Influences of the heme-lysine crosslink in cytochrome P460 over redox catalysis and nitric oxide sensitivity

Ammonia (NH 3 )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH 3 to nitrite (NO 2 − ). One obligate intermediate of this metabolism is hydroxylamine (NH 2 OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N 2 O) by the AOB enzyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) Jg. 9; H. 2; S. 368 - 379
Hauptverfasser: Vilbert, Avery C., Caranto, Jonathan D., Lancaster, Kyle M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Royal Society of Chemistry 2018
Royal Society of Chemistry (RSC)
Schlagworte:
ISSN:2041-6520, 2041-6539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ammonia (NH 3 )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH 3 to nitrite (NO 2 − ). One obligate intermediate of this metabolism is hydroxylamine (NH 2 OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N 2 O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO} 7 intermediate on the NH 2 OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO} 6 that then undergoes attack by NH 2 OH to ultimately generate N 2 O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO} 7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion ( k His-off = 2.90 × 10 −3 s −1 ), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent ( k His-off = 3.8 × 10 −4 s −1 ) and a NO-dependent pathway [ k His-off(NO) = 790 M −1 s −1 ]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger ( ca. 27 cal mol −1 K −1 ) activation entropy (Δ S ‡ ) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO} 7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.
AbstractList Ammonia (NH 3 )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH 3 to nitrite (NO 2 − ). One obligate intermediate of this metabolism is hydroxylamine (NH 2 OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N 2 O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO} 7 intermediate on the NH 2 OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO} 6 that then undergoes attack by NH 2 OH to ultimately generate N 2 O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO} 7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion ( k His-off = 2.90 × 10 −3 s −1 ), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent ( k His-off = 3.8 × 10 −4 s −1 ) and a NO-dependent pathway [ k His-off(NO) = 790 M −1 s −1 ]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger ( ca. 27 cal mol −1 K −1 ) activation entropy (Δ S ‡ ) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO} 7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.
Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2−). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10−3 s−1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10−4 s−1) and a NO-dependent pathway [kHis-off(NO) = 790 M−1 s−1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol−1 K−1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.
Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10-3 s-1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10-4 s-1) and a NO-dependent pathway [kHis-off(NO) = 790 M-1 s-1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol-1 K-1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys-heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10-3 s-1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10-4 s-1) and a NO-dependent pathway [kHis-off(NO) = 790 M-1 s-1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol-1 K-1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys-heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.
A vital role has been identified for the heme-lysine cross-link unique to cytochromes P460: preventing enzyme deactivation during catalysis by the obligate nitrification metabolite nitric oxide. Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2–). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10–3 s–1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10–4 s–1) and a NO-dependent pathway [kHis-off(NO) = 790 M–1 s–1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol–1 K–1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.
Ammonia (NH )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH to nitrite (NO ). One obligate intermediate of this metabolism is hydroxylamine (NH OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO} intermediate on the NH OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO} that then undergoes attack by NH OH to ultimately generate N O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO} species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion ( = 2.90 × 10 s ), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation both a NO-independent ( = 3.8 × 10 s ) and a NO-dependent pathway [ = 790 M s ]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger ( 27 cal mol K ) activation entropy (Δ ) in the cross-link-deficient mutant. Our results suggest that the Lys-heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO} species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.
Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10-3 s-1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10-4 s-1) and a NO-dependent pathway [kHis-off(NO) = 790 M-1 s-1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol-1 K-1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.
Author Caranto, Jonathan D.
Vilbert, Avery C.
Lancaster, Kyle M.
AuthorAffiliation a Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA . Email: kml236@cornell.edu
AuthorAffiliation_xml – name: a Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA . Email: kml236@cornell.edu
Author_xml – sequence: 1
  givenname: Avery C.
  surname: Vilbert
  fullname: Vilbert, Avery C.
  organization: Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, USA
– sequence: 2
  givenname: Jonathan D.
  surname: Caranto
  fullname: Caranto, Jonathan D.
  organization: Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, USA
– sequence: 3
  givenname: Kyle M.
  orcidid: 0000-0001-7296-128X
  surname: Lancaster
  fullname: Lancaster, Kyle M.
  organization: Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29629106$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1415513$$D View this record in Osti.gov
BookMark eNptkl1vFCEUhompsR_2xh9giN4Yk1EOzMwONyZm_WrSRBP1mjDMwaHOQAVm0_33Zd22aiM3kPC873nhnGNy4INHQp4AewVMyNfr1dc1E3XD3j0gR5zVULWNkAd3Z84OyWlKF6wsIaDhq0fkkMuWS2DtEZnOvJ0W9AYTDZbmEemIM1bTNjmP1MSQ0uT8T-o8NdsczBjDjPRL3TIaNhhpxCFcUaOz3kkS1X6g3uXoDA1XbkCa0CeX3cbl7WPy0Oop4enNfkK-f3j_bf2pOv_88Wz99rwytZS5GqDvEEQnxMABrel2WXvJezMYYVpjha01s5Z1HeAgZN9q7Pu2FtCjBc3FCXmz971c-hkHgz5HPanL6GYdtypop_698W5UP8JGNd2Kg5DF4NneIKTsVDIuoxlN8B5NVlBD04Ao0IubKjH8WjBlNbtkcJq0x7AkxRkXNQDvVgV9fg-9CEv05Q8KBayT0LVtoZ7-Hfsu7223CsD2wO-2RLSqJNPZhd0r3KSAqd1MqD8zUSQv70luXf8DXwOD77dm
CitedBy_id crossref_primary_10_1016_j_watres_2023_120266
crossref_primary_10_1016_j_abb_2018_01_009
crossref_primary_10_1007_s00775_025_02102_3
crossref_primary_10_1039_C9SC00195F
crossref_primary_10_1002_ange_201806146
crossref_primary_10_1039_C8SC05210G
crossref_primary_10_1039_D5SC04213E
crossref_primary_10_1021_jacs_3c03608
crossref_primary_10_1016_j_joule_2018_01_018
crossref_primary_10_1021_jacs_9b01791
crossref_primary_10_1002_anie_201806146
crossref_primary_10_1038_s41570_018_0041_7
crossref_primary_10_1016_j_jinorgbio_2018_02_011
crossref_primary_10_1039_D3SC02288A
Cites_doi 10.1021/ja00809a004
10.1021/bi011332z
10.1021/bi700086r
10.1021/cr950056p
10.1016/S0021-9258(17)39803-4
10.1073/pnas.1611051113
10.1016/S0076-6879(08)36001-7
10.1021/bi00126a001
10.1021/ja00504a027
10.1021/bi400960w
10.1021/cr0006627
10.1021/acs.accounts.5b00167
10.1021/bi011419k
10.1007/s00775-003-0452-9
10.1021/bi972187l
10.1016/j.jinorgbio.2008.01.032
10.1021/jp507023a
10.1146/annurev-biochem-050410-100030
10.1016/j.cbpa.2014.01.017
10.1074/jbc.M116.735530
10.1111/j.1462-2920.2008.01733.x
10.1093/emboj/19.21.5661
10.1021/ja410542z
10.1021/bi0023652
10.1074/jbc.M113.525147
10.1093/oxfordjournals.jbchem.a123300
10.1128/jb.176.19.5879-5887.1994
10.1021/ic902304a
10.1021/ja00088a073
10.1073/pnas.96.26.14753
10.1021/acs.biochem.5b00994
10.1021/ja904368n
10.1021/bi401408x
10.1021/ja809587q
10.1016/j.tibs.2013.08.008
10.1016/0304-4173(75)90006-3
10.1016/0006-291X(91)90528-F
10.1021/bi1002234
10.1021/ja504343t
10.1016/S0010-8545(00)80259-3
10.1021/cr068066l
10.1073/pnas.1704504114
10.1016/j.tips.2008.08.005
10.1021/cr000080p
10.1021/ja102098p
10.1016/0009-2614(82)85016-1
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
This journal is © The Royal Society of Chemistry 2018 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
– notice: This journal is © The Royal Society of Chemistry 2018 2018
CorporateAuthor Cornell Univ., Ithaca, NY (United States)
Stanford Univ., CA (United States)
CorporateAuthor_xml – name: Stanford Univ., CA (United States)
– name: Cornell Univ., Ithaca, NY (United States)
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
5PM
DOI 10.1039/C7SC03450D
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 379
ExternalDocumentID PMC5872139
1415513
29629106
10_1039_C7SC03450D
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFBY
AAFWJ
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ACRPL
ADBBV
ADMRA
ADNMO
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AFVBQ
AGEGJ
AGMRB
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
AOIJS
APEMP
ASPBG
AUDPV
AVWKF
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CAG
CITATION
COF
D0L
ECGLT
EE0
EF-
F5P
FEDTE
GROUPED_DOAJ
H13
HVGLF
HYE
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
ROL
RPM
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
NPM
7SR
8BQ
8FD
JG9
7X8
-JG
AGSTE
OTOTI
SMJ
5PM
ID FETCH-LOGICAL-c499t-d1b8e13833d21efc82910b92bcdc3c6cf3f4a0ff0881ed39b6aebb6431bef1a23
IEDL.DBID RRC
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419350700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-6520
IngestDate Tue Nov 04 01:52:22 EST 2025
Mon Apr 22 04:53:46 EDT 2024
Sun Nov 09 09:09:19 EST 2025
Sun Nov 30 04:13:25 EST 2025
Thu Apr 03 07:05:27 EDT 2025
Tue Nov 18 22:08:42 EST 2025
Sat Nov 29 05:53:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-d1b8e13833d21efc82910b92bcdc3c6cf3f4a0ff0881ed39b6aebb6431bef1a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-76SF00515; SC0013997
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0001-7296-128X
000000017296128X
OpenAccessLink http://dx.doi.org/10.1039/c7sc03450d
PMID 29629106
PQID 2010891866
PQPubID 2047492
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5872139
osti_scitechconnect_1415513
proquest_miscellaneous_2023411287
proquest_journals_2010891866
pubmed_primary_29629106
crossref_citationtrail_10_1039_C7SC03450D
crossref_primary_10_1039_C7SC03450D
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
– name: United Kingdom
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2018
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Plate (C7SC03450D-(cit28)/*[position()=1]) 2013; 38
Maalcke (C7SC03450D-(cit7)/*[position()=1]) 2014; 289
Zahn (C7SC03450D-(cit6)/*[position()=1]) 1994; 176
Taylor (C7SC03450D-(cit37)/*[position()=1]) 1997
Hahn (C7SC03450D-(cit21)/*[position()=1]) 1982; 88
Cedervall (C7SC03450D-(cit4)/*[position()=1]) 2013; 52
Traylor (C7SC03450D-(cit24)/*[position()=1]) 1992; 31
Andrew (C7SC03450D-(cit43)/*[position()=1]) 2002; 41
Yu (C7SC03450D-(cit25)/*[position()=1]) 1994; 116
Zhao (C7SC03450D-(cit18)/*[position()=1]) 1999; 96
Martí (C7SC03450D-(cit23)/*[position()=1]) 2003; 8
Derbyshire (C7SC03450D-(cit26)/*[position()=1]) 2012; 81
Wu (C7SC03450D-(cit35)/*[position()=1]) 2015; 54
Hooper (C7SC03450D-(cit1)/*[position()=1]) 2005; vol. 16
Andrew (C7SC03450D-(cit30)/*[position()=1]) 2001; 40
Arciero (C7SC03450D-(cit5)/*[position()=1]) 1998; 37
Fernández (C7SC03450D-(cit16)/*[position()=1]) 2008; 102
Caranto (C7SC03450D-(cit3)/*[position()=1]) 2017; 114
Jiang (C7SC03450D-(cit46)/*[position()=1]) 2014; 136
Numata (C7SC03450D-(cit12)/*[position()=1]) 1990; 108
Liptak (C7SC03450D-(cit41)/*[position()=1]) 2010; 132
Averill (C7SC03450D-(cit45)/*[position()=1]) 1996; 96
Tsai (C7SC03450D-(cit48)/*[position()=1]) 2010; 49
Pearson (C7SC03450D-(cit10)/*[position()=1]) 2007; 46
Evans (C7SC03450D-(cit38)/*[position()=1]) 2008; 108
Spiro (C7SC03450D-(cit33)/*[position()=1]) 1975; 416
Caranto (C7SC03450D-(cit13)/*[position()=1]) 2016; 113
Pixton (C7SC03450D-(cit49)/*[position()=1]) 2009; 131
Spiro (C7SC03450D-(cit31)/*[position()=1]) 1979; 101
Wu (C7SC03450D-(cit34)/*[position()=1]) 2013; 52
Anslyn (C7SC03450D-(cit36)/*[position()=1]) 2006
Hughes (C7SC03450D-(cit15)/*[position()=1]) 2008; 436
Andersson (C7SC03450D-(cit11)/*[position()=1]) 1984; 259
Attia (C7SC03450D-(cit39)/*[position()=1]) 2014; 118
Hendrich (C7SC03450D-(cit17)/*[position()=1]) 2002; 41
Hunt (C7SC03450D-(cit27)/*[position()=1]) 2015; 48
Klotz (C7SC03450D-(cit9)/*[position()=1]) 2008; 10
Andersson (C7SC03450D-(cit29)/*[position()=1]) 1991; 174
Goodrich (C7SC03450D-(cit19)/*[position()=1]) 2010; 49
Berto (C7SC03450D-(cit20)/*[position()=1]) 2009; 131
Enemark (C7SC03450D-(cit14)/*[position()=1]) 1974; 13
Irvine (C7SC03450D-(cit50)/*[position()=1]) 2008; 29
Spiro (C7SC03450D-(cit32)/*[position()=1]) 1974; 96
Lawson (C7SC03450D-(cit47)/*[position()=1]) 2000; 19
Maalcke (C7SC03450D-(cit8)/*[position()=1]) 2016; 291
Wyllie (C7SC03450D-(cit22)/*[position()=1]) 2002; 102
Wasser (C7SC03450D-(cit44)/*[position()=1]) 2002; 102
Bock (C7SC03450D-(cit2)/*[position()=1]) 2006
McQuarters (C7SC03450D-(cit40)/*[position()=1]) 2014; 19
Matsumura (C7SC03450D-(cit42)/*[position()=1]) 2014; 136
References_xml – volume: 96
  start-page: 338
  year: 1974
  ident: C7SC03450D-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00809a004
– volume: 41
  start-page: 4603
  year: 2002
  ident: C7SC03450D-(cit17)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi011332z
– volume: 46
  start-page: 8340
  year: 2007
  ident: C7SC03450D-(cit10)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi700086r
– volume-title: Modern physical organic chemistry
  year: 2006
  ident: C7SC03450D-(cit36)/*[position()=1]
– volume: 96
  start-page: 2951
  year: 1996
  ident: C7SC03450D-(cit45)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr950056p
– volume: 259
  start-page: 6833
  year: 1984
  ident: C7SC03450D-(cit11)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)39803-4
– volume: 113
  start-page: 14704
  year: 2016
  ident: C7SC03450D-(cit13)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1611051113
– volume: 436
  start-page: 3
  year: 2008
  ident: C7SC03450D-(cit15)/*[position()=1]
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(08)36001-7
– volume: 31
  start-page: 2847
  year: 1992
  ident: C7SC03450D-(cit24)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi00126a001
– volume: 101
  start-page: 2648
  year: 1979
  ident: C7SC03450D-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00504a027
– volume-title: Introduction to error analysis, the study of uncertainties in physical measurements
  year: 1997
  ident: C7SC03450D-(cit37)/*[position()=1]
– volume: 52
  start-page: 6211
  year: 2013
  ident: C7SC03450D-(cit4)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi400960w
– volume: 102
  start-page: 1201
  year: 2002
  ident: C7SC03450D-(cit44)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr0006627
– volume: 48
  start-page: 2117
  year: 2015
  ident: C7SC03450D-(cit27)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00167
– volume: 41
  start-page: 2353
  year: 2002
  ident: C7SC03450D-(cit43)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi011419k
– volume: 8
  start-page: 595
  year: 2003
  ident: C7SC03450D-(cit23)/*[position()=1]
  publication-title: J. Biol. Inorg Chem.
  doi: 10.1007/s00775-003-0452-9
– volume: 37
  start-page: 523
  year: 1998
  ident: C7SC03450D-(cit5)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi972187l
– volume: 102
  start-page: 1523
  year: 2008
  ident: C7SC03450D-(cit16)/*[position()=1]
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2008.01.032
– volume: 118
  start-page: 12140
  year: 2014
  ident: C7SC03450D-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp507023a
– volume: 81
  start-page: 533
  year: 2012
  ident: C7SC03450D-(cit26)/*[position()=1]
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-050410-100030
– volume: 19
  start-page: 82
  year: 2014
  ident: C7SC03450D-(cit40)/*[position()=1]
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2014.01.017
– volume: vol. 16
  volume-title: Respiration in archaea and bacteria
  year: 2005
  ident: C7SC03450D-(cit1)/*[position()=1]
– volume: 291
  start-page: 17077
  year: 2016
  ident: C7SC03450D-(cit8)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.735530
– volume: 10
  start-page: 3150
  year: 2008
  ident: C7SC03450D-(cit9)/*[position()=1]
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2008.01733.x
– volume-title: The prokaryotes
  year: 2006
  ident: C7SC03450D-(cit2)/*[position()=1]
– volume: 19
  start-page: 5661
  year: 2000
  ident: C7SC03450D-(cit47)/*[position()=1]
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.21.5661
– volume: 136
  start-page: 2420
  year: 2014
  ident: C7SC03450D-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410542z
– volume: 40
  start-page: 4115
  year: 2001
  ident: C7SC03450D-(cit30)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi0023652
– volume: 289
  start-page: 1228
  year: 2014
  ident: C7SC03450D-(cit7)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.525147
– volume: 108
  start-page: 1016
  year: 1990
  ident: C7SC03450D-(cit12)/*[position()=1]
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a123300
– volume: 176
  start-page: 5879
  year: 1994
  ident: C7SC03450D-(cit6)/*[position()=1]
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.176.19.5879-5887.1994
– volume: 49
  start-page: 6293
  year: 2010
  ident: C7SC03450D-(cit19)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic902304a
– volume: 116
  start-page: 4117
  year: 1994
  ident: C7SC03450D-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00088a073
– volume: 96
  start-page: 14753
  year: 1999
  ident: C7SC03450D-(cit18)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.26.14753
– volume: 54
  start-page: 7098
  year: 2015
  ident: C7SC03450D-(cit35)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00994
– volume: 131
  start-page: 17116
  year: 2009
  ident: C7SC03450D-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904368n
– volume: 52
  start-page: 9432
  year: 2013
  ident: C7SC03450D-(cit34)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi401408x
– volume: 131
  start-page: 4846
  year: 2009
  ident: C7SC03450D-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809587q
– volume: 38
  start-page: 566
  year: 2013
  ident: C7SC03450D-(cit28)/*[position()=1]
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.08.008
– volume: 416
  start-page: 169
  year: 1975
  ident: C7SC03450D-(cit33)/*[position()=1]
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4173(75)90006-3
– volume: 174
  start-page: 358
  year: 1991
  ident: C7SC03450D-(cit29)/*[position()=1]
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(91)90528-F
– volume: 49
  start-page: 6587
  year: 2010
  ident: C7SC03450D-(cit48)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi1002234
– volume: 136
  start-page: 12524
  year: 2014
  ident: C7SC03450D-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504343t
– volume: 13
  start-page: 339
  year: 1974
  ident: C7SC03450D-(cit14)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(00)80259-3
– volume: 108
  start-page: 2113
  year: 2008
  ident: C7SC03450D-(cit38)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr068066l
– volume: 114
  start-page: 8217
  year: 2017
  ident: C7SC03450D-(cit3)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1704504114
– volume: 29
  start-page: 601
  year: 2008
  ident: C7SC03450D-(cit50)/*[position()=1]
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2008.08.005
– volume: 102
  start-page: 1067
  year: 2002
  ident: C7SC03450D-(cit22)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr000080p
– volume: 132
  start-page: 9753
  year: 2010
  ident: C7SC03450D-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102098p
– volume: 88
  start-page: 595
  year: 1982
  ident: C7SC03450D-(cit21)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(82)85016-1
SSID ssj0000331527
Score 2.340872
Snippet Ammonia (NH 3 )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH 3 to nitrite (NO 2 − ). One obligate intermediate...
Ammonia (NH )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH to nitrite (NO ). One obligate intermediate of this...
Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2−). One obligate intermediate of...
Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of...
A vital role has been identified for the heme-lysine cross-link unique to cytochromes P460: preventing enzyme deactivation during catalysis by the obligate...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 368
SubjectTerms Ammonia
Catalysis
Chemistry
Crosslinking
Cytochrome
Entropy of activation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Lysine
Metabolism
Nitric oxide
Nitrogen dioxide
Nitrous oxide
Oxidation
Proteins
Signaling
Title Influences of the heme-lysine crosslink in cytochrome P460 over redox catalysis and nitric oxide sensitivity
URI https://www.ncbi.nlm.nih.gov/pubmed/29629106
https://www.proquest.com/docview/2010891866
https://www.proquest.com/docview/2023411287
https://www.osti.gov/biblio/1415513
https://pubmed.ncbi.nlm.nih.gov/PMC5872139
Volume 9
WOSCitedRecordID wos000419350700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Journals (Carleton)
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RRC
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9VAFD7Ui6Cb-rax9TJiNy6CyZxkklmWaNFNKVXh7kJmMkMvlER609L-e8_Jy16p0PWcwMk8zpvvAzh0uXQyUo7SkiQKEy9daFDp0CH6GC1FSLLuySayk5N8tdKnO3D4nw4-6s9F9qOIMEmjL2xos5Sv7tlZMRdSIsSRmlVGSRyqVEYTDOnW11uOZ9HSA7ovqPx3NvKOszl-9jA1n8PuGEyKo-H0X8COa17Ck2LicHsFF98nDpKNaL2gYE_QogsZh6RxoteUW7hi3Qh727X2nNELxGmiIsGznYLhRG9EX-Nh6BJRNbUgI0DGU7Q369qJDQ_ADwwUr-HX8defxbdw5FcILeU5XVjHJncxpahYy9h5m0uKHYyWxtYWrbIefVJF3pMhil2N2qjKGUMhTGycjyuJb2DRtI3bA1Ergy6LbSIrlZjU6wotcj5nKRytsArg07T5pR3Bx5kD46Lsm-Coy7_7F8DHWfb3ALlxr9Q-n2FJgQKj3VoeC7IdZTI9ZU0AB9PRluOj3JTc-M81I_wF8GFephPhHknVuPaKZST5dXLaWQBvh5swKyG14h2ir7OtOzILMFT39kqzPu8hu9OcMm3U7x70a_vwlFTNh0LPASy6yyv3Hh7b6269uVzCo2yVL_vawbJ_CX8AewoAog
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+the+heme-lysine+crosslink+in+cytochrome+P460+over+redox+catalysis+and+nitric+oxide+sensitivity&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Vilbert%2C+Avery+C&rft.au=Caranto%2C+Jonathan+D&rft.au=Lancaster%2C+Kyle+M&rft.date=2018&rft.issn=2041-6520&rft.volume=9&rft.issue=2&rft.spage=368&rft_id=info:doi/10.1039%2Fc7sc03450d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon