-09664-3 – ident: ref_6 doi: 10.1186/s12938-018-0483-7 – ident: ref_26 doi: 10.3390/electronics14061108 – volume: 25 start-page: 1746 year: 2017 ident: ref_52 article-title: A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2627556 – volume: 25 start-page: 2405 year: 2022 ident: ref_13 article-title: EEG Authentication System Using Fuzzy Vault Scheme publication-title: J. Discret. Math. Sci. Cryptogr. doi: 10.1080/09720529.2020.1859798 – volume: 7 start-page: e345 year: 2024 ident: ref_31 article-title: EEG-Based Biometric Authentication System Using Convolutional Neural Network for Military Applications publication-title: Secur. Priv. doi: 10.1002/spy2.345 – volume: 53 start-page: 529 year: 2023 ident: ref_27 article-title: Unified Framework for Identity and Imagined Action Recognition from EEG Patterns publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2023.3267898 – volume: 26 start-page: 1 year: 2023 ident: ref_14 article-title: Performance and Usability Evaluation of Brainwave Authentication Techniques with Consumer Devices publication-title: ACM Trans. Priv. Secur. – volume: 14 start-page: 864 year: 2023 ident: ref_41 article-title: E-Key: An EEG-Based Biometric Authentication and Driving Fatigue Detection System publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2021.3133443 – volume: 15 start-page: 3901 year: 2020 ident: ref_21 article-title: EEG-Based Human Recognition Using Steady-State AEPs and Subject-Unique Spatial Filters publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 287 start-page: 93 year: 2018 ident: ref_5 article-title: Electroencephalographic Feature Evaluation for Improving Personal Authentication Performance publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.074 – ident: ref_50 – ident: ref_2 doi: 10.1109/IWW-BCI.2016.7457443 – volume: 5 start-page: 246 year: 2016 ident: ref_1 article-title: A Review of Authentication Methods publication-title: Int. J. Sci. Technol. Res. – ident: ref_46 – ident: ref_53 doi: 10.3390/s19050987 – volume: 32 start-page: 269 year: 2022 ident: ref_32 article-title: EEG AUTHENTICATION BASED on DEEP LEARNING of TRIPLET LOSS publication-title: Neural Netw. World doi: 10.14311/NNW.2022.32.016 – volume: 35 start-page: 1407 year: 2021 ident: ref_35 article-title: Biometric Authentication from Photic Stimulated EEG Records publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2021.1981660 – volume: 11 start-page: 22917 year: 2023 ident: ref_3 article-title: A Review of EEG-Based User Authentication: Trends and Future Research Directions publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3253026 – volume: 21 start-page: 55 year: 2021 ident: ref_45 article-title: Inexpensive Brainwave Authentication: New Techniques and Insights on User Acceptance publication-title: USENIX Secur. Symp. – ident: ref_43 doi: 10.1109/BigData50022.2020.9377861 – ident: ref_40 doi: 10.3390/brainsci12081072 |
| SSID | ssj0023338 |
| Score | 2.4567297 |
| SecondaryResourceType | review_article |
| Snippet | Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 4946 |
| SubjectTerms | Accuracy Adaptive technology Algorithms Analysis authentication Biometric identification Biometrics Brain research Brain-Computer Interfaces brain–computer interface (BCI) Classification Computer Security convolutional neural networks (CNN) Data encryption chips Datasets Electroencephalography electroencephalography (EEG) Electroencephalography - methods event-related potentials (ERP) Fourier transforms Humans Literature reviews Machine learning Neural Networks, Computer Neurophysiology Rapid serial visual presentation Safety and security measures Security management Security systems Signal processing Support Vector Machine Support vector machines Systematic review Systems and data security software |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2higMcEN-EFmQQEqeoWdtJbG67aAtIqOIAqDfjT9FLirpbzvwH_mF_CTN2dpWIAxeusaPEM7bnPWv8BuCVbaPSnVN1irapZZANaUC6umkVBjQXdLnh_fVjf3qqzs70p0mpL8oJK_LAxXDH3GntkWlz53vZemlb3gcphFs4lVyXxbYR9ezI1Ei1BDKvoiMkkNQfbzCKd1ITyp1EnyzS__dWPIlF8zzJSeA5uQt3RsTIluVP78GNONyH2xMdwQfwbUWFHq5__d7VaGD5oC9ZHxmCUrZev6tXGK4CoxMxyg8qB3Vv2LKkAOR7bswOgRX9InQc-zDJNX8IX07Wn9--r8fSCbVHCrOtg2stjjjGpJRADoSoyyWRZC-QrjQtfl-gjYINJK-sY6utTbLjOljeOx-CeAQHw8UQnwDrEAO0MnRhoaPsFIavaDmPCB19E5JNFbzcmdT8KAoZBpkF2d3s7V7Bioy970Ci1vkButqMrjb_cnUFr8lVhpYe-sPb8QYB_ieJWJklQg_in1xXcDTriUvGz5t3zjbjkt0YRJYEbhACVfBi30xvUhraEC-ucp8OYz5uLBU8LnNjPyTZIPdUi6YCNZs1szHPW4bz71nQG9GDJlWep__DSodwi1ON4izbewQH28ur-Axu-p_b883l87xM_gAG_BiI priority: 102 providerName: Directory of Open Access Journals |
| Title | Brain–Computer Interface for EEG-Based Authentication: Advancements and Practical Implications |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40871810 https://www.proquest.com/docview/3244061215 https://www.proquest.com/docview/3246303004 https://pubmed.ncbi.nlm.nih.gov/PMC12390388 https://doaj.org/article/2b99c1942bc745c4a527d433b1b8fb66 |
| Volume | 25 |
| WOSCitedRecordID | wos001558436700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB7RlAM98A81lGhBSJysOvba3uWCEuRCJRpFCFA4mf0z9OKUJOWIeAfekCdhZu0YW0hcuPjg3SRrz8x-M5PZbwCeqtQJmWkRVk5FIbc8Ig5IHUapQEDTVjYnvD-8yedzsVzKRZtw27Rllbs90W_UdmUoR36MwE_Ygwj14uJrSF2j6N_VtoXGHuwTUxkfwf6smC_ediFXghFYwyeUYHB_vEE0z7gkb7eHQp6s_-8tuYdJw3rJHgCd3Pjfpd-E663ryaaNrtyCK66-DQc9QsI78GlGHSN-_fi5a_bAfMawUsYx9G5ZUbwKZ4h7llFqjQqNmozfczZtagn8gTmmassaIiTUAHbaK1q_C-9PincvX4dtD4bQYCy0Da1OFb4y5yohEgym0H3TVVLxPMG4J0rx9xN8yVZZ4mmWLpVKVTyLpVVxro21yT0Y1avaHQLL0JlIuc3sRDqeCcRBp-LYoQ9qIlupKoAnO5mUFw3VRokhCgmu7AQXwIyk1U0gdmx_Y7X-XLbGVsZaSoPqEGuT89Rwlca55UmiJ1pUOsMveUayLsmGUaBGtUcRcJ3EhlVO0YehQDaWARwNZqLtmeHwTuJla_ub8o-4A3jcDdMnqZ6tdqtLPydD5wF3qADuN8rVPRKPMIgVkygAMVC7wTMPR-rzL54ZHN0QSfQ-D_69rodwLaY2xp7Z9whG2_WlewRXzbft-WY9hr18mfurGLf2NPapCryefS_w3uL0bPHxN5gpLbM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQlY8KYYCgwIxMqqMzN-DBJCCaQ0aohYFJSdOy_TbpySpCB2_AP_wUfxJdzrRxoLiV0XbDOO40nO3HPu5M65AM907DOVmCwsvI5C6WREHpAmjOIMCc04VZ_w_jROJ5NsOlUfNuBXexaGyirbmFgFajeztEe-g8RP3IMM9frkS0hdo-jf1baFRg2Lff_9G6Zsi1ejt_j7Pud8d3jwZi9sugqEFtX9MnQm1pgjeF9kmcD0AAWJKUQhU4FKPooLbQUXwmlHzsPKx0rrQiZcOc1TY50TeN8LcBHjeEolZOn0LMETmO_V7kVCqGhngdohkYq09RrnVa0B_iaANQbsVmeu0d3u9f_ti7oB1xphzfr1SrgJG768BVfX7BZvw-GA-mH8_vGzbWXBqv1Q_AjPULuz4fBdOEBWd4w2DqmMqt7PfMn6daVEdRyQ6dKx2uYJ8c1GayX5d-DjuUzxLmyWs9LfA5agVIqlS1xPeZlkyPJec-5RYdvIFboI4GmLgfykNhLJMQEjoOQroAQwIHSsLiDv7-qF2fxz3oSSnBulbE9JbmwqYyt1zFMnhTA9kxUmwZu8IGzlFKEQQFY3By3wOcnrK--jQqM0nasAtjtXYmSx3eEWYXkT2Rb5GbwCeLIapndStV7pZ6fVNQlKI4y_AWzVYF5NSUaYome9KICsA_POnLsj5fFR5XuOIkuRedH9fz_XY7i8d_B-nI9Hk_0HcIVTw-bKw3gbNpfzU_8QLtmvy-PF_FG1ehkcnvcq-APb1oU1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qLUJlwfthKDAgECsrzszY8SAhlNAEopYoC6jKyp2XSzdOSVIQO_6Bv-Fz-BLu9SPEQmLXBduM43iSM_ecO7lzLsBTHftUJSYNc6-jUDoZkQekCaM4RUIzTlUnvA_2e5NJeniophvwszkLQ2WVTUwsA7WbWdoj7yDxE_cgQ3Xyuixiujt6dfo5pA5S9E9r006jgsie__YV07fFy_Eu_tbPOB8N379-G9YdBkKLSn8ZOhNrzBe8z9NUYKqA4sTkIpc9gao-inNtBRfCaUcuxMrHSutcJlw5zXvGOifwvhdgCyW5xDW2NR2_m35cpXsCs7_Ky0gIFXUWqCQSqUhprzFg2SjgbzpY48N2reYa-Y2u_s9f2zW4Uktu1q_WyHXY8MUNuLxmxHgTjgbUKePX9x9NkwtW7pTiR3iGqp4Nh2_CAfK9Y7SlSAVW1U7nC9avaijKg4JMF45VBlCIfDZeK9a_BR_OZYq3YbOYFf4usARFVCxd4rrKyyRF_veac4_a20Yu13kATxo8ZKeVxUiGqRmBJluBJoABIWV1AbmCly_M5sdZHWQybpSyXSW5sT0ZW6lj3nNSCNM1aW4SvMlzwllGsQvBZHV9BAOfk1zAsj5qN0rguQpgp3UlxhzbHm7QltUxb5H9gVoAj1fD9E6q4yv87Ky8JkHRhJE5gDsVsFdTkhEm72k3CiBtQb415_ZIcfKpdERH-aXI1ujev5_rEVxC8Gf748nefdjm1Mm5NDfegc3l_Mw_gIv2y_JkMX9YL2UGR-e9DH4DqRKPhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain%E2%80%93Computer+Interface+for+EEG-Based+Authentication%3A+Advancements+and+Practical+Implications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alahaideb%2C+Lamia&rft.au=Al-Nafjan%2C+Abeer&rft.au=Aljumah%2C+Hessah&rft.au=Aldayel%2C+Mashael&rft.date=2025-08-10&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=16&rft_id=info:doi/10.3390%2Fs25164946&rft.externalDocID=A853819129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |