Polygenic type 2 diabetes prediction at the limit of common variant detection

Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)-associated genetic variation. We evaluated the performance of current polygenic T2D prediction. Using data from the Framingham Offspring (FOS) and the Coronary Artery Risk Development in You...

Full description

Saved in:
Bibliographic Details
Published in:Diabetes (New York, N.Y.) Vol. 63; no. 6; p. 2172
Main Authors: Vassy, Jason L, Hivert, Marie-France, Porneala, Bianca, Dauriz, Marco, Florez, Jose C, Dupuis, Josée, Siscovick, David S, Fornage, Myriam, Rasmussen-Torvik, Laura J, Bouchard, Claude, Meigs, James B
Format: Journal Article
Language:English
Published: United States 01.06.2014
Subjects:
ISSN:1939-327X, 1939-327X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)-associated genetic variation. We evaluated the performance of current polygenic T2D prediction. Using data from the Framingham Offspring (FOS) and the Coronary Artery Risk Development in Young Adults (CARDIA) studies, we tested three hypotheses: 1) a 62-locus genotype risk score (GRSt) improves T2D prediction compared with previous less inclusive GRSt; 2) separate GRS for β-cell (GRSβ) and insulin resistance (GRSIR) independently predict T2D; and 3) the relationships between T2D and GRSt, GRSβ, or GRSIR do not differ between blacks and whites. Among 1,650 young white adults in CARDIA, 820 young black adults in CARDIA, and 3,471 white middle-aged adults in FOS, cumulative T2D incidence was 5.9%, 14.4%, and 12.9%, respectively, over 25 years. The 62-locus GRSt was significantly associated with incident T2D in all three groups. In FOS but not CARDIA, the 62-locus GRSt improved the model C statistic (0.698 and 0.726 for models without and with GRSt, respectively; P < 0.001) but did not materially improve risk reclassification in either study. Results were similar among blacks compared with whites. The GRSβ but not GRSIR predicted incident T2D among FOS and CARDIA whites. At the end of the era of common variant discovery for T2D, polygenic scores can predict T2D in whites and blacks but do not outperform clinical models. Further optimization of polygenic prediction may require novel analytic methods, including less common as well as functional variants.
AbstractList Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)-associated genetic variation. We evaluated the performance of current polygenic T2D prediction. Using data from the Framingham Offspring (FOS) and the Coronary Artery Risk Development in Young Adults (CARDIA) studies, we tested three hypotheses: 1) a 62-locus genotype risk score (GRSt) improves T2D prediction compared with previous less inclusive GRSt; 2) separate GRS for β-cell (GRSβ) and insulin resistance (GRSIR) independently predict T2D; and 3) the relationships between T2D and GRSt, GRSβ, or GRSIR do not differ between blacks and whites. Among 1,650 young white adults in CARDIA, 820 young black adults in CARDIA, and 3,471 white middle-aged adults in FOS, cumulative T2D incidence was 5.9%, 14.4%, and 12.9%, respectively, over 25 years. The 62-locus GRSt was significantly associated with incident T2D in all three groups. In FOS but not CARDIA, the 62-locus GRSt improved the model C statistic (0.698 and 0.726 for models without and with GRSt, respectively; P < 0.001) but did not materially improve risk reclassification in either study. Results were similar among blacks compared with whites. The GRSβ but not GRSIR predicted incident T2D among FOS and CARDIA whites. At the end of the era of common variant discovery for T2D, polygenic scores can predict T2D in whites and blacks but do not outperform clinical models. Further optimization of polygenic prediction may require novel analytic methods, including less common as well as functional variants.
Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)-associated genetic variation. We evaluated the performance of current polygenic T2D prediction. Using data from the Framingham Offspring (FOS) and the Coronary Artery Risk Development in Young Adults (CARDIA) studies, we tested three hypotheses: 1) a 62-locus genotype risk score (GRSt) improves T2D prediction compared with previous less inclusive GRSt; 2) separate GRS for β-cell (GRSβ) and insulin resistance (GRSIR) independently predict T2D; and 3) the relationships between T2D and GRSt, GRSβ, or GRSIR do not differ between blacks and whites. Among 1,650 young white adults in CARDIA, 820 young black adults in CARDIA, and 3,471 white middle-aged adults in FOS, cumulative T2D incidence was 5.9%, 14.4%, and 12.9%, respectively, over 25 years. The 62-locus GRSt was significantly associated with incident T2D in all three groups. In FOS but not CARDIA, the 62-locus GRSt improved the model C statistic (0.698 and 0.726 for models without and with GRSt, respectively; P < 0.001) but did not materially improve risk reclassification in either study. Results were similar among blacks compared with whites. The GRSβ but not GRSIR predicted incident T2D among FOS and CARDIA whites. At the end of the era of common variant discovery for T2D, polygenic scores can predict T2D in whites and blacks but do not outperform clinical models. Further optimization of polygenic prediction may require novel analytic methods, including less common as well as functional variants.Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)-associated genetic variation. We evaluated the performance of current polygenic T2D prediction. Using data from the Framingham Offspring (FOS) and the Coronary Artery Risk Development in Young Adults (CARDIA) studies, we tested three hypotheses: 1) a 62-locus genotype risk score (GRSt) improves T2D prediction compared with previous less inclusive GRSt; 2) separate GRS for β-cell (GRSβ) and insulin resistance (GRSIR) independently predict T2D; and 3) the relationships between T2D and GRSt, GRSβ, or GRSIR do not differ between blacks and whites. Among 1,650 young white adults in CARDIA, 820 young black adults in CARDIA, and 3,471 white middle-aged adults in FOS, cumulative T2D incidence was 5.9%, 14.4%, and 12.9%, respectively, over 25 years. The 62-locus GRSt was significantly associated with incident T2D in all three groups. In FOS but not CARDIA, the 62-locus GRSt improved the model C statistic (0.698 and 0.726 for models without and with GRSt, respectively; P < 0.001) but did not materially improve risk reclassification in either study. Results were similar among blacks compared with whites. The GRSβ but not GRSIR predicted incident T2D among FOS and CARDIA whites. At the end of the era of common variant discovery for T2D, polygenic scores can predict T2D in whites and blacks but do not outperform clinical models. Further optimization of polygenic prediction may require novel analytic methods, including less common as well as functional variants.
Author Siscovick, David S
Bouchard, Claude
Porneala, Bianca
Rasmussen-Torvik, Laura J
Meigs, James B
Fornage, Myriam
Hivert, Marie-France
Florez, Jose C
Dauriz, Marco
Dupuis, Josée
Vassy, Jason L
Author_xml – sequence: 1
  givenname: Jason L
  surname: Vassy
  fullname: Vassy, Jason L
  organization: Harvard Medical School, Boston, MASection of General Internal Medicine, VA Boston Healthcare System, Boston, MADivision of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA
– sequence: 2
  givenname: Marie-France
  surname: Hivert
  fullname: Hivert, Marie-France
  organization: Harvard Medical School, Boston, MADepartment of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MADivision of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
– sequence: 3
  givenname: Bianca
  surname: Porneala
  fullname: Porneala, Bianca
  organization: General Medicine Division, Massachusetts General Hospital, Boston, MA
– sequence: 4
  givenname: Marco
  surname: Dauriz
  fullname: Dauriz, Marco
  organization: Harvard Medical School, Boston, MAGeneral Medicine Division, Massachusetts General Hospital, Boston, MADivision of Endocrinology and Metabolic Diseases, Department of Medicine, University of Verona Medical School and Hospital Trust of Verona, Verona, Italy
– sequence: 5
  givenname: Jose C
  surname: Florez
  fullname: Florez, Jose C
  organization: Harvard Medical School, Boston, MADiabetes Research Center (Diabetes Unit), and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MAProgram in Medical and Population Genetics, Broad Institute, Cambridge, MA
– sequence: 6
  givenname: Josée
  surname: Dupuis
  fullname: Dupuis, Josée
  organization: Department of Biostatistics, Boston University School of Public Health, Boston, MANational Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA
– sequence: 7
  givenname: David S
  surname: Siscovick
  fullname: Siscovick, David S
  organization: Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA
– sequence: 8
  givenname: Myriam
  surname: Fornage
  fullname: Fornage, Myriam
  organization: Center for Human Genetics, University of Texas Health Science Center at Houston, Houston, TX
– sequence: 9
  givenname: Laura J
  surname: Rasmussen-Torvik
  fullname: Rasmussen-Torvik, Laura J
  organization: Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
– sequence: 10
  givenname: Claude
  surname: Bouchard
  fullname: Bouchard, Claude
  organization: Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA
– sequence: 11
  givenname: James B
  surname: Meigs
  fullname: Meigs, James B
  email: jmeigs@partners.org
  organization: Harvard Medical School, Boston, MAGeneral Medicine Division, Massachusetts General Hospital, Boston, MA jmeigs@partners.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24520119$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtKxDAUhoOMOBdd-AKSpZtqbk2apQzeYEQXCu5KLqcaaZvaZIR5e4uOIGfxH34-DpxviWZ97AGhU0ouGOfq0lvKCyolP0ALqrkuOFOvs3_7HC1T-iCEyGmO0JyJkhFK9QI9PMV29wZ9cDjvBsAM-2AsZEh4GMEHl0Pssck4vwNuQxcyjg12seum-suMwfQZ-4n_AY_RYWPaBCf7XKGXm-vn9V2xeby9X19tCie0zoU1qqyqSoD2pbceSiWqxlXEKuOZaqQ0XJfMNsqJ6T-pJRDPqdEGBFAmgK3Q-e_dYYyfW0i57kJy0Lamh7hNNS1ZNYmRTEzo2R7d2g58PYyhM-Ou_lPAvgGtw15_
CitedBy_id crossref_primary_10_3390_nu14153201
crossref_primary_10_2337_dc14_0560
crossref_primary_10_1038_srep43709
crossref_primary_10_1161_CIRCULATIONAHA_121_058426
crossref_primary_10_1038_jhg_2016_93
crossref_primary_10_2337_dc16_0738
crossref_primary_10_1210_clinem_dgad456
crossref_primary_10_3389_fgene_2021_632385
crossref_primary_10_1016_j_numecd_2016_08_005
crossref_primary_10_1038_s41574_025_01132_w
crossref_primary_10_2337_dc14_0715
crossref_primary_10_1038_s41598_018_26106_z
crossref_primary_10_1007_s13668_022_00430_3
crossref_primary_10_2337_dc21_1051
crossref_primary_10_1093_hmg_ddab287
crossref_primary_10_1007_s11892_022_01462_3
crossref_primary_10_1093_hmg_ddz205
crossref_primary_10_1016_j_pbiomolbio_2014_09_010
crossref_primary_10_1038_s41598_019_45823_7
crossref_primary_10_4093_dmj_2019_0163
crossref_primary_10_2337_db14_0271
crossref_primary_10_1002_mnfr_202200077
crossref_primary_10_1038_nrendo_2015_226
crossref_primary_10_1210_clinem_dgz166
crossref_primary_10_1007_s11892_019_1173_y
crossref_primary_10_2337_dc15_2080
crossref_primary_10_1016_j_mam_2015_01_004
crossref_primary_10_1016_j_envint_2016_04_032
crossref_primary_10_1126_science_aaf7943
crossref_primary_10_1007_s00125_017_4313_4
crossref_primary_10_1038_s41598_021_93346_x
crossref_primary_10_1186_s13073_022_01074_2
crossref_primary_10_1136_bmj_l4292
crossref_primary_10_2337_db15_0033
crossref_primary_10_2337_db15_0950
crossref_primary_10_1007_s11892_020_01340_w
crossref_primary_10_1210_me_2015_1243
crossref_primary_10_1007_s00125_022_05774_7
crossref_primary_10_1186_s13148_015_0090_4
crossref_primary_10_3390_ijms232416081
crossref_primary_10_1016_j_jacc_2021_03_346
crossref_primary_10_1016_j_scitotenv_2023_164698
crossref_primary_10_1186_s12882_017_0439_3
crossref_primary_10_1016_j_diabres_2016_09_019
crossref_primary_10_1177_0333102416638519
crossref_primary_10_1111_jdi_14297
crossref_primary_10_1161_CIRCGEN_118_002090
crossref_primary_10_1186_s13073_024_01337_0
crossref_primary_10_1038_nrg_2016_56
crossref_primary_10_1038_s44324_025_00059_0
crossref_primary_10_3390_ijms23010295
crossref_primary_10_1016_j_jpsychires_2016_02_015
crossref_primary_10_1038_s41598_017_17380_4
crossref_primary_10_1007_s40471_015_0046_4
crossref_primary_10_2337_dc23_1691
crossref_primary_10_1007_s00439_016_1636_z
crossref_primary_10_1016_j_bbrc_2014_08_012
crossref_primary_10_1111_dom_14309
crossref_primary_10_1210_clinem_dgz102
crossref_primary_10_1161_CIRCGEN_121_003441
crossref_primary_10_1016_j_ajcnut_2023_08_017
crossref_primary_10_4239_wjd_v14_i6_656
crossref_primary_10_1097_MOP_0000000000001151
crossref_primary_10_1161_CIRCGENETICS_114_000740
crossref_primary_10_2337_db14_0449
crossref_primary_10_2337_dc14_0869
crossref_primary_10_1371_journal_pmed_1002102
crossref_primary_10_1177_1179551417748942
crossref_primary_10_34133_research_0683
crossref_primary_10_1007_s00125_015_3498_7
crossref_primary_10_1007_s00125_023_05870_2
crossref_primary_10_2478_enr_2023_0001
crossref_primary_10_1210_jendso_bvaf019
crossref_primary_10_1002_j_2040_4603_2020_tb00116_x
crossref_primary_10_2217_pme_15_19
crossref_primary_10_3390_ijms21051703
crossref_primary_10_3389_fgene_2015_00285
crossref_primary_10_1007_s11892_017_0958_0
crossref_primary_10_1016_j_cmet_2014_12_020
crossref_primary_10_3390_nu8120793
crossref_primary_10_3390_ijms25021151
crossref_primary_10_1371_journal_pone_0147071
crossref_primary_10_1007_s00125_016_3962_z
crossref_primary_10_1016_j_diabres_2020_108233
crossref_primary_10_1210_jendso_bvad123
crossref_primary_10_1007_s00592_015_0779_z
crossref_primary_10_2337_dc21_2048
crossref_primary_10_1038_s41591_022_01767_6
crossref_primary_10_2217_pme_2016_0029
crossref_primary_10_1007_s00125_018_4640_0
crossref_primary_10_1016_j_puhe_2017_04_003
crossref_primary_10_1038_ncomms8060
crossref_primary_10_2337_dc24_2891
crossref_primary_10_2478_enr_2022_0001
crossref_primary_10_3390_ijms222111652
crossref_primary_10_1210_er_2019_00088
crossref_primary_10_1530_EJE_15_0284
crossref_primary_10_3390_ijms222011295
crossref_primary_10_2337_db14_1504
crossref_primary_10_1007_s00125_016_3920_9
crossref_primary_10_1210_js_2019_00069
crossref_primary_10_1371_journal_pone_0136464
crossref_primary_10_15829_1728_8800_20233746
crossref_primary_10_1016_j_rmed_2017_11_002
crossref_primary_10_1186_s13045_017_0526_8
crossref_primary_10_1186_s40246_022_00406_y
crossref_primary_10_1016_j_amepre_2015_12_006
crossref_primary_10_1097_MD_0000000000011252
crossref_primary_10_1007_s11606_016_3723_1
crossref_primary_10_1155_2016_3898502
crossref_primary_10_1038_s41431_020_0664_2
ContentType Journal Article
Copyright 2014 by the American Diabetes Association.
Copyright_xml – notice: 2014 by the American Diabetes Association.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2337/db13-1663
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
ExternalDocumentID 24520119
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01-DK-078616
– fundername: NHLBI NIH HHS
  grantid: HHSN268201300027C
– fundername: NIDDK NIH HHS
  grantid: K24 DK080140
– fundername: NHLBI NIH HHS
  grantid: HHSN268201300025C
– fundername: NHLBI NIH HHS
  grantid: HHSN268200900041C
– fundername: NHLBI NIH HHS
  grantid: HHSN268201300029C
– fundername: NHGRI NIH HHS
  grantid: U01 HG006500
– fundername: NHLBI NIH HHS
  grantid: N02-HL-6-4278
– fundername: NIDDK NIH HHS
  grantid: L30 DK089597
– fundername: NIDDK NIH HHS
  grantid: K24-DK-080140
GroupedDBID ---
.55
.GJ
.XZ
08P
0R~
18M
1CY
29F
2WC
354
4.4
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAFWJ
AAKAS
AAQQT
AAWTL
AAYEP
AAYJJ
ABOCM
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADGHP
ADZCM
AEGXH
AENEX
AERZD
AFFNX
AFKRA
AHMBA
AI.
AIAGR
AIZAD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EBS
ECM
EDB
EIF
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GICCO
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HZ~
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
ITC
J5H
K-O
K2M
K9-
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5~
M7P
MVM
N4W
NAPCQ
NPM
O5R
O5S
O9-
OB3
OHH
OK1
OVD
P2P
PCD
PEA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
TEORI
TR2
UKHRP
VH1
VVN
W8F
WH7
WOQ
WOW
X7M
XOL
YFH
YHG
YOC
YQJ
ZGI
ZXP
ZY1
~KM
7X8
ID FETCH-LOGICAL-c499t-ba758884e9d5dbde5748fc80b7ad27f66a3952bf7c4233696e0d31a9ae4e124e2
IEDL.DBID 7X8
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336643900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-327X
IngestDate Thu Sep 04 19:10:29 EDT 2025
Mon Jul 21 05:53:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2014 by the American Diabetes Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-ba758884e9d5dbde5748fc80b7ad27f66a3952bf7c4233696e0d31a9ae4e124e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4030114
PMID 24520119
PQID 1528337624
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1528337624
pubmed_primary_24520119
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2014
References 24962928 - Diabetes. 2014 Jul;63(7):e13. doi: 10.2337/db14-0449.
29669744 - Diabetes. 2018 Jun;67(6):1206. doi: 10.2337/db18-er06a.
24962927 - Diabetes. 2014 Jul;63(7):e11-2. doi: 10.2337/db14-0271.
References_xml – reference: 24962928 - Diabetes. 2014 Jul;63(7):e13. doi: 10.2337/db14-0449.
– reference: 29669744 - Diabetes. 2018 Jun;67(6):1206. doi: 10.2337/db18-er06a.
– reference: 24962927 - Diabetes. 2014 Jul;63(7):e11-2. doi: 10.2337/db14-0271.
SSID ssj0006060
Score 2.4824162
Snippet Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)-associated genetic variation. We evaluated the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2172
SubjectTerms Adolescent
Adult
Aged
Black or African American - genetics
Child
Child, Preschool
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - genetics
Environmental Exposure
Female
Follow-Up Studies
Genetic Predisposition to Disease
Genetic Variation
Genome-Wide Association Study
Genotype
Humans
Insulin Resistance - genetics
Male
Middle Aged
Obesity - complications
Obesity - genetics
Polymorphism, Single Nucleotide
Proportional Hazards Models
Prospective Studies
Risk Factors
Sedentary Behavior
White People - genetics
Title Polygenic type 2 diabetes prediction at the limit of common variant detection
URI https://www.ncbi.nlm.nih.gov/pubmed/24520119
https://www.proquest.com/docview/1528337624
Volume 63
WOSCitedRecordID wos000336643900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Uinjx_agvVvC6NNlssslJRCwebOlBIbeQfQQKJaltLPjvnUlSehIELzltlmVmdvebx34D8OB04rlcJVzFLuDSKo_rSFtuTViEeN9Kv-WZfVPjcZymyaQLuC27ssr1mdgc1LYyFCMf-MRCgrtByMf5J6euUZRd7VpobEMvQChDVq3SDVs4gnOvzSonPBAqbZmFBE4zsNoPuB8R--dvyLK5YYaH_13bERx02JI9tcZwDFuuPIG9UZc9P4XRpJp9o8FMDaPIKxNsHXll8wWNIiWxvGYICtmMXj6xqmC4BJyfrdCpRi0w6-qmeqs8g4_hy_vzK-_aKXCDbk3NdY6-QRxLl9jQautCJePCxJ5WuRWqiKI8SEKhC2UQYlGbP-fZwCf2bukQBThxDjtlVbpLYMY4RHZaqdgg3kIfxVqJWg9DIQulPd2H-7WgMjRXykHkpau-ltlGVH24aKWdzVtejYySwERBd_WHv69hH8fKtmjrBnoFblZ3C7tmVU-Xi7vGDvA7nox-AMUXvX8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polygenic+type+2+diabetes+prediction+at+the+limit+of+common+variant+detection&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Vassy%2C+Jason+L&rft.au=Hivert%2C+Marie-France&rft.au=Porneala%2C+Bianca&rft.au=Dauriz%2C+Marco&rft.date=2014-06-01&rft.eissn=1939-327X&rft.volume=63&rft.issue=6&rft.spage=2172&rft_id=info:doi/10.2337%2Fdb13-1663&rft_id=info%3Apmid%2F24520119&rft_id=info%3Apmid%2F24520119&rft.externalDocID=24520119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-327X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-327X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-327X&client=summon