DepressionMIGNN: A Multiple-Instance Learning-Based Depression Detection Model with Graph Neural Networks

The global prevalence of depression necessitates the application of technological solutions, particularly sensor-based systems, to augment scarce resources for early diagnostic purposes. In this study, we use benchmark datasets that contain multimodal data including video, audio, and transcribed tex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 25; číslo 14; s. 4520
Hlavní autoři: Zhao, Shiwen, Zhang, Yunze, Su, Yikai, Su, Kaifeng, Liu, Jiemin, Wang, Tao, Yu, Shiqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 21.07.2025
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The global prevalence of depression necessitates the application of technological solutions, particularly sensor-based systems, to augment scarce resources for early diagnostic purposes. In this study, we use benchmark datasets that contain multimodal data including video, audio, and transcribed text. To address depression detection as a chronic long-term disorder reflected by temporal behavioral patterns, we propose a novel framework that segments videos into utterance-level instances using GRU for contextual representation, and then constructs graphs where utterance embeddings serve as nodes connected through dual relationships capturing both chronological development and intermittent relevant information. Graph neural networks are employed to learn multi-dimensional edge relationships and align multimodal representations across different temporal dependencies. Our approach achieves superior performance with an MAE of 5.25 and RMSE of 6.75 on AVEC2014, and CCC of 0.554 and RMSE of 4.61 on AVEC2019, demonstrating significant improvements over existing methods that focus primarily on momentary expressions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25144520