Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow

A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model integrates the thermoacoustic equations of the standard linear theory into an energy balance-based numerical calculus scheme. Details of the time-...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 54; no. 21; pp. 4518 - 4530
Main Author: Piccolo, A.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.10.2011
Elsevier
Subjects:
ISSN:0017-9310, 1879-2189
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model integrates the thermoacoustic equations of the standard linear theory into an energy balance-based numerical calculus scheme. Details of the time-averaged temperature and heat flux density distributions within a representative domain of the heat exchangers and adjoining stack are given. The effect of operation conditions and geometrical parameters on the heat exchanger performance is investigated and main conclusions relevant for HX design are drawn as far as fin length, fin spacing, blockage ratio, gas and secondary fluid-side heat transfer coefficients are concerned. Most relevant is that the fin length and spacing affect in conjunction the heat exchanger behavior and have to be simultaneously optimized to minimize thermal losses localized at the HX-stack junctions. Model predictions fit experimental data found in literature within 36% and 49% respectively at moderate and high acoustic Reynolds numbers.
AbstractList A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model integrates the thermoacoustic equations of the standard linear theory into an energy balance-based numerical calculus scheme. Details of the time-averaged temperature and heat flux density distributions within a representative domain of the heat exchangers and adjoining stack are given. The effect of operation conditions and geometrical parameters on the heat exchanger performance is investigated and main conclusions relevant for HX design are drawn as far as fin length, fin spacing, blockage ratio, gas and secondary fluid-side heat transfer coefficients are concerned. Most relevant is that the fin length and spacing affect in conjunction the heat exchanger behavior and have to be simultaneously optimized to minimize thermal losses localized at the HX-stack junctions. Model predictions fit experimental data found in literature within 36% and 49% respectively at moderate and high acoustic Reynolds numbers.
Author Piccolo, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Piccolo
  fullname: Piccolo, A.
  email: apiccolo@unime.it
  organization: Department of Civil Engineering, University of Messina, Contrada di Dio, 98166 S. Agata (Messina), Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24383159$$DView record in Pascal Francis
BookMark eNqVkU2PFCEQholZE2dH_wMXo5duYfpruGk2rh_Z6EXPpLq62GFCQwvMrvvvpTPrRS96IoSXpyrPe8kufPDE2Gspailk_-ZY2-OBIM-QUo7gk6FY74SUtehrsRuesI3cD6rayb26YBsh5FCpRopn7DKl43oVbb9h9stppmgRHMcwL6cM2QbPTYh8gQjOkeOLg0w8HyjOATCcUrbI19mcfuIB_C3FxK3nKYOfrL_l93BHPCS0rvwM8YEbF-6fs6cGXKIXj-eWfb9-_-3qY3Xz9cOnq3c3FbZK5WpsDQhpunZshnHAth9lix0Y0-wb1XWCmg7JqHEU7bSfehqU6sTQSAIzkkFqtuzVmbvE8ONEKevZJqSyiqeyu1ZSKdm0BbdlLx-TkIoAUyyiTXqJdob4oHdrRnaq5K7POYwhpUhGoz17KuKt01LotRJ91H9XotdKtOh1qaSA3v4B-j3rPxCfzwgqCu9seS2aySNNNhJmPQX777BffnG9wA
CODEN IJHMAK
CitedBy_id crossref_primary_10_1016_j_seta_2016_10_011
crossref_primary_10_1080_10407782_2013_784652
crossref_primary_10_3390_en8054138
crossref_primary_10_1016_j_apenergy_2016_03_002
crossref_primary_10_1016_j_applthermaleng_2025_126938
crossref_primary_10_3390_en15103806
crossref_primary_10_1016_j_applthermaleng_2016_08_093
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_035
crossref_primary_10_1080_10789669_2012_755897
crossref_primary_10_1016_j_icheatmasstransfer_2017_05_023
crossref_primary_10_1016_j_ijthermalsci_2021_107279
crossref_primary_10_1016_j_enconman_2014_05_019
crossref_primary_10_1016_j_apenergy_2012_09_044
crossref_primary_10_1016_j_apenergy_2015_03_092
crossref_primary_10_3390_app7020117
crossref_primary_10_1007_s00231_018_2280_z
crossref_primary_10_3390_e17127875
crossref_primary_10_1016_j_applthermaleng_2012_03_014
crossref_primary_10_3390_app7070673
crossref_primary_10_1016_j_cryogenics_2015_01_005
crossref_primary_10_1016_j_applthermaleng_2020_116022
crossref_primary_10_1007_s00231_014_1440_z
crossref_primary_10_1016_j_apacoust_2021_108136
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_144
crossref_primary_10_1016_j_applthermaleng_2020_116223
crossref_primary_10_1016_j_cryogenics_2021_103408
crossref_primary_10_1016_j_applthermaleng_2018_07_073
crossref_primary_10_1016_j_applthermaleng_2023_121457
crossref_primary_10_1051_e3sconf_201911600028
crossref_primary_10_1631_jzus_A1300076
crossref_primary_10_1007_s00231_015_1634_z
crossref_primary_10_1007_s40430_025_05460_w
crossref_primary_10_1016_j_ijft_2024_100874
crossref_primary_10_1121_1_4863307
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122181
crossref_primary_10_1016_j_ijthermalsci_2015_10_032
crossref_primary_10_1016_j_applthermaleng_2019_114096
crossref_primary_10_1007_s11630_022_1572_2
crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_064
crossref_primary_10_3390_app7040417
crossref_primary_10_1016_j_cryogenics_2016_07_008
Cites_doi 10.1121/1.429343
10.1007/s00231-007-0316-x
10.1080/10407780152619784
10.1121/1.423045
10.2514/1.4342
10.1121/1.408047
10.1121/1.2019425
10.1121/1.1385180
10.1016/j.cryogenics.2007.04.003
10.1016/j.ijthermalsci.2008.06.007
10.1017/S0022112075001826
10.1121/1.396617
10.1016/j.ijheatmasstransfer.2005.11.009
10.1006/jsvi.2000.2979
10.1016/j.cryogenics.2008.01.001
10.1121/1.403896
10.1016/j.ijthermalsci.2006.06.004
10.1121/1.1487842
10.1080/104077899275362
10.1016/j.applthermaleng.2007.03.008
10.1121/1.1710503
10.1121/1.419578
10.1016/j.expthermflusci.2010.02.012
10.1121/1.2063087
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2011.06.027
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Applied Sciences
EISSN 1879-2189
EndPage 4530
ExternalDocumentID 24383159
10_1016_j_ijheatmasstransfer_2011_06_027
S0017931011003498
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c499t-b4fa01f54b37b7c46b14c5aff3839550e35cef9bb04d8d6e79950731eafbefce3
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000293989200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Mon Sep 29 05:13:50 EDT 2025
Mon Jul 21 09:15:07 EDT 2025
Sat Nov 29 03:56:25 EST 2025
Tue Nov 18 22:31:42 EST 2025
Fri Feb 23 02:23:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Heat
Sound
Thermoacoustics
Heat exchanger
Finite differences
Oscillating flow
Numerical simulation
Thermoacoustic effect
Performance
Refrigeration
Modeling
Heat transfer
Finite difference method
Standing wave
Parallel plate
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-b4fa01f54b37b7c46b14c5aff3839550e35cef9bb04d8d6e79950731eafbefce3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://zenodo.org/record/915
PQID 919913438
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_919913438
pascalfrancis_primary_24383159
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2011_06_027
crossref_primary_10_1016_j_ijheatmasstransfer_2011_06_027
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2011_06_027
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of heat and mass transfer
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Landau, Lifshitz (b0085) 1959
Nsofor, Celik, Wang (b0140) 2007; 27
Tijani, Spoelstra (b0025) 2008; 48
Mozurkewich (b0045) 2001; 110
Piccolo, Pistone (b0040) 2006; 49
Swift (b0115) 1992; 92
Merkli, Thomann (b0105) 1975; 68
Backhaus, Swift (b0015) 2000; 107
Hofler (b0125) 1993; 94
G.W. Swift, Thermoacoustics: a unifying perspective for some engines and refrigerators, Acoust. Soc. Am., 2002.
Swift (b0005) 1988; 84
Zoontjens, Howard, Zander, Cazzolato (b0135) 2009; 48
Besnoin, M Knio (b0070) 2004; 90
Tang, Bao, Chen, Qiu, Shou, Huong, Jin (b0020) 2007; 47
Mozurkewich (b0055) 1998; 103
Piccolo, Pistone (b0080) 2007; 46
Brewster, Raspet, Bass (b0110) 1997; 102
Press, Teukolsky, Vetterling, Flannerry (b0095) 1994
.
Besnoin, M Knio (b0065) 2001; 40
Tijani, Zeegers, de Waele (b0130) 2002; 112
Paek, Braun, Mongeau (b0145) 2005; 118
Marx, Blanc-Benon (b0120) 2005; 118
Gusev, Lotton, Bailliet, Job, Bruneau (b0050) 2000; 235
Berson, Michard, Blanc-Benon (b0035) 2008; 44
Worlikar, Knio (b0060) 1999; 35
Marx, Blanc-Bennon (b0075) 2004; 42
Wakeland, Keolian (b0090) 2004; 115
Shi, Yu, Jaworski (b0030) 2010; 34
Worlikar (10.1016/j.ijheatmasstransfer.2011.06.027_b0060) 1999; 35
Besnoin (10.1016/j.ijheatmasstransfer.2011.06.027_b0070) 2004; 90
Wakeland (10.1016/j.ijheatmasstransfer.2011.06.027_b0090) 2004; 115
Piccolo (10.1016/j.ijheatmasstransfer.2011.06.027_b0040) 2006; 49
10.1016/j.ijheatmasstransfer.2011.06.027_b0010
Berson (10.1016/j.ijheatmasstransfer.2011.06.027_b0035) 2008; 44
Press (10.1016/j.ijheatmasstransfer.2011.06.027_b0095) 1994
Shi (10.1016/j.ijheatmasstransfer.2011.06.027_b0030) 2010; 34
Backhaus (10.1016/j.ijheatmasstransfer.2011.06.027_b0015) 2000; 107
Swift (10.1016/j.ijheatmasstransfer.2011.06.027_b0115) 1992; 92
Piccolo (10.1016/j.ijheatmasstransfer.2011.06.027_b0080) 2007; 46
Mozurkewich (10.1016/j.ijheatmasstransfer.2011.06.027_b0045) 2001; 110
Tijani (10.1016/j.ijheatmasstransfer.2011.06.027_b0130) 2002; 112
Zoontjens (10.1016/j.ijheatmasstransfer.2011.06.027_b0135) 2009; 48
Tang (10.1016/j.ijheatmasstransfer.2011.06.027_b0020) 2007; 47
Paek (10.1016/j.ijheatmasstransfer.2011.06.027_b0145) 2005; 118
Marx (10.1016/j.ijheatmasstransfer.2011.06.027_b0120) 2005; 118
10.1016/j.ijheatmasstransfer.2011.06.027_b0100
Hofler (10.1016/j.ijheatmasstransfer.2011.06.027_b0125) 1993; 94
Tijani (10.1016/j.ijheatmasstransfer.2011.06.027_b0025) 2008; 48
Besnoin (10.1016/j.ijheatmasstransfer.2011.06.027_b0065) 2001; 40
Landau (10.1016/j.ijheatmasstransfer.2011.06.027_b0085) 1959
Swift (10.1016/j.ijheatmasstransfer.2011.06.027_b0005) 1988; 84
Brewster (10.1016/j.ijheatmasstransfer.2011.06.027_b0110) 1997; 102
Gusev (10.1016/j.ijheatmasstransfer.2011.06.027_b0050) 2000; 235
Nsofor (10.1016/j.ijheatmasstransfer.2011.06.027_b0140) 2007; 27
Marx (10.1016/j.ijheatmasstransfer.2011.06.027_b0075) 2004; 42
Merkli (10.1016/j.ijheatmasstransfer.2011.06.027_b0105) 1975; 68
Mozurkewich (10.1016/j.ijheatmasstransfer.2011.06.027_b0055) 1998; 103
References_xml – year: 1959
  ident: b0085
  article-title: Fluid Mechanics
– volume: 112
  start-page: 128
  year: 2002
  end-page: 133
  ident: b0130
  article-title: The optimal stack spacing for thermoacoustic refrigeration
  publication-title: J. Acoust. Soc. Am.
– volume: 115
  start-page: 2873
  year: 2004
  end-page: 2886
  ident: b0090
  article-title: Effectiveness of parallel-plate heat exchangers in thermoacoustic devices
  publication-title: J. Acoust. Soc. Am.
– volume: 49
  start-page: 1631
  year: 2006
  end-page: 1642
  ident: b0040
  article-title: Estimation of heat transfer coefficients in oscillating flows: the thermoacoustic case
  publication-title: Int. J. Heat Mass Transfer
– volume: 110
  start-page: 841
  year: 2001
  end-page: 847
  ident: b0045
  article-title: Heat transfer from transverse tubes adjacent to a thermoacoustic stack
  publication-title: J. Acoust. Soc. Am.
– volume: 84
  start-page: 1145
  year: 1988
  end-page: 1180
  ident: b0005
  article-title: Thermoacoustic engines
  publication-title: J. Acoust. Soc. Am.
– volume: 92
  start-page: 1551
  year: 1992
  end-page: 1563
  ident: b0115
  article-title: Analysis and performance of a large thermoacoustic engine
  publication-title: J. Acoust. Soc. Am.
– volume: 94
  start-page: 1772
  year: 1993
  ident: b0125
  article-title: Effective heat transfer between a thermoacoustic heat exchanger and stack
  publication-title: J. Acoust. Soc. Am.
– volume: 44
  start-page: 1015
  year: 2008
  end-page: 1023
  ident: b0035
  article-title: Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry
  publication-title: Heat Mass Transfer
– volume: 47
  start-page: 526
  year: 2007
  end-page: 529
  ident: b0020
  article-title: Thermoacoustically driven pulse tube cooler below 60
  publication-title: Cryogenics
– reference: G.W. Swift, Thermoacoustics: a unifying perspective for some engines and refrigerators, Acoust. Soc. Am., 2002.
– volume: 68
  start-page: 567
  year: 1975
  end-page: 579
  ident: b0105
  article-title: Transition to turbulence in oscillating pipe
  publication-title: J. Fluid Mech.
– volume: 118
  start-page: 2993
  year: 2005
  end-page: 2999
  ident: b0120
  article-title: Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator
  publication-title: J. Acoust. Soc. Am.
– volume: 48
  start-page: 733
  year: 2009
  end-page: 746
  ident: b0135
  article-title: Numerical study of flow and energy fields in thermoacoustic couples of non-zero thickness
  publication-title: Int. J. Thermal Sci.
– volume: 102
  year: 1997
  ident: b0110
  article-title: Temperature discontinuities between elements of thermoacoustic devices
  publication-title: J. Acoust. Soc. Am.
– volume: 46
  start-page: 235
  year: 2007
  end-page: 244
  ident: b0080
  article-title: Computation of the time-averaged temperature fields and energy fluxes in a thermally isolated thermoacoustic stack at low acoustic Mach numbers
  publication-title: Int. J. Thermal Sci.
– volume: 118
  start-page: 2271
  year: 2005
  end-page: 2280
  ident: b0145
  article-title: Characterizing heat transfer coefficients for heat exchangers in standing wave thermoacoustic coolers
  publication-title: J. Acoust. Soc. Am.
– volume: 107
  start-page: 3148
  year: 2000
  end-page: 3166
  ident: b0015
  article-title: A thermoacoustic Stirling heat engine: detailed study
  publication-title: J. Acoust. Soc. Am.
– volume: 235
  start-page: 711
  year: 2000
  end-page: 726
  ident: b0050
  article-title: Relaxation-time approximation for analytical evaluation of temperature field in thermoacoustic stack
  publication-title: J. Sound Vib.
– volume: 90
  start-page: 432
  year: 2004
  end-page: 444
  ident: b0070
  article-title: Numerical study of thermoacoustic heat exchangers
  publication-title: Acta Acust. United Acust.
– volume: 35
  start-page: 49
  year: 1999
  end-page: 65
  ident: b0060
  article-title: Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack
  publication-title: Numer. Heat Transfer Part A
– volume: 42
  start-page: 1338
  year: 2004
  end-page: 1347
  ident: b0075
  article-title: Numerical simulation of stack–heat exchangers coupling in a thermoacoustic refrigerator
  publication-title: AIAA J.
– volume: 40
  start-page: 445
  year: 2001
  end-page: 471
  ident: b0065
  article-title: Numerical study of thermoacoustic heat exchangers in the thin plate limit
  publication-title: Numer. Heat Transfer A
– volume: 103
  start-page: 3318
  year: 1998
  end-page: 3326
  ident: b0055
  article-title: A model for transverse heat transfer in themoacoustics
  publication-title: J. Acoust. Soc. Am.
– year: 1994
  ident: b0095
  article-title: Numerical Recipes in Fortran
– volume: 34
  start-page: 954
  year: 2010
  end-page: 965
  ident: b0030
  article-title: Vortex shedding flow patterns and their transitions in oscillatory flows past parallel-plate thermoacoustic stacks
  publication-title: Exp. Thermal Fluid Sci.
– volume: 48
  start-page: 77
  year: 2008
  end-page: 82
  ident: b0025
  article-title: Study of coaxial thermoacoustic Stirling cooler
  publication-title: Cryogenics
– reference: .
– volume: 27
  start-page: 2435
  year: 2007
  end-page: 2442
  ident: b0140
  article-title: Experimental study on the heat transfer at the heat exchanger of the thermoacoustic refrigerating system
  publication-title: Appl. Thermal Eng.
– year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0095
– volume: 107
  start-page: 3148
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0015
  article-title: A thermoacoustic Stirling heat engine: detailed study
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.429343
– volume: 44
  start-page: 1015
  issue: 8
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0035
  article-title: Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-007-0316-x
– volume: 40
  start-page: 445
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0065
  article-title: Numerical study of thermoacoustic heat exchangers in the thin plate limit
  publication-title: Numer. Heat Transfer A
  doi: 10.1080/10407780152619784
– volume: 103
  start-page: 3318
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0055
  article-title: A model for transverse heat transfer in themoacoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.423045
– volume: 42
  start-page: 1338
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0075
  article-title: Numerical simulation of stack–heat exchangers coupling in a thermoacoustic refrigerator
  publication-title: AIAA J.
  doi: 10.2514/1.4342
– volume: 94
  start-page: 1772
  year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0125
  article-title: Effective heat transfer between a thermoacoustic heat exchanger and stack
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.408047
– ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0100
– volume: 118
  start-page: 2271
  issue: 4
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0145
  article-title: Characterizing heat transfer coefficients for heat exchangers in standing wave thermoacoustic coolers
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2019425
– volume: 110
  start-page: 841
  issue: 2
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0045
  article-title: Heat transfer from transverse tubes adjacent to a thermoacoustic stack
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1385180
– year: 1959
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0085
– volume: 47
  start-page: 526
  issue: 9–10
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0020
  article-title: Thermoacoustically driven pulse tube cooler below 60K
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2007.04.003
– volume: 48
  start-page: 733
  issue: 4
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0135
  article-title: Numerical study of flow and energy fields in thermoacoustic couples of non-zero thickness
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2008.06.007
– volume: 68
  start-page: 567
  year: 1975
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0105
  article-title: Transition to turbulence in oscillating pipe
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075001826
– volume: 84
  start-page: 1145
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0005
  article-title: Thermoacoustic engines
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.396617
– volume: 49
  start-page: 1631
  issue: 9–10
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0040
  article-title: Estimation of heat transfer coefficients in oscillating flows: the thermoacoustic case
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.11.009
– volume: 235
  start-page: 711
  issue: 5
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0050
  article-title: Relaxation-time approximation for analytical evaluation of temperature field in thermoacoustic stack
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2000.2979
– volume: 48
  start-page: 77
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0025
  article-title: Study of coaxial thermoacoustic Stirling cooler
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2008.01.001
– volume: 92
  start-page: 1551
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0115
  article-title: Analysis and performance of a large thermoacoustic engine
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.403896
– volume: 90
  start-page: 432
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0070
  article-title: Numerical study of thermoacoustic heat exchangers
  publication-title: Acta Acust. United Acust.
– volume: 46
  start-page: 235
  issue: 3
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0080
  article-title: Computation of the time-averaged temperature fields and energy fluxes in a thermally isolated thermoacoustic stack at low acoustic Mach numbers
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2006.06.004
– volume: 112
  start-page: 128
  issue: 1
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0130
  article-title: The optimal stack spacing for thermoacoustic refrigeration
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1487842
– volume: 35
  start-page: 49
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0060
  article-title: Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack
  publication-title: Numer. Heat Transfer Part A
  doi: 10.1080/104077899275362
– volume: 27
  start-page: 2435
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0140
  article-title: Experimental study on the heat transfer at the heat exchanger of the thermoacoustic refrigerating system
  publication-title: Appl. Thermal Eng.
  doi: 10.1016/j.applthermaleng.2007.03.008
– ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0010
– volume: 115
  start-page: 2873
  issue: 6
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0090
  article-title: Effectiveness of parallel-plate heat exchangers in thermoacoustic devices
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1710503
– volume: 102
  issue: 6
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0110
  article-title: Temperature discontinuities between elements of thermoacoustic devices
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.419578
– volume: 34
  start-page: 954
  issue: 7
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0030
  article-title: Vortex shedding flow patterns and their transitions in oscillatory flows past parallel-plate thermoacoustic stacks
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.02.012
– volume: 118
  start-page: 2993
  issue: 5
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2011.06.027_b0120
  article-title: Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2063087
SSID ssj0017046
Score 2.2431123
Snippet A simplified computational method for studying the heat transfer characteristics of parallel plate thermoacoustic heat exchangers is presented. The model...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4518
SubjectTerms Applied sciences
Cryogenics
Density distribution
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Finite differences
Heat
Heat exchanger
Heat exchangers
Heat transfer
Mass transfer
Mathematical analysis
Mathematical models
Parallel plates
Refrigerating engineering. Cryogenics. Food conservation
Sound
Thermoacoustics
Title Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.06.027
https://www.proquest.com/docview/919913438
Volume 54
WOSCitedRecordID wos000293989200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbpblsKpfRJ08eiQw-F4uC34lNZli1tKWEP25KbkWQJHLxOSJzd_In-585IsuM0tGwovYTExGKc-TIaSd98Q8g7XXDF0ox7sUxhgZJFqccTqZG45nNfccHNPuSPb2wyGU-n2cVg8LOthbmuWF2PN5ts8V9dDdfA2Vg6e4C7u0HhArwHp8MruB1eb-X4ydoewlSGLr7usQlR5ruqVIWtoxuFKefyag4R0TT0wpSx-aA2rhLY0GS7opcb7FGEspcAGnMqr6v5TT-v3d1Y7MlRmFFxc_4KsnRsSAFp8pYQfFFKVM02AWrU34BwDLigH1Rhossix051QdUqQzvwhIFni49dlIwTF3OV-2iPZvaiud1YmI3KGRqLdrZmOu3VdORbZYFdIe3fJriOdtgy2mb5_og5jpgjyS9kd8hxyJIMguTx6Zfz6dfuWIr5tvKrfeL75P2WMPh3K_-U9zxc8BVAQts2KnsZgUlzLh-TR259Qk8trp6QgaqfknuGJyxXz0jZoYv20EUBXbRFFzXoorvoomg03aKLljVt0UURXbSHLoroek6-fzq_PPvsuW4dnoRVc-OJWHM_0EksIiaYjFMRxDLhWkeQg8M6WEWJVDoTwo-LcZEqVCKE-SVQXAulpYpekKN6XquXhGYSZpEgTAu4N2ZSCS4KmJdUkQSM-Swcko_tb5lLJ2WPHVWq_LYeHpKsG2FhZV0OuPesdV_u0lSbfuaA2wNGOdnxfGdGiOLBsMgYEtpCIYeQj-d4vFbgtDxDumIEX3v1D0_xmjzY_pnfkKNmuVZvyV153ZSr5YkD_i-8neLi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+computation+for+parallel+plate+thermoacoustic+heat+exchangers+in+standing+wave+oscillatory+flow&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Piccolo%2C+A.&rft.date=2011-10-01&rft.issn=0017-9310&rft.volume=54&rft.issue=21-22&rft.spage=4518&rft.epage=4530&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2011.06.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2011_06_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon