Influences of the heme-lysine crosslink in cytochrome P460 over redox catalysis and nitric oxide sensitivity
Ammonia (NH 3 )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH 3 to nitrite (NO 2 − ). One obligate intermediate of this metabolism is hydroxylamine (NH 2 OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N 2 O) by the AOB enzyme...
Gespeichert in:
| Veröffentlicht in: | Chemical science (Cambridge) Jg. 9; H. 2; S. 368 - 379 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Royal Society of Chemistry
2018
Royal Society of Chemistry (RSC) |
| Schlagworte: | |
| ISSN: | 2041-6520, 2041-6539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ammonia (NH
3
)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH
3
to nitrite (NO
2
−
). One obligate intermediate of this metabolism is hydroxylamine (NH
2
OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N
2
O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}
7
intermediate on the NH
2
OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}
6
that then undergoes attack by NH
2
OH to ultimately generate N
2
O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}
7
species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (
k
His-off
= 2.90 × 10
−3
s
−1
), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation
via
both a NO-independent (
k
His-off
= 3.8 × 10
−4
s
−1
) and a NO-dependent pathway [
k
His-off(NO)
= 790 M
−1
s
−1
]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (
ca.
27 cal mol
−1
K
−1
) activation entropy (Δ
S
‡
) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}
7
species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed. |
|---|---|
| AbstractList | Ammonia (NH
3
)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH
3
to nitrite (NO
2
−
). One obligate intermediate of this metabolism is hydroxylamine (NH
2
OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N
2
O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}
7
intermediate on the NH
2
OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}
6
that then undergoes attack by NH
2
OH to ultimately generate N
2
O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}
7
species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (
k
His-off
= 2.90 × 10
−3
s
−1
), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation
via
both a NO-independent (
k
His-off
= 3.8 × 10
−4
s
−1
) and a NO-dependent pathway [
k
His-off(NO)
= 790 M
−1
s
−1
]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (
ca.
27 cal mol
−1
K
−1
) activation entropy (Δ
S
‡
) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}
7
species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed. Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2−). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10−3 s−1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10−4 s−1) and a NO-dependent pathway [kHis-off(NO) = 790 M−1 s−1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol−1 K−1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed. Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10-3 s-1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10-4 s-1) and a NO-dependent pathway [kHis-off(NO) = 790 M-1 s-1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol-1 K-1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys-heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10-3 s-1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10-4 s-1) and a NO-dependent pathway [kHis-off(NO) = 790 M-1 s-1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol-1 K-1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys-heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed. A vital role has been identified for the heme-lysine cross-link unique to cytochromes P460: preventing enzyme deactivation during catalysis by the obligate nitrification metabolite nitric oxide. Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2–). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10–3 s–1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10–4 s–1) and a NO-dependent pathway [kHis-off(NO) = 790 M–1 s–1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol–1 K–1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed. Ammonia (NH )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH to nitrite (NO ). One obligate intermediate of this metabolism is hydroxylamine (NH OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO} intermediate on the NH OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO} that then undergoes attack by NH OH to ultimately generate N O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO} species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion ( = 2.90 × 10 s ), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation both a NO-independent ( = 3.8 × 10 s ) and a NO-dependent pathway [ = 790 M s ]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger ( 27 cal mol K ) activation entropy (Δ ) in the cross-link-deficient mutant. Our results suggest that the Lys-heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO} species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed. Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10-3 s-1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10-4 s-1) and a NO-dependent pathway [kHis-off(NO) = 790 M-1 s-1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol-1 K-1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys–heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed. |
| Author | Caranto, Jonathan D. Vilbert, Avery C. Lancaster, Kyle M. |
| AuthorAffiliation | a Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA . Email: kml236@cornell.edu |
| AuthorAffiliation_xml | – name: a Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA . Email: kml236@cornell.edu |
| Author_xml | – sequence: 1 givenname: Avery C. surname: Vilbert fullname: Vilbert, Avery C. organization: Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, USA – sequence: 2 givenname: Jonathan D. surname: Caranto fullname: Caranto, Jonathan D. organization: Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, USA – sequence: 3 givenname: Kyle M. orcidid: 0000-0001-7296-128X surname: Lancaster fullname: Lancaster, Kyle M. organization: Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29629106$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1415513$$D View this record in Osti.gov |
| BookMark | eNptkl1vFCEUhompsR_2xh9giN4Yk1EOzMwONyZm_WrSRBP1mjDMwaHOQAVm0_33Zd22aiM3kPC873nhnGNy4INHQp4AewVMyNfr1dc1E3XD3j0gR5zVULWNkAd3Z84OyWlKF6wsIaDhq0fkkMuWS2DtEZnOvJ0W9AYTDZbmEemIM1bTNjmP1MSQ0uT8T-o8NdsczBjDjPRL3TIaNhhpxCFcUaOz3kkS1X6g3uXoDA1XbkCa0CeX3cbl7WPy0Oop4enNfkK-f3j_bf2pOv_88Wz99rwytZS5GqDvEEQnxMABrel2WXvJezMYYVpjha01s5Z1HeAgZN9q7Pu2FtCjBc3FCXmz971c-hkHgz5HPanL6GYdtypop_698W5UP8JGNd2Kg5DF4NneIKTsVDIuoxlN8B5NVlBD04Ao0IubKjH8WjBlNbtkcJq0x7AkxRkXNQDvVgV9fg-9CEv05Q8KBayT0LVtoZ7-Hfsu7223CsD2wO-2RLSqJNPZhd0r3KSAqd1MqD8zUSQv70luXf8DXwOD77dm |
| CitedBy_id | crossref_primary_10_1016_j_watres_2023_120266 crossref_primary_10_1016_j_abb_2018_01_009 crossref_primary_10_1007_s00775_025_02102_3 crossref_primary_10_1039_C9SC00195F crossref_primary_10_1002_ange_201806146 crossref_primary_10_1039_C8SC05210G crossref_primary_10_1039_D5SC04213E crossref_primary_10_1021_jacs_3c03608 crossref_primary_10_1016_j_joule_2018_01_018 crossref_primary_10_1021_jacs_9b01791 crossref_primary_10_1002_anie_201806146 crossref_primary_10_1038_s41570_018_0041_7 crossref_primary_10_1016_j_jinorgbio_2018_02_011 crossref_primary_10_1039_D3SC02288A |
| Cites_doi | 10.1021/ja00809a004 10.1021/bi011332z 10.1021/bi700086r 10.1021/cr950056p 10.1016/S0021-9258(17)39803-4 10.1073/pnas.1611051113 10.1016/S0076-6879(08)36001-7 10.1021/bi00126a001 10.1021/ja00504a027 10.1021/bi400960w 10.1021/cr0006627 10.1021/acs.accounts.5b00167 10.1021/bi011419k 10.1007/s00775-003-0452-9 10.1021/bi972187l 10.1016/j.jinorgbio.2008.01.032 10.1021/jp507023a 10.1146/annurev-biochem-050410-100030 10.1016/j.cbpa.2014.01.017 10.1074/jbc.M116.735530 10.1111/j.1462-2920.2008.01733.x 10.1093/emboj/19.21.5661 10.1021/ja410542z 10.1021/bi0023652 10.1074/jbc.M113.525147 10.1093/oxfordjournals.jbchem.a123300 10.1128/jb.176.19.5879-5887.1994 10.1021/ic902304a 10.1021/ja00088a073 10.1073/pnas.96.26.14753 10.1021/acs.biochem.5b00994 10.1021/ja904368n 10.1021/bi401408x 10.1021/ja809587q 10.1016/j.tibs.2013.08.008 10.1016/0304-4173(75)90006-3 10.1016/0006-291X(91)90528-F 10.1021/bi1002234 10.1021/ja504343t 10.1016/S0010-8545(00)80259-3 10.1021/cr068066l 10.1073/pnas.1704504114 10.1016/j.tips.2008.08.005 10.1021/cr000080p 10.1021/ja102098p 10.1016/0009-2614(82)85016-1 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2018 2018 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 – notice: This journal is © The Royal Society of Chemistry 2018 2018 |
| CorporateAuthor | Cornell Univ., Ithaca, NY (United States) Stanford Univ., CA (United States) |
| CorporateAuthor_xml | – name: Stanford Univ., CA (United States) – name: Cornell Univ., Ithaca, NY (United States) |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI 5PM |
| DOI | 10.1039/C7SC03450D |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 379 |
| ExternalDocumentID | PMC5872139 1415513 29629106 10_1039_C7SC03450D |
| Genre | Journal Article |
| GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFBY AAFWJ AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ACRPL ADBBV ADMRA ADNMO AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGMRB AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI AOIJS APEMP ASPBG AUDPV AVWKF AZFZN BCNDV BLAPV BSQNT C6K CAG CITATION COF D0L ECGLT EE0 EF- F5P FEDTE GROUPED_DOAJ H13 HVGLF HYE HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS ROL RPM RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH NPM 7SR 8BQ 8FD JG9 7X8 -JG AGSTE OTOTI SMJ 5PM |
| ID | FETCH-LOGICAL-c499t-d1b8e13833d21efc82910b92bcdc3c6cf3f4a0ff0881ed39b6aebb6431bef1a23 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419350700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Tue Nov 04 01:52:22 EST 2025 Mon Apr 22 04:53:46 EDT 2024 Sun Nov 09 09:09:19 EST 2025 Sun Nov 30 04:13:25 EST 2025 Thu Apr 03 07:05:27 EDT 2025 Tue Nov 18 22:08:42 EST 2025 Sat Nov 29 05:53:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-d1b8e13833d21efc82910b92bcdc3c6cf3f4a0ff0881ed39b6aebb6431bef1a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-76SF00515; SC0013997 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
| ORCID | 0000-0001-7296-128X 000000017296128X |
| OpenAccessLink | http://dx.doi.org/10.1039/c7sc03450d |
| PMID | 29629106 |
| PQID | 2010891866 |
| PQPubID | 2047492 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5872139 osti_scitechconnect_1415513 proquest_miscellaneous_2023411287 proquest_journals_2010891866 pubmed_primary_29629106 crossref_citationtrail_10_1039_C7SC03450D crossref_primary_10_1039_C7SC03450D |
| PublicationCentury | 2000 |
| PublicationDate | 2018-00-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge – name: United Kingdom |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2018 |
| Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
| Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
| References | Plate (C7SC03450D-(cit28)/*[position()=1]) 2013; 38 Maalcke (C7SC03450D-(cit7)/*[position()=1]) 2014; 289 Zahn (C7SC03450D-(cit6)/*[position()=1]) 1994; 176 Taylor (C7SC03450D-(cit37)/*[position()=1]) 1997 Hahn (C7SC03450D-(cit21)/*[position()=1]) 1982; 88 Cedervall (C7SC03450D-(cit4)/*[position()=1]) 2013; 52 Traylor (C7SC03450D-(cit24)/*[position()=1]) 1992; 31 Andrew (C7SC03450D-(cit43)/*[position()=1]) 2002; 41 Yu (C7SC03450D-(cit25)/*[position()=1]) 1994; 116 Zhao (C7SC03450D-(cit18)/*[position()=1]) 1999; 96 Martí (C7SC03450D-(cit23)/*[position()=1]) 2003; 8 Derbyshire (C7SC03450D-(cit26)/*[position()=1]) 2012; 81 Wu (C7SC03450D-(cit35)/*[position()=1]) 2015; 54 Hooper (C7SC03450D-(cit1)/*[position()=1]) 2005; vol. 16 Andrew (C7SC03450D-(cit30)/*[position()=1]) 2001; 40 Arciero (C7SC03450D-(cit5)/*[position()=1]) 1998; 37 Fernández (C7SC03450D-(cit16)/*[position()=1]) 2008; 102 Caranto (C7SC03450D-(cit3)/*[position()=1]) 2017; 114 Jiang (C7SC03450D-(cit46)/*[position()=1]) 2014; 136 Numata (C7SC03450D-(cit12)/*[position()=1]) 1990; 108 Liptak (C7SC03450D-(cit41)/*[position()=1]) 2010; 132 Averill (C7SC03450D-(cit45)/*[position()=1]) 1996; 96 Tsai (C7SC03450D-(cit48)/*[position()=1]) 2010; 49 Pearson (C7SC03450D-(cit10)/*[position()=1]) 2007; 46 Evans (C7SC03450D-(cit38)/*[position()=1]) 2008; 108 Spiro (C7SC03450D-(cit33)/*[position()=1]) 1975; 416 Caranto (C7SC03450D-(cit13)/*[position()=1]) 2016; 113 Pixton (C7SC03450D-(cit49)/*[position()=1]) 2009; 131 Spiro (C7SC03450D-(cit31)/*[position()=1]) 1979; 101 Wu (C7SC03450D-(cit34)/*[position()=1]) 2013; 52 Anslyn (C7SC03450D-(cit36)/*[position()=1]) 2006 Hughes (C7SC03450D-(cit15)/*[position()=1]) 2008; 436 Andersson (C7SC03450D-(cit11)/*[position()=1]) 1984; 259 Attia (C7SC03450D-(cit39)/*[position()=1]) 2014; 118 Hendrich (C7SC03450D-(cit17)/*[position()=1]) 2002; 41 Hunt (C7SC03450D-(cit27)/*[position()=1]) 2015; 48 Klotz (C7SC03450D-(cit9)/*[position()=1]) 2008; 10 Andersson (C7SC03450D-(cit29)/*[position()=1]) 1991; 174 Goodrich (C7SC03450D-(cit19)/*[position()=1]) 2010; 49 Berto (C7SC03450D-(cit20)/*[position()=1]) 2009; 131 Enemark (C7SC03450D-(cit14)/*[position()=1]) 1974; 13 Irvine (C7SC03450D-(cit50)/*[position()=1]) 2008; 29 Spiro (C7SC03450D-(cit32)/*[position()=1]) 1974; 96 Lawson (C7SC03450D-(cit47)/*[position()=1]) 2000; 19 Maalcke (C7SC03450D-(cit8)/*[position()=1]) 2016; 291 Wyllie (C7SC03450D-(cit22)/*[position()=1]) 2002; 102 Wasser (C7SC03450D-(cit44)/*[position()=1]) 2002; 102 Bock (C7SC03450D-(cit2)/*[position()=1]) 2006 McQuarters (C7SC03450D-(cit40)/*[position()=1]) 2014; 19 Matsumura (C7SC03450D-(cit42)/*[position()=1]) 2014; 136 |
| References_xml | – volume: 96 start-page: 338 year: 1974 ident: C7SC03450D-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00809a004 – volume: 41 start-page: 4603 year: 2002 ident: C7SC03450D-(cit17)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi011332z – volume: 46 start-page: 8340 year: 2007 ident: C7SC03450D-(cit10)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi700086r – volume-title: Modern physical organic chemistry year: 2006 ident: C7SC03450D-(cit36)/*[position()=1] – volume: 96 start-page: 2951 year: 1996 ident: C7SC03450D-(cit45)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr950056p – volume: 259 start-page: 6833 year: 1984 ident: C7SC03450D-(cit11)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)39803-4 – volume: 113 start-page: 14704 year: 2016 ident: C7SC03450D-(cit13)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1611051113 – volume: 436 start-page: 3 year: 2008 ident: C7SC03450D-(cit15)/*[position()=1] publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(08)36001-7 – volume: 31 start-page: 2847 year: 1992 ident: C7SC03450D-(cit24)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi00126a001 – volume: 101 start-page: 2648 year: 1979 ident: C7SC03450D-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00504a027 – volume-title: Introduction to error analysis, the study of uncertainties in physical measurements year: 1997 ident: C7SC03450D-(cit37)/*[position()=1] – volume: 52 start-page: 6211 year: 2013 ident: C7SC03450D-(cit4)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi400960w – volume: 102 start-page: 1201 year: 2002 ident: C7SC03450D-(cit44)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr0006627 – volume: 48 start-page: 2117 year: 2015 ident: C7SC03450D-(cit27)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00167 – volume: 41 start-page: 2353 year: 2002 ident: C7SC03450D-(cit43)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi011419k – volume: 8 start-page: 595 year: 2003 ident: C7SC03450D-(cit23)/*[position()=1] publication-title: J. Biol. Inorg Chem. doi: 10.1007/s00775-003-0452-9 – volume: 37 start-page: 523 year: 1998 ident: C7SC03450D-(cit5)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi972187l – volume: 102 start-page: 1523 year: 2008 ident: C7SC03450D-(cit16)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2008.01.032 – volume: 118 start-page: 12140 year: 2014 ident: C7SC03450D-(cit39)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp507023a – volume: 81 start-page: 533 year: 2012 ident: C7SC03450D-(cit26)/*[position()=1] publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-050410-100030 – volume: 19 start-page: 82 year: 2014 ident: C7SC03450D-(cit40)/*[position()=1] publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2014.01.017 – volume: vol. 16 volume-title: Respiration in archaea and bacteria year: 2005 ident: C7SC03450D-(cit1)/*[position()=1] – volume: 291 start-page: 17077 year: 2016 ident: C7SC03450D-(cit8)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.735530 – volume: 10 start-page: 3150 year: 2008 ident: C7SC03450D-(cit9)/*[position()=1] publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2008.01733.x – volume-title: The prokaryotes year: 2006 ident: C7SC03450D-(cit2)/*[position()=1] – volume: 19 start-page: 5661 year: 2000 ident: C7SC03450D-(cit47)/*[position()=1] publication-title: EMBO J. doi: 10.1093/emboj/19.21.5661 – volume: 136 start-page: 2420 year: 2014 ident: C7SC03450D-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410542z – volume: 40 start-page: 4115 year: 2001 ident: C7SC03450D-(cit30)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi0023652 – volume: 289 start-page: 1228 year: 2014 ident: C7SC03450D-(cit7)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.525147 – volume: 108 start-page: 1016 year: 1990 ident: C7SC03450D-(cit12)/*[position()=1] publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a123300 – volume: 176 start-page: 5879 year: 1994 ident: C7SC03450D-(cit6)/*[position()=1] publication-title: J. Bacteriol. doi: 10.1128/jb.176.19.5879-5887.1994 – volume: 49 start-page: 6293 year: 2010 ident: C7SC03450D-(cit19)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic902304a – volume: 116 start-page: 4117 year: 1994 ident: C7SC03450D-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00088a073 – volume: 96 start-page: 14753 year: 1999 ident: C7SC03450D-(cit18)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.26.14753 – volume: 54 start-page: 7098 year: 2015 ident: C7SC03450D-(cit35)/*[position()=1] publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00994 – volume: 131 start-page: 17116 year: 2009 ident: C7SC03450D-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904368n – volume: 52 start-page: 9432 year: 2013 ident: C7SC03450D-(cit34)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi401408x – volume: 131 start-page: 4846 year: 2009 ident: C7SC03450D-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809587q – volume: 38 start-page: 566 year: 2013 ident: C7SC03450D-(cit28)/*[position()=1] publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.08.008 – volume: 416 start-page: 169 year: 1975 ident: C7SC03450D-(cit33)/*[position()=1] publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4173(75)90006-3 – volume: 174 start-page: 358 year: 1991 ident: C7SC03450D-(cit29)/*[position()=1] publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(91)90528-F – volume: 49 start-page: 6587 year: 2010 ident: C7SC03450D-(cit48)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi1002234 – volume: 136 start-page: 12524 year: 2014 ident: C7SC03450D-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504343t – volume: 13 start-page: 339 year: 1974 ident: C7SC03450D-(cit14)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(00)80259-3 – volume: 108 start-page: 2113 year: 2008 ident: C7SC03450D-(cit38)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr068066l – volume: 114 start-page: 8217 year: 2017 ident: C7SC03450D-(cit3)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1704504114 – volume: 29 start-page: 601 year: 2008 ident: C7SC03450D-(cit50)/*[position()=1] publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2008.08.005 – volume: 102 start-page: 1067 year: 2002 ident: C7SC03450D-(cit22)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr000080p – volume: 132 start-page: 9753 year: 2010 ident: C7SC03450D-(cit41)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102098p – volume: 88 start-page: 595 year: 1982 ident: C7SC03450D-(cit21)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(82)85016-1 |
| SSID | ssj0000331527 |
| Score | 2.340872 |
| Snippet | Ammonia (NH
3
)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH
3
to nitrite (NO
2
−
). One obligate intermediate... Ammonia (NH )-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH to nitrite (NO ). One obligate intermediate of this... Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2−). One obligate intermediate of... Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of... A vital role has been identified for the heme-lysine cross-link unique to cytochromes P460: preventing enzyme deactivation during catalysis by the obligate... |
| SourceID | pubmedcentral osti proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 368 |
| SubjectTerms | Ammonia Catalysis Chemistry Crosslinking Cytochrome Entropy of activation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Lysine Metabolism Nitric oxide Nitrogen dioxide Nitrous oxide Oxidation Proteins Signaling |
| Title | Influences of the heme-lysine crosslink in cytochrome P460 over redox catalysis and nitric oxide sensitivity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29629106 https://www.proquest.com/docview/2010891866 https://www.proquest.com/docview/2023411287 https://www.osti.gov/biblio/1415513 https://pubmed.ncbi.nlm.nih.gov/PMC5872139 |
| Volume | 9 |
| WOSCitedRecordID | wos000419350700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: Royal Society of Chemistry Journals (Carleton) customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9VAFD7Ui6Cb-rax9TJiNy6CyZxkklmWaNFNKVXh7kJmMkMvlER609L-e8_Jy16p0PWcwMk8zpvvAzh0uXQyUo7SkiQKEy9daFDp0CH6GC1FSLLuySayk5N8tdKnO3D4nw4-6s9F9qOIMEmjL2xos5Sv7tlZMRdSIsSRmlVGSRyqVEYTDOnW11uOZ9HSA7ovqPx3NvKOszl-9jA1n8PuGEyKo-H0X8COa17Ck2LicHsFF98nDpKNaL2gYE_QogsZh6RxoteUW7hi3Qh727X2nNELxGmiIsGznYLhRG9EX-Nh6BJRNbUgI0DGU7Q369qJDQ_ADwwUr-HX8defxbdw5FcILeU5XVjHJncxpahYy9h5m0uKHYyWxtYWrbIefVJF3pMhil2N2qjKGUMhTGycjyuJb2DRtI3bA1Ergy6LbSIrlZjU6wotcj5nKRytsArg07T5pR3Bx5kD46Lsm-Coy7_7F8DHWfb3ALlxr9Q-n2FJgQKj3VoeC7IdZTI9ZU0AB9PRluOj3JTc-M81I_wF8GFephPhHknVuPaKZST5dXLaWQBvh5swKyG14h2ir7OtOzILMFT39kqzPu8hu9OcMm3U7x70a_vwlFTNh0LPASy6yyv3Hh7b6269uVzCo2yVL_vawbJ_CX8AewoAog |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+the+heme-lysine+crosslink+in+cytochrome+P460+over+redox+catalysis+and+nitric+oxide+sensitivity&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Vilbert%2C+Avery+C&rft.au=Caranto%2C+Jonathan+D&rft.au=Lancaster%2C+Kyle+M&rft.date=2018&rft.issn=2041-6520&rft.volume=9&rft.issue=2&rft.spage=368&rft_id=info:doi/10.1039%2Fc7sc03450d&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |