Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow
A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model integrates the thermoacoustic equations of the standard linear theory into an energy balance-based numerical calculus scheme. Details of the time-...
Saved in:
| Published in: | International journal of heat and mass transfer Vol. 54; no. 21; pp. 4518 - 4530 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.10.2011
Elsevier |
| Subjects: | |
| ISSN: | 0017-9310, 1879-2189 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model integrates the thermoacoustic equations of the standard linear theory into an energy balance-based numerical calculus scheme. Details of the time-averaged temperature and heat flux density distributions within a representative domain of the heat exchangers and adjoining stack are given. The effect of operation conditions and geometrical parameters on the heat exchanger performance is investigated and main conclusions relevant for HX design are drawn as far as fin length, fin spacing, blockage ratio, gas and secondary fluid-side heat transfer coefficients are concerned. Most relevant is that the fin length and spacing affect in conjunction the heat exchanger behavior and have to be simultaneously optimized to minimize thermal losses localized at the HX-stack junctions. Model predictions fit experimental data found in literature within 36% and 49% respectively at moderate and high acoustic Reynolds numbers. |
|---|---|
| AbstractList | A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model integrates the thermoacoustic equations of the standard linear theory into an energy balance-based numerical calculus scheme. Details of the time-averaged temperature and heat flux density distributions within a representative domain of the heat exchangers and adjoining stack are given. The effect of operation conditions and geometrical parameters on the heat exchanger performance is investigated and main conclusions relevant for HX design are drawn as far as fin length, fin spacing, blockage ratio, gas and secondary fluid-side heat transfer coefficients are concerned. Most relevant is that the fin length and spacing affect in conjunction the heat exchanger behavior and have to be simultaneously optimized to minimize thermal losses localized at the HX-stack junctions. Model predictions fit experimental data found in literature within 36% and 49% respectively at moderate and high acoustic Reynolds numbers. |
| Author | Piccolo, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Piccolo fullname: Piccolo, A. email: apiccolo@unime.it organization: Department of Civil Engineering, University of Messina, Contrada di Dio, 98166 S. Agata (Messina), Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24383159$$DView record in Pascal Francis |
| BookMark | eNqVkU2PFCEQholZE2dH_wMXo5duYfpruGk2rh_Z6EXPpLq62GFCQwvMrvvvpTPrRS96IoSXpyrPe8kufPDE2Gspailk_-ZY2-OBIM-QUo7gk6FY74SUtehrsRuesI3cD6rayb26YBsh5FCpRopn7DKl43oVbb9h9stppmgRHMcwL6cM2QbPTYh8gQjOkeOLg0w8HyjOATCcUrbI19mcfuIB_C3FxK3nKYOfrL_l93BHPCS0rvwM8YEbF-6fs6cGXKIXj-eWfb9-_-3qY3Xz9cOnq3c3FbZK5WpsDQhpunZshnHAth9lix0Y0-wb1XWCmg7JqHEU7bSfehqU6sTQSAIzkkFqtuzVmbvE8ONEKevZJqSyiqeyu1ZSKdm0BbdlLx-TkIoAUyyiTXqJdob4oHdrRnaq5K7POYwhpUhGoz17KuKt01LotRJ91H9XotdKtOh1qaSA3v4B-j3rPxCfzwgqCu9seS2aySNNNhJmPQX777BffnG9wA |
| CODEN | IJHMAK |
| CitedBy_id | crossref_primary_10_1016_j_seta_2016_10_011 crossref_primary_10_1080_10407782_2013_784652 crossref_primary_10_3390_en8054138 crossref_primary_10_1016_j_apenergy_2016_03_002 crossref_primary_10_1016_j_applthermaleng_2025_126938 crossref_primary_10_3390_en15103806 crossref_primary_10_1016_j_applthermaleng_2016_08_093 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_035 crossref_primary_10_1080_10789669_2012_755897 crossref_primary_10_1016_j_icheatmasstransfer_2017_05_023 crossref_primary_10_1016_j_ijthermalsci_2021_107279 crossref_primary_10_1016_j_enconman_2014_05_019 crossref_primary_10_1016_j_apenergy_2012_09_044 crossref_primary_10_1016_j_apenergy_2015_03_092 crossref_primary_10_3390_app7020117 crossref_primary_10_1007_s00231_018_2280_z crossref_primary_10_3390_e17127875 crossref_primary_10_1016_j_applthermaleng_2012_03_014 crossref_primary_10_3390_app7070673 crossref_primary_10_1016_j_cryogenics_2015_01_005 crossref_primary_10_1016_j_applthermaleng_2020_116022 crossref_primary_10_1007_s00231_014_1440_z crossref_primary_10_1016_j_apacoust_2021_108136 crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_144 crossref_primary_10_1016_j_applthermaleng_2020_116223 crossref_primary_10_1016_j_cryogenics_2021_103408 crossref_primary_10_1016_j_applthermaleng_2018_07_073 crossref_primary_10_1016_j_applthermaleng_2023_121457 crossref_primary_10_1051_e3sconf_201911600028 crossref_primary_10_1631_jzus_A1300076 crossref_primary_10_1007_s00231_015_1634_z crossref_primary_10_1007_s40430_025_05460_w crossref_primary_10_1016_j_ijft_2024_100874 crossref_primary_10_1121_1_4863307 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122181 crossref_primary_10_1016_j_ijthermalsci_2015_10_032 crossref_primary_10_1016_j_applthermaleng_2019_114096 crossref_primary_10_1007_s11630_022_1572_2 crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_064 crossref_primary_10_3390_app7040417 crossref_primary_10_1016_j_cryogenics_2016_07_008 |
| Cites_doi | 10.1121/1.429343 10.1007/s00231-007-0316-x 10.1080/10407780152619784 10.1121/1.423045 10.2514/1.4342 10.1121/1.408047 10.1121/1.2019425 10.1121/1.1385180 10.1016/j.cryogenics.2007.04.003 10.1016/j.ijthermalsci.2008.06.007 10.1017/S0022112075001826 10.1121/1.396617 10.1016/j.ijheatmasstransfer.2005.11.009 10.1006/jsvi.2000.2979 10.1016/j.cryogenics.2008.01.001 10.1121/1.403896 10.1016/j.ijthermalsci.2006.06.004 10.1121/1.1487842 10.1080/104077899275362 10.1016/j.applthermaleng.2007.03.008 10.1121/1.1710503 10.1121/1.419578 10.1016/j.expthermflusci.2010.02.012 10.1121/1.2063087 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2011.06.027 |
| DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Applied Sciences |
| EISSN | 1879-2189 |
| EndPage | 4530 |
| ExternalDocumentID | 24383159 10_1016_j_ijheatmasstransfer_2011_06_027 S0017931011003498 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c499t-b4fa01f54b37b7c46b14c5aff3839550e35cef9bb04d8d6e79950731eafbefce3 |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000293989200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Mon Sep 29 05:13:50 EDT 2025 Mon Jul 21 09:15:07 EDT 2025 Sat Nov 29 03:56:25 EST 2025 Tue Nov 18 22:31:42 EST 2025 Fri Feb 23 02:23:46 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | Heat Sound Thermoacoustics Heat exchanger Finite differences Oscillating flow Numerical simulation Thermoacoustic effect Performance Refrigeration Modeling Heat transfer Finite difference method Standing wave Parallel plate |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c499t-b4fa01f54b37b7c46b14c5aff3839550e35cef9bb04d8d6e79950731eafbefce3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://zenodo.org/record/915 |
| PQID | 919913438 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_919913438 pascalfrancis_primary_24383159 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2011_06_027 crossref_primary_10_1016_j_ijheatmasstransfer_2011_06_027 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2011_06_027 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-01 |
| PublicationDateYYYYMMDD | 2011-10-01 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Landau, Lifshitz (b0085) 1959 Nsofor, Celik, Wang (b0140) 2007; 27 Tijani, Spoelstra (b0025) 2008; 48 Mozurkewich (b0045) 2001; 110 Piccolo, Pistone (b0040) 2006; 49 Swift (b0115) 1992; 92 Merkli, Thomann (b0105) 1975; 68 Backhaus, Swift (b0015) 2000; 107 Hofler (b0125) 1993; 94 G.W. Swift, Thermoacoustics: a unifying perspective for some engines and refrigerators, Acoust. Soc. Am., 2002. Swift (b0005) 1988; 84 Zoontjens, Howard, Zander, Cazzolato (b0135) 2009; 48 Besnoin, M Knio (b0070) 2004; 90 Tang, Bao, Chen, Qiu, Shou, Huong, Jin (b0020) 2007; 47 Mozurkewich (b0055) 1998; 103 Piccolo, Pistone (b0080) 2007; 46 Brewster, Raspet, Bass (b0110) 1997; 102 Press, Teukolsky, Vetterling, Flannerry (b0095) 1994 . Besnoin, M Knio (b0065) 2001; 40 Tijani, Zeegers, de Waele (b0130) 2002; 112 Paek, Braun, Mongeau (b0145) 2005; 118 Marx, Blanc-Benon (b0120) 2005; 118 Gusev, Lotton, Bailliet, Job, Bruneau (b0050) 2000; 235 Berson, Michard, Blanc-Benon (b0035) 2008; 44 Worlikar, Knio (b0060) 1999; 35 Marx, Blanc-Bennon (b0075) 2004; 42 Wakeland, Keolian (b0090) 2004; 115 Shi, Yu, Jaworski (b0030) 2010; 34 Worlikar (10.1016/j.ijheatmasstransfer.2011.06.027_b0060) 1999; 35 Besnoin (10.1016/j.ijheatmasstransfer.2011.06.027_b0070) 2004; 90 Wakeland (10.1016/j.ijheatmasstransfer.2011.06.027_b0090) 2004; 115 Piccolo (10.1016/j.ijheatmasstransfer.2011.06.027_b0040) 2006; 49 10.1016/j.ijheatmasstransfer.2011.06.027_b0010 Berson (10.1016/j.ijheatmasstransfer.2011.06.027_b0035) 2008; 44 Press (10.1016/j.ijheatmasstransfer.2011.06.027_b0095) 1994 Shi (10.1016/j.ijheatmasstransfer.2011.06.027_b0030) 2010; 34 Backhaus (10.1016/j.ijheatmasstransfer.2011.06.027_b0015) 2000; 107 Swift (10.1016/j.ijheatmasstransfer.2011.06.027_b0115) 1992; 92 Piccolo (10.1016/j.ijheatmasstransfer.2011.06.027_b0080) 2007; 46 Mozurkewich (10.1016/j.ijheatmasstransfer.2011.06.027_b0045) 2001; 110 Tijani (10.1016/j.ijheatmasstransfer.2011.06.027_b0130) 2002; 112 Zoontjens (10.1016/j.ijheatmasstransfer.2011.06.027_b0135) 2009; 48 Tang (10.1016/j.ijheatmasstransfer.2011.06.027_b0020) 2007; 47 Paek (10.1016/j.ijheatmasstransfer.2011.06.027_b0145) 2005; 118 Marx (10.1016/j.ijheatmasstransfer.2011.06.027_b0120) 2005; 118 10.1016/j.ijheatmasstransfer.2011.06.027_b0100 Hofler (10.1016/j.ijheatmasstransfer.2011.06.027_b0125) 1993; 94 Tijani (10.1016/j.ijheatmasstransfer.2011.06.027_b0025) 2008; 48 Besnoin (10.1016/j.ijheatmasstransfer.2011.06.027_b0065) 2001; 40 Landau (10.1016/j.ijheatmasstransfer.2011.06.027_b0085) 1959 Swift (10.1016/j.ijheatmasstransfer.2011.06.027_b0005) 1988; 84 Brewster (10.1016/j.ijheatmasstransfer.2011.06.027_b0110) 1997; 102 Gusev (10.1016/j.ijheatmasstransfer.2011.06.027_b0050) 2000; 235 Nsofor (10.1016/j.ijheatmasstransfer.2011.06.027_b0140) 2007; 27 Marx (10.1016/j.ijheatmasstransfer.2011.06.027_b0075) 2004; 42 Merkli (10.1016/j.ijheatmasstransfer.2011.06.027_b0105) 1975; 68 Mozurkewich (10.1016/j.ijheatmasstransfer.2011.06.027_b0055) 1998; 103 |
| References_xml | – year: 1959 ident: b0085 article-title: Fluid Mechanics – volume: 112 start-page: 128 year: 2002 end-page: 133 ident: b0130 article-title: The optimal stack spacing for thermoacoustic refrigeration publication-title: J. Acoust. Soc. Am. – volume: 115 start-page: 2873 year: 2004 end-page: 2886 ident: b0090 article-title: Effectiveness of parallel-plate heat exchangers in thermoacoustic devices publication-title: J. Acoust. Soc. Am. – volume: 49 start-page: 1631 year: 2006 end-page: 1642 ident: b0040 article-title: Estimation of heat transfer coefficients in oscillating flows: the thermoacoustic case publication-title: Int. J. Heat Mass Transfer – volume: 110 start-page: 841 year: 2001 end-page: 847 ident: b0045 article-title: Heat transfer from transverse tubes adjacent to a thermoacoustic stack publication-title: J. Acoust. Soc. Am. – volume: 84 start-page: 1145 year: 1988 end-page: 1180 ident: b0005 article-title: Thermoacoustic engines publication-title: J. Acoust. Soc. Am. – volume: 92 start-page: 1551 year: 1992 end-page: 1563 ident: b0115 article-title: Analysis and performance of a large thermoacoustic engine publication-title: J. Acoust. Soc. Am. – volume: 94 start-page: 1772 year: 1993 ident: b0125 article-title: Effective heat transfer between a thermoacoustic heat exchanger and stack publication-title: J. Acoust. Soc. Am. – volume: 44 start-page: 1015 year: 2008 end-page: 1023 ident: b0035 article-title: Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry publication-title: Heat Mass Transfer – volume: 47 start-page: 526 year: 2007 end-page: 529 ident: b0020 article-title: Thermoacoustically driven pulse tube cooler below 60 publication-title: Cryogenics – reference: G.W. Swift, Thermoacoustics: a unifying perspective for some engines and refrigerators, Acoust. Soc. Am., 2002. – volume: 68 start-page: 567 year: 1975 end-page: 579 ident: b0105 article-title: Transition to turbulence in oscillating pipe publication-title: J. Fluid Mech. – volume: 118 start-page: 2993 year: 2005 end-page: 2999 ident: b0120 article-title: Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator publication-title: J. Acoust. Soc. Am. – volume: 48 start-page: 733 year: 2009 end-page: 746 ident: b0135 article-title: Numerical study of flow and energy fields in thermoacoustic couples of non-zero thickness publication-title: Int. J. Thermal Sci. – volume: 102 year: 1997 ident: b0110 article-title: Temperature discontinuities between elements of thermoacoustic devices publication-title: J. Acoust. Soc. Am. – volume: 46 start-page: 235 year: 2007 end-page: 244 ident: b0080 article-title: Computation of the time-averaged temperature fields and energy fluxes in a thermally isolated thermoacoustic stack at low acoustic Mach numbers publication-title: Int. J. Thermal Sci. – volume: 118 start-page: 2271 year: 2005 end-page: 2280 ident: b0145 article-title: Characterizing heat transfer coefficients for heat exchangers in standing wave thermoacoustic coolers publication-title: J. Acoust. Soc. Am. – volume: 107 start-page: 3148 year: 2000 end-page: 3166 ident: b0015 article-title: A thermoacoustic Stirling heat engine: detailed study publication-title: J. Acoust. Soc. Am. – volume: 235 start-page: 711 year: 2000 end-page: 726 ident: b0050 article-title: Relaxation-time approximation for analytical evaluation of temperature field in thermoacoustic stack publication-title: J. Sound Vib. – volume: 90 start-page: 432 year: 2004 end-page: 444 ident: b0070 article-title: Numerical study of thermoacoustic heat exchangers publication-title: Acta Acust. United Acust. – volume: 35 start-page: 49 year: 1999 end-page: 65 ident: b0060 article-title: Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack publication-title: Numer. Heat Transfer Part A – volume: 42 start-page: 1338 year: 2004 end-page: 1347 ident: b0075 article-title: Numerical simulation of stack–heat exchangers coupling in a thermoacoustic refrigerator publication-title: AIAA J. – volume: 40 start-page: 445 year: 2001 end-page: 471 ident: b0065 article-title: Numerical study of thermoacoustic heat exchangers in the thin plate limit publication-title: Numer. Heat Transfer A – volume: 103 start-page: 3318 year: 1998 end-page: 3326 ident: b0055 article-title: A model for transverse heat transfer in themoacoustics publication-title: J. Acoust. Soc. Am. – year: 1994 ident: b0095 article-title: Numerical Recipes in Fortran – volume: 34 start-page: 954 year: 2010 end-page: 965 ident: b0030 article-title: Vortex shedding flow patterns and their transitions in oscillatory flows past parallel-plate thermoacoustic stacks publication-title: Exp. Thermal Fluid Sci. – volume: 48 start-page: 77 year: 2008 end-page: 82 ident: b0025 article-title: Study of coaxial thermoacoustic Stirling cooler publication-title: Cryogenics – reference: . – volume: 27 start-page: 2435 year: 2007 end-page: 2442 ident: b0140 article-title: Experimental study on the heat transfer at the heat exchanger of the thermoacoustic refrigerating system publication-title: Appl. Thermal Eng. – year: 1994 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0095 – volume: 107 start-page: 3148 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0015 article-title: A thermoacoustic Stirling heat engine: detailed study publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.429343 – volume: 44 start-page: 1015 issue: 8 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0035 article-title: Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry publication-title: Heat Mass Transfer doi: 10.1007/s00231-007-0316-x – volume: 40 start-page: 445 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0065 article-title: Numerical study of thermoacoustic heat exchangers in the thin plate limit publication-title: Numer. Heat Transfer A doi: 10.1080/10407780152619784 – volume: 103 start-page: 3318 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0055 article-title: A model for transverse heat transfer in themoacoustics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.423045 – volume: 42 start-page: 1338 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0075 article-title: Numerical simulation of stack–heat exchangers coupling in a thermoacoustic refrigerator publication-title: AIAA J. doi: 10.2514/1.4342 – volume: 94 start-page: 1772 year: 1993 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0125 article-title: Effective heat transfer between a thermoacoustic heat exchanger and stack publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.408047 – ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0100 – volume: 118 start-page: 2271 issue: 4 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0145 article-title: Characterizing heat transfer coefficients for heat exchangers in standing wave thermoacoustic coolers publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2019425 – volume: 110 start-page: 841 issue: 2 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0045 article-title: Heat transfer from transverse tubes adjacent to a thermoacoustic stack publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1385180 – year: 1959 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0085 – volume: 47 start-page: 526 issue: 9–10 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0020 article-title: Thermoacoustically driven pulse tube cooler below 60K publication-title: Cryogenics doi: 10.1016/j.cryogenics.2007.04.003 – volume: 48 start-page: 733 issue: 4 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0135 article-title: Numerical study of flow and energy fields in thermoacoustic couples of non-zero thickness publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2008.06.007 – volume: 68 start-page: 567 year: 1975 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0105 article-title: Transition to turbulence in oscillating pipe publication-title: J. Fluid Mech. doi: 10.1017/S0022112075001826 – volume: 84 start-page: 1145 year: 1988 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0005 article-title: Thermoacoustic engines publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.396617 – volume: 49 start-page: 1631 issue: 9–10 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0040 article-title: Estimation of heat transfer coefficients in oscillating flows: the thermoacoustic case publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.11.009 – volume: 235 start-page: 711 issue: 5 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0050 article-title: Relaxation-time approximation for analytical evaluation of temperature field in thermoacoustic stack publication-title: J. Sound Vib. doi: 10.1006/jsvi.2000.2979 – volume: 48 start-page: 77 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0025 article-title: Study of coaxial thermoacoustic Stirling cooler publication-title: Cryogenics doi: 10.1016/j.cryogenics.2008.01.001 – volume: 92 start-page: 1551 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0115 article-title: Analysis and performance of a large thermoacoustic engine publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.403896 – volume: 90 start-page: 432 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0070 article-title: Numerical study of thermoacoustic heat exchangers publication-title: Acta Acust. United Acust. – volume: 46 start-page: 235 issue: 3 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0080 article-title: Computation of the time-averaged temperature fields and energy fluxes in a thermally isolated thermoacoustic stack at low acoustic Mach numbers publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2006.06.004 – volume: 112 start-page: 128 issue: 1 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0130 article-title: The optimal stack spacing for thermoacoustic refrigeration publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1487842 – volume: 35 start-page: 49 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0060 article-title: Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack publication-title: Numer. Heat Transfer Part A doi: 10.1080/104077899275362 – volume: 27 start-page: 2435 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0140 article-title: Experimental study on the heat transfer at the heat exchanger of the thermoacoustic refrigerating system publication-title: Appl. Thermal Eng. doi: 10.1016/j.applthermaleng.2007.03.008 – ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0010 – volume: 115 start-page: 2873 issue: 6 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0090 article-title: Effectiveness of parallel-plate heat exchangers in thermoacoustic devices publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1710503 – volume: 102 issue: 6 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0110 article-title: Temperature discontinuities between elements of thermoacoustic devices publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.419578 – volume: 34 start-page: 954 issue: 7 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0030 article-title: Vortex shedding flow patterns and their transitions in oscillatory flows past parallel-plate thermoacoustic stacks publication-title: Exp. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2010.02.012 – volume: 118 start-page: 2993 issue: 5 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0120 article-title: Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2063087 |
| SSID | ssj0017046 |
| Score | 2.2431123 |
| Snippet | A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4518 |
| SubjectTerms | Applied sciences Cryogenics Density distribution Energy Energy. Thermal use of fuels Exact sciences and technology Finite differences Heat Heat exchanger Heat exchangers Heat transfer Mass transfer Mathematical analysis Mathematical models Parallel plates Refrigerating engineering. Cryogenics. Food conservation Sound Thermoacoustics |
| Title | Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.06.027 https://www.proquest.com/docview/919913438 |
| Volume | 54 |
| WOSCitedRecordID | wos000293989200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbpblsKpfRJ08eiQw-F4uC34lNZli1tKWEP25KbkWQJHLxOSJzd_In-585IsuM0tGwovYTExGKc-TIaSd98Q8g7XXDF0ox7sUxhgZJFqccTqZG45nNfccHNPuSPb2wyGU-n2cVg8LOthbmuWF2PN5ts8V9dDdfA2Vg6e4C7u0HhArwHp8MruB1eb-X4ydoewlSGLr7usQlR5ruqVIWtoxuFKefyag4R0TT0wpSx-aA2rhLY0GS7opcb7FGEspcAGnMqr6v5TT-v3d1Y7MlRmFFxc_4KsnRsSAFp8pYQfFFKVM02AWrU34BwDLigH1Rhossix051QdUqQzvwhIFni49dlIwTF3OV-2iPZvaiud1YmI3KGRqLdrZmOu3VdORbZYFdIe3fJriOdtgy2mb5_og5jpgjyS9kd8hxyJIMguTx6Zfz6dfuWIr5tvKrfeL75P2WMPh3K_-U9zxc8BVAQts2KnsZgUlzLh-TR259Qk8trp6QgaqfknuGJyxXz0jZoYv20EUBXbRFFzXoorvoomg03aKLljVt0UURXbSHLoroek6-fzq_PPvsuW4dnoRVc-OJWHM_0EksIiaYjFMRxDLhWkeQg8M6WEWJVDoTwo-LcZEqVCKE-SVQXAulpYpekKN6XquXhGYSZpEgTAu4N2ZSCS4KmJdUkQSM-Swcko_tb5lLJ2WPHVWq_LYeHpKsG2FhZV0OuPesdV_u0lSbfuaA2wNGOdnxfGdGiOLBsMgYEtpCIYeQj-d4vFbgtDxDumIEX3v1D0_xmjzY_pnfkKNmuVZvyV153ZSr5YkD_i-8neLi |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+computation+for+parallel+plate+thermoacoustic+heat+exchangers+in+standing+wave+oscillatory+flow&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Piccolo%2C+A.&rft.date=2011-10-01&rft.issn=0017-9310&rft.volume=54&rft.issue=21-22&rft.spage=4518&rft.epage=4530&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2011.06.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2011_06_027 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |