DepressionMIGNN: A Multiple-Instance Learning-Based Depression Detection Model with Graph Neural Networks
The global prevalence of depression necessitates the application of technological solutions, particularly sensor-based systems, to augment scarce resources for early diagnostic purposes. In this study, we use benchmark datasets that contain multimodal data including video, audio, and transcribed tex...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 25; číslo 14; s. 4520 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
21.07.2025
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The global prevalence of depression necessitates the application of technological solutions, particularly sensor-based systems, to augment scarce resources for early diagnostic purposes. In this study, we use benchmark datasets that contain multimodal data including video, audio, and transcribed text. To address depression detection as a chronic long-term disorder reflected by temporal behavioral patterns, we propose a novel framework that segments videos into utterance-level instances using GRU for contextual representation, and then constructs graphs where utterance embeddings serve as nodes connected through dual relationships capturing both chronological development and intermittent relevant information. Graph neural networks are employed to learn multi-dimensional edge relationships and align multimodal representations across different temporal dependencies. Our approach achieves superior performance with an MAE of 5.25 and RMSE of 6.75 on AVEC2014, and CCC of 0.554 and RMSE of 4.61 on AVEC2019, demonstrating significant improvements over existing methods that focus primarily on momentary expressions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25144520 |