Probabilistic (logic) programming concepts
A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particu...
Uloženo v:
| Vydáno v: | Machine learning Ročník 100; číslo 1; s. 5 - 47 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2015
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-6125, 1573-0565, 1573-0565 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of
logic
programming languages such as Prolog, which have been considered for over 20 years. |
|---|---|
| AbstractList | A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years. A multitude of different probabilistic programming languages exists today, allextending a traditional programming language with primitives to support modeling ofcomplex, structured probability distributions. Each of these languages employs its own prob-abilistic primitives, and comes with a particular syntax, semantics and inference procedure.This makes it hard to understand the underlying programming concepts and appreciate thedifferences between the different languages. To obtain a better understanding of probabilisticprogramming, we identify a number of core programming concepts underlying the primi-tives used by various probabilistic languages, discuss the execution mechanisms that theyrequire and use these to position and survey state-of-the-art probabilistic languages and theirimplementation. While doing so, we focus on probabilistic extensions oflogicprogramminglanguages such as Prolog, which have been considered for over 20 years. Issue Title: Special Issue on Inductive Logic Programming and on Multi-Relational Learning; Guest Editors: Gerson Zaverucha and Vitor Santos Costa A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years. A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years. |
| Author | De Raedt, Luc Kimmig, Angelika |
| Author_xml | – sequence: 1 givenname: Luc surname: De Raedt fullname: De Raedt, Luc organization: Department of Computer Science, KU Leuven – sequence: 2 givenname: Angelika surname: Kimmig fullname: Kimmig, Angelika email: angelika.kimmig@cs.kuleuven.be organization: Department of Computer Science, KU Leuven |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86351$$DView record from Swedish Publication Index (Örebro universitet) |
| BookMark | eNp9kF9LwzAUxYMouE0_gG8DX6ZYzW2bNHkc8y8M9EF9DWmaloy2mUmLuE9vRifIQB8u9z78zuWcM0aHrW01QmeArwHj7MYD5jyNMJCIpOHYHKARkCyJMKHkEI0wYySiEJNjNPZ-hTGOKaMjdPnibC5zUxvfGTWd1bYy6mK6drZysmlMW02VbZVed_4EHZWy9vp0tyfo7f7udfEYLZ8fnhbzZaRSzruIK6oLnuGSckioopwzzmhaSEVorAqlY8lxoVQBUGaEAUsTiEuW6LzgqYY8maCr4a__1Os-F2tnGum-hJVG3Jr3ubCuCtMLRhMCAZ8NePD80WvficZ4petattr2XkCWYMyB8TSg53voyvauDWEEUM6AsDjlgcoGSjnrvdOlUKaTnbFt56SpBWCxrVwMlYtQudhWLjZBCXvKH-__aeJd2sC2lXa_PP0p-gZ53pTn |
| CitedBy_id | crossref_primary_10_1007_s10994_024_06543_w crossref_primary_10_1093_logcom_exaf023 crossref_primary_10_1007_s00521_025_11512_y crossref_primary_10_1016_j_jlamp_2024_100975 crossref_primary_10_1145_3447581 crossref_primary_10_1007_s10994_019_05842_x crossref_primary_10_1016_j_inffus_2022_11_025 crossref_primary_10_1016_j_jlamp_2024_101020 crossref_primary_10_1145_3132700 crossref_primary_10_1177_29498732251339951 crossref_primary_10_1098_rsos_230785 crossref_primary_10_1038_s41598_022_21801_4 crossref_primary_10_3390_ijgi8020092 crossref_primary_10_1007_s13218_019_00618_w crossref_primary_10_1017_S1471068421000314 crossref_primary_10_1017_S0263574723001339 crossref_primary_10_1016_j_future_2019_08_020 crossref_primary_10_1016_j_media_2020_101872 crossref_primary_10_1017_S1471068418000522 crossref_primary_10_1016_j_artint_2023_103967 crossref_primary_10_3390_info10110335 crossref_primary_10_1007_s10458_023_09600_1 crossref_primary_10_1145_3729325 crossref_primary_10_1016_j_artint_2023_104062 crossref_primary_10_1016_j_ijar_2019_05_003 crossref_primary_10_3233_NAI_240672 crossref_primary_10_1016_j_ic_2023_105061 crossref_primary_10_1016_j_ijar_2024_109130 crossref_primary_10_3389_frobt_2020_00100 crossref_primary_10_1016_j_ins_2022_12_012 crossref_primary_10_3233_IA_170106 crossref_primary_10_1007_s10994_018_5750_0 crossref_primary_10_1016_j_future_2021_10_021 crossref_primary_10_1016_j_ijar_2019_12_006 crossref_primary_10_1016_j_artint_2021_103452 crossref_primary_10_1109_TNNLS_2023_3246980 crossref_primary_10_1016_j_ijar_2016_05_005 crossref_primary_10_1145_3588719 crossref_primary_10_1007_s10489_020_02165_6 crossref_primary_10_1016_j_ijar_2016_06_009 crossref_primary_10_1080_11663081_2023_2244716 crossref_primary_10_1016_j_ins_2021_12_062 crossref_primary_10_1038_nature19477 crossref_primary_10_1007_s10994_021_06007_5 crossref_primary_10_1007_s10994_024_06610_2 crossref_primary_10_1016_j_artint_2024_104227 crossref_primary_10_1007_s12652_020_01989_x crossref_primary_10_1007_s10472_019_09620_2 crossref_primary_10_1016_j_artint_2024_104109 crossref_primary_10_1016_j_ijar_2020_01_009 crossref_primary_10_1017_S1471068421000016 crossref_primary_10_1016_j_artint_2021_103504 crossref_primary_10_1016_j_ijar_2016_10_002 crossref_primary_10_1007_s10115_021_01620_1 crossref_primary_10_1007_s11432_020_3569_0 crossref_primary_10_1002_aaai_12053 crossref_primary_10_1080_0952813X_2022_2062456 crossref_primary_10_3390_cryptography6020029 crossref_primary_10_3389_fdigh_2019_00006 |
| Cites_doi | 10.1017/CBO9780511810275 10.1145/215206.215372 10.1007/978-3-642-39091-3_37 10.1007/s10994-014-5443-2 10.1017/S147106841100010X 10.1016/S0004-3702(99)00102-2 10.1007/978-3-540-78652-8_6 10.3233/FI-2013-847 10.1007/978-3-540-25974-9_10 10.1145/131295.131299 10.1016/j.artmed.2013.09.003 10.1007/s10994-012-5304-9 10.1007/978-3-540-78652-8_7 10.1007/978-3-642-04180-8_53 10.1007/s10994-010-5213-8 10.1016/S0743-1066(99)00071-0 10.1145/2505515.2505573 10.1002/(SICI)1097-4571(2000)51:2<95::AID-ASI2>3.0.CO;2-H 10.3233/978-1-61499-098-7-33 10.1017/S1471068413000690 10.1017/S0269888900006147 10.1017/S1471068411000238 10.1016/0004-3702(93)90061-F 10.1007/978-3-540-89982-2_22 10.1145/6012.15399 10.1007/11536314_8 10.1017/S1471068410000566 10.1093/comjnl/bxt096 10.1145/959242.959247 10.1007/978-3-540-89982-2_18 10.1017/S1471068408003645 10.1007/978-3-540-27775-0_30 10.1609/aaai.v25i1.7852 10.3115/1220575.1220611 10.1007/978-3-642-24206-9_11 10.1007/s10994-006-5833-1 10.1039/c3mb25551d 10.1093/jigpal/jzp025 10.1609/aaai.v28i1.9067 10.1017/S1471068409003767 10.1007/978-3-540-78652-8_13 10.1609/aaai.v24i1.7755 10.1093/bioinformatics/btr698 10.1613/jair.1675 10.1016/B978-012088469-8.50076-0 10.1007/s10472-009-9135-8 10.1109/IROS.2013.6696747 10.1145/1102351.1102428 10.1007/978-3-031-01879-4 10.1613/jair.912 10.1007/978-3-540-78652-8_8 10.1137/0208032 10.1007/11853886_37 10.1017/S1471068414000076 10.7551/mitpress/4298.003.0069 10.1017/S1471068414000283 10.1017/S1471068410000207 10.1609/aaai.v24i1.7519 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2015 |
| Copyright_xml | – notice: The Author(s) 2015 |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U AABEP ADTPV AOWAS D8T D91 ZZAVC |
| DOI | 10.1007/s10994-015-5494-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic SWEPUB Örebro universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Örebro universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 47 |
| ExternalDocumentID | oai_DiVA_org_oru_86351 3752188901 10_1007_s10994_015_5494_z |
| Genre | Feature |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI Q9U PUEGO AABEP ADTPV AOWAS D8T D91 ZZAVC |
| ID | FETCH-LOGICAL-c499t-9c6ed970f69136c69989864dac562cdce2a90dccd11f758184312f83ebd94e1b3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 137 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358326000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Tue Nov 04 16:40:07 EST 2025 Thu Sep 04 20:20:55 EDT 2025 Tue Nov 04 21:34:10 EST 2025 Sat Nov 29 07:53:31 EST 2025 Tue Nov 18 22:31:47 EST 2025 Fri Feb 21 02:28:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Inference in probabilistic languages Statistical relational learning Probabilistic programming languages Probabilistic logic programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-9c6ed970f69136c69989864dac562cdce2a90dccd11f758184312f83ebd94e1b3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86351 |
| PQID | 1698158249 |
| PQPubID | 54194 |
| PageCount | 43 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_oru_86351 proquest_miscellaneous_1730091894 proquest_journals_1698158249 crossref_citationtrail_10_1007_s10994_015_5494_z crossref_primary_10_1007_s10994_015_5494_z springer_journals_10_1007_s10994_015_5494_z |
| PublicationCentury | 2000 |
| PublicationDate | 2015-07-01 |
| PublicationDateYYYYMMDD | 2015-07-01 |
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2015 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | PooleDProbabilistic Horn abduction and Bayesian networksArtificial Intelligence1993648112910.1016/0004-3702(93)90061-F ThonILandwehrNDe RaedtLStochastic relational processes: Efficient inference and applicationsMachine Learning2011822239272310819410.1007/s10994-010-5213-8 Pfeffer, A. (2009). Figaro: An object-oriented probabilistic programming language. Charles River Analytics: Technical report. Poole, D. (2010). Probabilistic programming languages: Independent choices and deterministic systems. In R. Dechter, H. Geffner & J. Halpern (Eds.), Heuristics, probability and causality: A tribute to Judea Pearl (pp. 253–269). NY: College Publications. Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), Proceedings of the 18th international joint conference on artificial intelligence (IJCAI-03) (pp. 985–991). Morgan Kaufmann Publishers. Hommersom, A., de Carvalho Ferreira, N., & Lucas, P. J. F. (2009). Integrating logical reasoning and probabilistic chain graphs. In W. L. Buntine, M. Grobelnik, D. Mladenic & J. Shawe-Taylor (Eds.), Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML/PKDD-09), Lecture Notes in Computer Science (Vol. 5781, pp. 548–563). Springer. Baral, C., Gelfond, M., & Rushton, J. N. (2004). Probabilistic reasoning with answer sets. In V. Lifschitz & I. Niemelä (Eds.), Proceedings of the 7th international conference on logic programming and nonmonotonic reasoning (LPNMR-04), Lecture Notes in Computer Science, (Vol. 2923, pp. 21–33). Springer. RichardsonMDomingosPMarkov logic networksMachine Learning2006621–210713610.1007/s10994-006-5833-1 Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T. G., Fern, A., & Restificar, A. C. (2005). Learning first-order probabilistic models with combining rules. In L. De Raedt & S. Wrobel (Eds.), Proceedings of the 22nd international conference on machine learning (ICML-05), ACM International conference proceeding series (Vol. 119, pp. 609–616). ACM. Fierens, D., Van den Broeck, G., Bruynooghe, M., & De Raedt, L. (2012). Constraints for probabilistic logic programming. In V. Mansinghka, D. Roy & N. Goodman (Eds.), Proceedings of the NIPS probabilistic programming workshop. MørkSHolmesIEvaluating bacterial gene-finding HMM structures as probabilistic logic programsBioinformatics201228563664210.1093/bioinformatics/btr698 WarrenDSMemoing for logic programsCommunications of the ACM (CACM)19923539311110.1145/131295.131299 HuthMRyanMLogic in Computer Science: Modelling and Reasoning About Systems2004CambridgeCambridge University Press10.1017/CBO9780511810275 KerstingKDe RaedtLRaikoTLogical hidden Markov modelsJournal of Artificial Intelligence Research (JAIR)200625425456 Arora, N. S., de Salvo Braz, R., Sudderth, E. B., & Russell, S. J. (2010). Gibbs sampling in open-universe stochastic languages. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 30–39). AUAI Press. Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In L. Sterling (Ed.), Proceedings of the 12th international conference on logic programming (ICLP-95) (pp. 715–729). MIT Press. Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2013). Programming with personalized PageRank: A locally groundable first-order probabilistic logic. In Q. He, A. Iyengar, W. Nejdl, J. Pei & R. Rastogi (Eds.), Proceedings of the 22nd ACM international conference on information and knowledge management (CIKM-13) (pp. 2129–2138). ACM. Kersting, K. (2012). Lifted probabilistic inference. In L. De Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz & P. J. F. Lucas (Eds.), Proceedings of the 20th European conference on artificial intelligence (ECAI-12), Frontiers in Artificial Intelligence and Applications (Vol. 242, pp. 33–38). IOS Press. Fuhr, N. (1995). Probabilistic Datalog—A logic for powerful retrieval methods. In E. A. Fox, P. Ingwersen & R. Fidel (Eds.), Proceedings of the 18th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR-95), (pp. 282–290). ACM Press. RenkensJVan den BroeckGNijssenSk-optimal: A novel approximate inference algorithm for ProbLogMachine Learning2012893215231297153110.1007/s10994-012-5304-9 Santos Costa, V., Page, D., & Cussens, J. (2008). CLP( BN): Constraint logic programming for probabilistic knowledge. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 156–188). Springer. GutmannBThonIKimmigABruynoogheMDe RaedtLThe magic of logical inference in probabilistic programmingTheory and Practice of Logic Programming (TPLP)2011114–566368010.1017/S1471068411000238 Poole, D. (1992). Logic programming, abduction and probability. In Proceedings of the international conference on fifth generation computing systems (FGCS-92) (pp. 530–538). IOS Press. RiguzziFMCINTYRE: A Monte Carlo system for probabilistic logic programmingFundamenta Informaticae201312445215413113202 Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In Y. Gil & R. J. Mooney (Eds.), Proceedings of the 21st national conference on artificial intelligence (AAAI-06) (pp. 458–463). AAAI Press. De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic Prolog and its application in link discovery. In M. M. Veloso (Ed.), Proceedings of the 20th international joint conference on artificial intelligence (IJCAI-07), (pp. 2462–2467). Morgan Kaufmann Publishers. ValiantLGThe complexity of enumeration and reliability problemsSIAM Journal on Computing19798341042153925810.1137/0208032 BellodiELammaERiguzziFSantos CostaVZeseRLifted variable elimination for probabilistic logic programmingTheory and Practice of Logic Programming (TPLP)2014144–568169510.1017/S1471068414000283 KimmigAMihalkovaLGetoorLLifted graphical models: A surveyMachine Learning.2015991145332423410.1007/s10994-014-5443-2 Bröcheler, M., Mihalkova, L., & Getoor, L. (2010). Probabilistic similarity logic. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 73–82). AUAI Press. Stuhlmueller, A., Tenenbaum, J. B., & Goodman, N. D. (2010). Learning structured generative concepts. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 2296–2301). Cognitive Science Society. Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. B. (2013). Approximate Bayesian image interpretation using generative probabilistic graphics programs. In C. J. C. Burges, L. Bottou, Z. Ghahramani & K. Q. Weinberger (Eds.), Proceedings of the 27th annual conference on neural information processing systems (NIPS-13), Neural Information Processing Systems, (pp. 1520–1528). Van den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: A decision-theoretic probabilistic Prolog. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1217–1222). AAAI Press. RiguzziFExtended semantics and inference for the Independent Choice LogicLogic Journal of the IGPL2009176589629256445710.1093/jigpal/jzp025 VennekensJDeneckerMBruynoogheMCP-logic: A language of causal probabilistic events and its relation to logic programmingTheory and Practice of Logic Programming (TPLP)200993245308252561510.1017/S1471068409003767 MuggletonSDe RaedtLStochastic logic programsAdvances in inductive logic programming1996AmsterdamIOS Press254264 Suciu, D., Olteanu, D., Ré, C., & Koch, C. (2011). Probabilistic databases, Synthesis lectures on data management (Vol. 16). Burlington: Morgan & Claypool Publishers. Sato, T., & Kameya, Y. (1997). PRISM: A language for symbolic-statistical modeling. In M. E. Pollack (Ed.), Proceedings of the 15th international joint conference on artificial intelligence (IJCAI-97) (pp. 1330–1339). Morgan Kaufmann Publishers. Poole, D. (1995). Exploiting the rule structure for decision making within the independent choice logic. In P. Besnard & S. Hanks (Eds.), Proceedings of the eleventh annual conference on uncertainty in artificial intelligence (UAI-95) (pp. 454–463). Morgan Kaufmann Publishers. De MaeyerDRenkensJClootsLDeRaedt LMarchalKPhenetic: Network-based interpretation of unstructured gene lists in E. coliMolecular BioSystems2013971594160310.1039/c3mb25551d Angelopoulos, N., & Cussens, J. (2004). On the implementation of MCMC proposals over stochastic logic programs. In M. Carro & J. F. Morales (Eds.), Proceedings of the colloquium on implementation of constraint and logic programming systems (CICLOPS-04). SatoTKameyaYKuriharaKVariational Bayes via propositionalized probability computation in PRISMAnnals of Mathematics and Artificial Intelligence2008541–3135158255543510.1007/s10472-009-9135-8 Jaeger, M. (1997). Relational Bayesian networks. In D. Geiger & P. P. Shenoy (Eds.), Proceedings of the 13th conference on uncertainty in artificial intelligence (UAI-97) (pp. 266–273). Morgan Kaufmann Publishers. Eisner, J., & Filardo, N. W. (2011). Dyna: Extending Datalog for modern AI. In O. de Moor, G. Gottlob, T. Furche & A. Sellers (Eds.), Datalog reloaded, Lecture Notes in Computer Science (Vol. 6702, pp. 181–220). Springer. van der HeijdenMLucasPJFDescribing disease processes using a probabilistic logic of qualitative timeArtificial Intelligence in Medicine201359314315510.1016/j.artmed.2013.09.003 Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E. R., & Mitchell, T. M. (2010). Toward an architecture for never-ending language learning. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1306–1313). AAAI Press. Bancilhon, F., Maier, D., Sagiv, Y., & Ullman, J. D. (1986). Magic sets and other PA Flach (5494_CR24) 1994 J Renkens (5494_CR70) 2012; 89 5494_CR41 5494_CR40 5494_CR43 5494_CR45 5494_CR44 5494_CR48 N Fuhr (5494_CR26) 2000; 51 5494_CR50 5494_CR52 5494_CR51 C Baral (5494_CR5) 2009; 9 5494_CR54 5494_CR53 SJ Russell (5494_CR79) 2003 WW Cohen (5494_CR11) 2000; 118 5494_CR58 5494_CR57 J Vennekens (5494_CR101) 2009; 9 LG Valiant (5494_CR94) 1979; 8 D Poole (5494_CR63) 1993; 64 5494_CR9 5494_CR8 5494_CR7 5494_CR4 L Raedt De (5494_CR16) 2003; 5 5494_CR21 5494_CR20 F Riguzzi (5494_CR75) 2013; 124 5494_CR22 E Bellodi (5494_CR6) 2014; 14 5494_CR25 5494_CR27 5494_CR29 5494_CR28 I Thon (5494_CR93) 2011; 82 M Heijden van der (5494_CR33) 2013; 59 5494_CR100 5494_CR102 M Huth (5494_CR36) 2004 F Riguzzi (5494_CR76) 2014; 57 5494_CR3 5494_CR30 5494_CR2 5494_CR1 5494_CR32 5494_CR34 F Riguzzi (5494_CR73) 2009; 17 5494_CR35 5494_CR38 5494_CR37 D Maeyer De (5494_CR15) 2013; 9 5494_CR39 D Poole (5494_CR65) 2000; 44 S Muggleton (5494_CR56) 1996 B Gutmann (5494_CR31) 2011; 11 5494_CR81 5494_CR80 5494_CR83 5494_CR82 5494_CR85 5494_CR84 5494_CR87 M Richardson (5494_CR72) 2006; 62 JW Lloyd (5494_CR49) 1989 T Sato (5494_CR88) 2008; 54 D Fierens (5494_CR23) 2013; 15 K Kersting (5494_CR42) 2006; 25 J Pearl (5494_CR59) 1988 A Kimmig (5494_CR47) 2015; 99 5494_CR92 5494_CR91 5494_CR96 5494_CR95 5494_CR10 5494_CR98 5494_CR97 5494_CR12 5494_CR99 5494_CR14 5494_CR13 5494_CR18 5494_CR17 5494_CR19 DS Warren (5494_CR103) 1992; 35 T Sato (5494_CR86) 2001; 15 MP Wellman (5494_CR104) 1992; 7 J Sneyers (5494_CR90) 2010; 10 5494_CR61 5494_CR60 5494_CR62 5494_CR64 5494_CR67 5494_CR66 F Riguzzi (5494_CR77) 2011; 11 5494_CR69 5494_CR68 A Kimmig (5494_CR46) 2011; 11 S Mørk (5494_CR55) 2012; 28 5494_CR71 5494_CR74 5494_CR78 A Skarlatidis (5494_CR89) 2015; 15 |
| References_xml | – reference: Cohen, S. B., Simmons, R. J., & Smith, N. A. (2008). Dynamic programming algorithms as products of weighted logic programs. In M. Garcia de la Banda & E. Pontelli (Eds.), Proceedings of the 24th international conference on logic programming (ICLP-08), Lecture Notes in Computer Science (Vol. 5366, pp. 114–129). Springer. – reference: Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2013). Programming with personalized PageRank: A locally groundable first-order probabilistic logic. In Q. He, A. Iyengar, W. Nejdl, J. Pei & R. Rastogi (Eds.), Proceedings of the 22nd ACM international conference on information and knowledge management (CIKM-13) (pp. 2129–2138). ACM. – reference: Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., & De Raedt, L. (2011). Inference in probabilistic logic programs using weighted CNFs. In F. G. Cozman & A. Pfeffer (Eds.), Proceedings of the 27th conference on uncertainty in artificial intelligence (UAI-11), (pp. 211–220). AUAI Press. – reference: ThonILandwehrNDe RaedtLStochastic relational processes: Efficient inference and applicationsMachine Learning2011822239272310819410.1007/s10994-010-5213-8 – reference: Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E. R., & Mitchell, T. M. (2010). Toward an architecture for never-ending language learning. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1306–1313). AAAI Press. – reference: Getoor, L., Friedman, N., Koller, D., Pfeffer, A., & Taskar, B. (2007). Probabilistic relational models. In L. Getoor & B. Taskar (Eds.), An introduction to statistical relational learning (pp. 129–174). Cambridge, MA: MIT Press. – reference: PooleDAbducing through negation as failure: Stable models within the independent choice logicJournal of Logic Programming2000441–3535176837610.1016/S0743-1066(99)00071-0 – reference: LloydJWFoundations of Logic Programming19892BerlinSpringer – reference: Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In N. Amato (Ed.), Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS-13) (pp. 2764–2771). IEEE. – reference: Sato, T., Kameya, Y., & Zhou, N. F. (2005). Generative modeling with failure in PRISM. In L. P. Kaelbling & A. Saffiotti (Eds.), Proceedings of the 19th international joint conference on artificial intelligence (IJCAI-05) (pp. 847–852). Professional Book Center. – reference: van der HeijdenMLucasPJFDescribing disease processes using a probabilistic logic of qualitative timeArtificial Intelligence in Medicine201359314315510.1016/j.artmed.2013.09.003 – reference: Eisner, J., Goldlust, E., & Smith, N. (2005). Compiling Comp Ling: Weighted dynamic programming and the Dyna language. In C. Brew, L. F. Chien & K. Kirchhoff (Eds.), Proceedings of the human language technology conference and conference on empirical methods in natural language processing (HLT/EMNLP-05), (pp. 281–290). The Association for Computational Linguistics. – reference: RiguzziFMCINTYRE: A Monte Carlo system for probabilistic logic programmingFundamenta Informaticae201312445215413113202 – reference: Jaeger, M. (2008). Model-theoretic expressivity analysis. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 325–339). Springer. – reference: Hommersom, A., & Lucas, P. J. F. (2011). Generalising the interaction rules in probabilistic logic. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11), (pp. 912–917). AAAI Press. – reference: Kimmig, A., Gutmann, B., & Santos Costa, V. (2009). Trading memory for answers: Towards tabling ProbLog. In P. Domingos & K. Kersting (Eds.), Proceedings of the international workshop on statistical relational learning (SRL-2009). – reference: WarrenDSMemoing for logic programsCommunications of the ACM (CACM)19923539311110.1145/131295.131299 – reference: RichardsonMDomingosPMarkov logic networksMachine Learning2006621–210713610.1007/s10994-006-5833-1 – reference: Hommersom, A., de Carvalho Ferreira, N., & Lucas, P. J. F. (2009). Integrating logical reasoning and probabilistic chain graphs. In W. L. Buntine, M. Grobelnik, D. Mladenic & J. Shawe-Taylor (Eds.), Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML/PKDD-09), Lecture Notes in Computer Science (Vol. 5781, pp. 548–563). Springer. – reference: Roy, D., Mansinghka, V., Winn, J., McAllester, D., Tenenbaum, D. (Eds.) (2008) . Probabilistic programming, NIPS Workshop. – reference: KimmigAMihalkovaLGetoorLLifted graphical models: A surveyMachine Learning.2015991145332423410.1007/s10994-014-5443-2 – reference: Baral, C., Gelfond, M., & Rushton, J. N. (2004). Probabilistic reasoning with answer sets. In V. Lifschitz & I. Niemelä (Eds.), Proceedings of the 7th international conference on logic programming and nonmonotonic reasoning (LPNMR-04), Lecture Notes in Computer Science, (Vol. 2923, pp. 21–33). Springer. – reference: Kersting, K. (2012). Lifted probabilistic inference. In L. De Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz & P. J. F. Lucas (Eds.), Proceedings of the 20th European conference on artificial intelligence (ECAI-12), Frontiers in Artificial Intelligence and Applications (Vol. 242, pp. 33–38). IOS Press. – reference: Pfeffer, A. (2001). IBAL: A probabilistic rational programming language. In B. Nebel (Ed.), Proceedings of the 17th international joint conference on artificial intelligence (IJCAI-01), (pp. 733–740). Morgan Kaufmann Publishers. – reference: KerstingKDe RaedtLRaikoTLogical hidden Markov modelsJournal of Artificial Intelligence Research (JAIR)200625425456 – reference: SatoTKameyaYKuriharaKVariational Bayes via propositionalized probability computation in PRISMAnnals of Mathematics and Artificial Intelligence2008541–3135158255543510.1007/s10472-009-9135-8 – reference: Dantsin, E. (1991). Probabilistic logic programs and their semantics. In A. Voronkov (Ed.), Proceedings of the first Russian conference on logic programming, Lecture Notes in Computer Science (Vol. 592, pp. 152–164). Springer. – reference: Bröcheler, M., Mihalkova, L., & Getoor, L. (2010). Probabilistic similarity logic. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 73–82). AUAI Press. – reference: Haddawy, P. (1994). Generating Bayesian networks from probabilistic logic knowledge bases. In R. L. de Mántaras & D. Poole (Eds.), Proceedings of the 10th annual conference on uncertainty in artificial intelligence (UAI-94) (pp. 262–269). Morgan Kaufmann Publishers. – reference: MuggletonSDe RaedtLStochastic logic programsAdvances in inductive logic programming1996AmsterdamIOS Press254264 – reference: Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of ProbLog programs. In M. Garcia de la Banda & E. Pontelli (Eds.), Proceedings of the 24th international conference on logic programming (ICLP-08), Lecture Notes in Computer Science (Vol. 5366, pp. 175–189). Springer. – reference: SatoTKameyaYParameter learning of logic programs for symbolic-statistical modelingJournal of Artificial Intelligence Research (JAIR)2001153914541884084 – reference: Vennekens, J., Denecker, M., & Bruynooghe, M. (2006). Representing causal information about a probabilistic process. In M. Fisher, W. van der Hoek, B. Konev & A. Lisitsa (Eds.), Proceedings of the 10th European conference on logics in artificial intelligence (JELIA-06), Lecture Notes in Computer Science (Vol. 4160, pp. 452–464). Springer. – reference: Cussens, J. (2005). Integrating by separating: Combining probability and logic with ICL, PRISM and SLPs. APRIL II project report. – reference: RiguzziFExtended semantics and inference for the Independent Choice LogicLogic Journal of the IGPL2009176589629256445710.1093/jigpal/jzp025 – reference: SneyersJMeertWVennekensJKameyaYSatoTCHR(PRISM)-based probabilistic logic learningTheory and Practice of Logic Programming (TPLP)2010104–6433447267400810.1017/S1471068410000207 – reference: Kimmig, A., Van den Broeck, G., & De Raedt, L. (2011a). An algebraic Prolog for reasoning about possible worlds. In W. Burgard & D. Roth (Eds.), Proceedings of the 25th AAAI conference on artificial intelligence (AAAI-11) (pp. 209–214). AAAI Press. – reference: SkarlatidisAArtikisAFilippouJPaliourasGA probabilistic logic programming event calculusTheory and Practice of Logic Programming (TPLP)201515221324510.1017/S1471068413000690 – reference: Bragaglia, S., & Riguzzi, F. (2010). Approximate inference for logic programs with annotated disjunctions. In P. Frasconi & F. A. Lisi (Eds.), Revised papers of the 20th international conference on inductive logic programming (ILP-10), Lecture Notes in Computer Science (Vol. 6489, pp. 30–37). Springer. – reference: FuhrNProbabilistic Datalog: Implementing logical information retrieval for advanced applicationsJournal of the American Society for Information Science (JASIS)200051295110183741710.1002/(SICI)1097-4571(2000)51:2<95::AID-ASI2>3.0.CO;2-H – reference: Dalvi, N. N., & Suciu, D. (2004). Efficient query evaluation on probabilistic databases. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley & K. B. Schiefer (Eds.), Proceedings of the 30th international conference on very large databases (VLDB-04), (pp. 864–875). Morgan Kaufmann Publishers. – reference: Pfeffer, A. (2009). Figaro: An object-oriented probabilistic programming language. Charles River Analytics: Technical report. – reference: Moldovan, B., Thon, I., Davis, J., & De Raedt, L. (2013). MCMC estimation of conditional probabilities in probabilistic programming languages. In L. C. van der Gaag (Ed.), Proceedings of the 12th European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU-13), Lecture Notes in Computer Science (Vol. 7958, pp. 436–448). Springer. – reference: Poole, D. (2008). The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 222–243). Springer. – reference: Vennekens, J. (2007). Algebraic and logical study of constructive processes in knowledge representation. PhD thesis, K.U. Leuven. – reference: Fierens, D., Blockeel, H., Bruynooghe, M., & Ramon, J. (2005). Logical Bayesian networks and their relation to other probabilistic logical models. In S. Kramer & B. Pfahringer (Eds.), Proceedings of the 15th international conference on inductive logic programming (ILP-05), Lecture Notes in Computer Science (Vol. 3625, pp. 121–135). Springer. – reference: FlachPASimply logical: Intelligent reasoning by example1994New YorkJohn Wiley – reference: Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language for generative models. In D. A. McAllester & P. Myllymäki (Eds.), Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI-08), (pp. 220–229). AUAI Press. – reference: Suciu, D., Olteanu, D., Ré, C., & Koch, C. (2011). Probabilistic databases, Synthesis lectures on data management (Vol. 16). Burlington: Morgan & Claypool Publishers. – reference: Kersting, K., & De Raedt, L. (2008). Basic principles of learning Bayesian logic programs. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 189–221). Springer. – reference: Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In L. Sterling (Ed.), Proceedings of the 12th international conference on logic programming (ICLP-95) (pp. 715–729). MIT Press. – reference: Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T. G., Fern, A., & Restificar, A. C. (2005). Learning first-order probabilistic models with combining rules. In L. De Raedt & S. Wrobel (Eds.), Proceedings of the 22nd international conference on machine learning (ICML-05), ACM International conference proceeding series (Vol. 119, pp. 609–616). ACM. – reference: Lodhi, H., & Muggleton, S. (2005). Modelling metabolic pathways using stochastic logic programs-based ensemble methods. In V. Danos & V. Schächter (Eds.), Revised selected papers of the international conference on computational methods in systems biology (CMSB-04), Lecture Notes in Computer Science (Vol. 3082, pp. 119–133). Springer. – reference: Sato, T. (2011). A general MCMC method for Bayesian inference in logic-based probabilistic modeling. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11) (pp. 1472–1477). AAAI Press. – reference: RiguzziFSpeeding up inference for probabilistic logic programsThe Computer Journal201457334736310.1093/comjnl/bxt096 – reference: MørkSHolmesIEvaluating bacterial gene-finding HMM structures as probabilistic logic programsBioinformatics201228563664210.1093/bioinformatics/btr698 – reference: Sato, T., & Kameya, Y. (1997). PRISM: A language for symbolic-statistical modeling. In M. E. Pollack (Ed.), Proceedings of the 15th international joint conference on artificial intelligence (IJCAI-97) (pp. 1330–1339). Morgan Kaufmann Publishers. – reference: Van den Broeck, G., Meert, W., & Darwiche, A. (2014). Skolemization for weighted first-order model counting. In C. Baral, G. D. Giacomo & T. Eiter (Eds.), Proceedings of the 14th international conference on principles of knowledge representation and reasoning (KR-14) (pp. 111–120). AAAI Press. – reference: ValiantLGThe complexity of enumeration and reliability problemsSIAM Journal on Computing19798341042153925810.1137/0208032 – reference: HuthMRyanMLogic in Computer Science: Modelling and Reasoning About Systems2004CambridgeCambridge University Press10.1017/CBO9780511810275 – reference: Stuhlmueller, A., Tenenbaum, J. B., & Goodman, N. D. (2010). Learning structured generative concepts. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 2296–2301). Cognitive Science Society. – reference: Vennekens, J., Verbaeten, S., & Bruynooghe, M. (2004). Logic programs with annotated disjunctions. In: B. Demoen & V. Lifschitz (Eds.), Proceedings of the 20th international conference on logic programming (ICLP-04), Lecture Notes in Computer Science (Vol. 3132, pp. 431–445). Springer. – reference: De MaeyerDRenkensJClootsLDeRaedt LMarchalKPhenetic: Network-based interpretation of unstructured gene lists in E. coliMolecular BioSystems2013971594160310.1039/c3mb25551d – reference: KimmigADemoenBDe RaedtLSantos CostaVRochaROn the implementation of the probabilistic logic programming language ProbLogTheory and Practice of Logic Programming (TPLP)2011112–323526210.1017/S1471068410000566 – reference: WellmanMPBreeseJSGoldmanRPFrom knowledge bases to decision modelsThe Knowledge Engineering Review199271355310.1017/S0269888900006147 – reference: Gerstenberg, T., & Goodman, N. D. (2012). Ping pong in Church: Productive use of concepts in human probabilistic inference. In N. Miyake, D. Peebles & R. P. Cooper (Eds.), Proceedings of the 34th annual conference of the cognitive science society (pp. 1590–1595). Cognitive Science Society. – reference: Kersting, K., & De Raedt, L. (2001). Bayesian logic programs. CoRR cs.AI/0111058. – reference: Arora, N. S., de Salvo Braz, R., Sudderth, E. B., & Russell, S. J. (2010). Gibbs sampling in open-universe stochastic languages. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 30–39). AUAI Press. – reference: Milch, B., Marthi, B., Russell, S. J., Sontag, D., Ong, D. L., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In L. P. Kaelbling & A. Saffiotti (Eds.), Proceedings of the 19th international joint conference on artificial intelligence (IJCAI-05) (pp. 1352–1359). NY: Professional Book Center. – reference: Santos Costa, V., Page, D., Qazi, M., & Cussens, J. (2003). CLP( BN): Constraint logic programming for probabilistic knowledge. In C. Meek & U. Kjærulff (Eds.), Proceedings of the 19th conference on uncertainty in artificial intelligence (UAI-03) (pp. 517–524). Morgan Kaufmann Publishers. – reference: Koller, D., & Pfeffer, A. (1998). Probabilistic frame-based systems. In J. Mostow & C. Rich (Eds.), Proceedings of the 15th national conference on artificial intelligence (AAAI-98) (pp. 580–587). AAAI Press/MIT Press. – reference: PooleDProbabilistic Horn abduction and Bayesian networksArtificial Intelligence1993648112910.1016/0004-3702(93)90061-F – reference: Riguzzi, F. (2013a). cplint Manual. https://sites.google.com/a/unife.it/ml/cplint/cplint-manual – reference: VennekensJDeneckerMBruynoogheMCP-logic: A language of causal probabilistic events and its relation to logic programmingTheory and Practice of Logic Programming (TPLP)200993245308252561510.1017/S1471068409003767 – reference: Angelopoulos, N., & Cussens, J. (2004). On the implementation of MCMC proposals over stochastic logic programs. In M. Carro & J. F. Morales (Eds.), Proceedings of the colloquium on implementation of constraint and logic programming systems (CICLOPS-04). – reference: PearlJProbabilistic reasoning in intelligent systems: Networks of plausible inference1988BurlingtonMorgan Kaufmann Publishers – reference: Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), Proceedings of the 18th international joint conference on artificial intelligence (IJCAI-03) (pp. 985–991). Morgan Kaufmann Publishers. – reference: BellodiELammaERiguzziFSantos CostaVZeseRLifted variable elimination for probabilistic logic programmingTheory and Practice of Logic Programming (TPLP)2014144–568169510.1017/S1471068414000283 – reference: Mantadelis, T., & Janssens, G. (2011). Nesting probabilistic inference. In S. Abreu & V. Santos Costa (Eds.), Proceedings of the colloquium on implementation of constraint and logic programming systems (CICLOPS-11). – reference: GutmannBThonIKimmigABruynoogheMDe RaedtLThe magic of logical inference in probabilistic programmingTheory and Practice of Logic Programming (TPLP)2011114–566368010.1017/S1471068411000238 – reference: Poole, D. (1995). Exploiting the rule structure for decision making within the independent choice logic. In P. Besnard & S. Hanks (Eds.), Proceedings of the eleventh annual conference on uncertainty in artificial intelligence (UAI-95) (pp. 454–463). Morgan Kaufmann Publishers. – reference: Santos Costa, V., & Paes, A. (2009). On the relationship between PRISM and CLP( BN). In P. Domingos & K. Kersting (Eds.), Proceedings of the international workshop on statistical relational learning (SRL-2009). – reference: Van den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: A decision-theoretic probabilistic Prolog. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1217–1222). AAAI Press. – reference: Fuhr, N. (1995). Probabilistic Datalog—A logic for powerful retrieval methods. In E. A. Fox, P. Ingwersen & R. Fidel (Eds.), Proceedings of the 18th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR-95), (pp. 282–290). ACM Press. – reference: Bancilhon, F., Maier, D., Sagiv, Y., & Ullman, J. D. (1986). Magic sets and other strange ways to implement logic programs (extended abstract). In A. Silberschatz (Ed.), Proceedings of the 5th ACM SIGACT-SIGMOD symposium on principles of database systems (PODS-86) (pp. 1–15). ACM. – reference: Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. B. (2013). Approximate Bayesian image interpretation using generative probabilistic graphics programs. In C. J. C. Burges, L. Bottou, Z. Ghahramani & K. Q. Weinberger (Eds.), Proceedings of the 27th annual conference on neural information processing systems (NIPS-13), Neural Information Processing Systems, (pp. 1520–1528). – reference: De RaedtLKerstingKProbabilistic logic learningSIGKDD Explorations200351314810.1145/959242.959247 – reference: Jaeger, M. (1997). Relational Bayesian networks. In D. Geiger & P. P. Shenoy (Eds.), Proceedings of the 13th conference on uncertainty in artificial intelligence (UAI-97) (pp. 266–273). Morgan Kaufmann Publishers. – reference: Gutmann, B., Jaeger, M., & De Raedt, L. (2010). Extending ProbLog with continuous distributions. In P. Frasconi & F. A. Lisi (Eds.), Proccedings of the 20th international conference on inductive logic programming (ILP-10), Lecture Notes in Computer Science (Vol. 6489, pp. 76–91). Springer. – reference: RussellSJNorvigArtificial intelligence: A modern approach20032Upper Saddle RiverPrentice Hall – reference: De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic Prolog and its application in link discovery. In M. M. Veloso (Ed.), Proceedings of the 20th international joint conference on artificial intelligence (IJCAI-07), (pp. 2462–2467). Morgan Kaufmann Publishers. – reference: CohenWWWHIRL: A word-based information representation languageArtificial Intelligence2000118116319610.1016/S0004-3702(99)00102-2 – reference: Poole, D. (2010). Probabilistic programming languages: Independent choices and deterministic systems. In R. Dechter, H. Geffner & J. Halpern (Eds.), Heuristics, probability and causality: A tribute to Judea Pearl (pp. 253–269). NY: College Publications. – reference: BaralCGelfondMRushtonNProbabilistic reasoning with answer setsTheory and Practice of Logic Programming (TPLP)20099157144248144210.1017/S1471068408003645 – reference: RenkensJVan den BroeckGNijssenSk-optimal: A novel approximate inference algorithm for ProbLogMachine Learning2012893215231297153110.1007/s10994-012-5304-9 – reference: Renkens, J., Kimmig, A., Van den Broeck, G., & De Raedt, L. (2014). Explanation-based approximate weighted model counting for probabilistic logics. In C. E. Brodley & P. Stone (Eds.), Proceedings of the 28th AAAI conference on artificial intelligence (AAAI-14) (pp. 2490–2496). AAAI Press. – reference: Eisner, J., & Filardo, N. W. (2011). Dyna: Extending Datalog for modern AI. In O. de Moor, G. Gottlob, T. Furche & A. Sellers (Eds.), Datalog reloaded, Lecture Notes in Computer Science (Vol. 6702, pp. 181–220). Springer. – reference: RiguzziFSwiftTThe PITA system: Tabling and answer subsumption for reasoning under uncertaintyTheory and Practice of Logic Programming (TPLP)2011114–5433449281933110.1017/S147106841100010X – reference: Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted probabilistic inference by first-order knowledge compilation. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11) (pp. 2178–2185). AAAI Press. – reference: FierensDVan den BroeckGRenkensJShterionovDGutmannBThonIInference and learning in probabilistic logic programs using weighted Boolean formulasTheory and Practice of Logic Programming201315335840110.1017/S1471068414000076 – reference: Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In Y. Gil & R. J. Mooney (Eds.), Proceedings of the 21st national conference on artificial intelligence (AAAI-06) (pp. 458–463). AAAI Press. – reference: Santos Costa, V., Page, D., & Cussens, J. (2008). CLP( BN): Constraint logic programming for probabilistic knowledge. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 156–188). Springer. – reference: Fierens, D., Van den Broeck, G., Bruynooghe, M., & De Raedt, L. (2012). Constraints for probabilistic logic programming. In V. Mansinghka, D. Roy & N. Goodman (Eds.), Proceedings of the NIPS probabilistic programming workshop. – reference: Poole, D. (1992). Logic programming, abduction and probability. In Proceedings of the international conference on fifth generation computing systems (FGCS-92) (pp. 530–538). IOS Press. – ident: 5494_CR7 – ident: 5494_CR30 – volume-title: Logic in Computer Science: Modelling and Reasoning About Systems year: 2004 ident: 5494_CR36 doi: 10.1017/CBO9780511810275 – ident: 5494_CR53 – ident: 5494_CR25 doi: 10.1145/215206.215372 – ident: 5494_CR54 doi: 10.1007/978-3-642-39091-3_37 – volume: 99 start-page: 1 issue: 1 year: 2015 ident: 5494_CR47 publication-title: Machine Learning. doi: 10.1007/s10994-014-5443-2 – volume: 11 start-page: 433 issue: 4–5 year: 2011 ident: 5494_CR77 publication-title: Theory and Practice of Logic Programming (TPLP) doi: 10.1017/S147106841100010X – volume: 118 start-page: 163 issue: 1 year: 2000 ident: 5494_CR11 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(99)00102-2 – ident: 5494_CR82 doi: 10.1007/978-3-540-78652-8_6 – volume: 124 start-page: 521 issue: 4 year: 2013 ident: 5494_CR75 publication-title: Fundamenta Informaticae doi: 10.3233/FI-2013-847 – ident: 5494_CR21 – ident: 5494_CR44 – ident: 5494_CR50 doi: 10.1007/978-3-540-25974-9_10 – volume: 35 start-page: 93 issue: 3 year: 1992 ident: 5494_CR103 publication-title: Communications of the ACM (CACM) doi: 10.1145/131295.131299 – volume: 59 start-page: 143 issue: 3 year: 2013 ident: 5494_CR33 publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2013.09.003 – ident: 5494_CR96 – volume: 89 start-page: 215 issue: 3 year: 2012 ident: 5494_CR70 publication-title: Machine Learning doi: 10.1007/s10994-012-5304-9 – ident: 5494_CR4 – ident: 5494_CR41 doi: 10.1007/978-3-540-78652-8_7 – ident: 5494_CR27 – ident: 5494_CR35 doi: 10.1007/978-3-642-04180-8_53 – volume: 82 start-page: 239 issue: 2 year: 2011 ident: 5494_CR93 publication-title: Machine Learning doi: 10.1007/s10994-010-5213-8 – volume: 44 start-page: 5 issue: 1–3 year: 2000 ident: 5494_CR65 publication-title: Journal of Logic Programming doi: 10.1016/S0743-1066(99)00071-0 – ident: 5494_CR87 – ident: 5494_CR62 – ident: 5494_CR102 doi: 10.1145/2505515.2505573 – ident: 5494_CR78 – volume: 51 start-page: 95 issue: 2 year: 2000 ident: 5494_CR26 publication-title: Journal of the American Society for Information Science (JASIS) doi: 10.1002/(SICI)1097-4571(2000)51:2<95::AID-ASI2>3.0.CO;2-H – ident: 5494_CR39 doi: 10.3233/978-1-61499-098-7-33 – ident: 5494_CR84 – volume: 15 start-page: 213 issue: 2 year: 2015 ident: 5494_CR89 publication-title: Theory and Practice of Logic Programming (TPLP) doi: 10.1017/S1471068413000690 – ident: 5494_CR61 – volume: 7 start-page: 35 issue: 1 year: 1992 ident: 5494_CR104 publication-title: The Knowledge Engineering Review doi: 10.1017/S0269888900006147 – volume: 11 start-page: 663 issue: 4–5 year: 2011 ident: 5494_CR31 publication-title: Theory and Practice of Logic Programming (TPLP) doi: 10.1017/S1471068411000238 – volume: 64 start-page: 81 year: 1993 ident: 5494_CR63 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(93)90061-F – ident: 5494_CR43 doi: 10.1007/978-3-540-89982-2_22 – ident: 5494_CR3 doi: 10.1145/6012.15399 – ident: 5494_CR1 – ident: 5494_CR20 doi: 10.1007/11536314_8 – ident: 5494_CR98 – volume: 11 start-page: 235 issue: 2–3 year: 2011 ident: 5494_CR46 publication-title: Theory and Practice of Logic Programming (TPLP) doi: 10.1017/S1471068410000566 – ident: 5494_CR81 – volume: 57 start-page: 347 issue: 3 year: 2014 ident: 5494_CR76 publication-title: The Computer Journal doi: 10.1093/comjnl/bxt096 – volume: 5 start-page: 31 issue: 1 year: 2003 ident: 5494_CR16 publication-title: SIGKDD Explorations doi: 10.1145/959242.959247 – ident: 5494_CR10 doi: 10.1007/978-3-540-89982-2_18 – volume: 9 start-page: 57 issue: 1 year: 2009 ident: 5494_CR5 publication-title: Theory and Practice of Logic Programming (TPLP) doi: 10.1017/S1471068408003645 – ident: 5494_CR64 – ident: 5494_CR99 doi: 10.1007/978-3-540-27775-0_30 – ident: 5494_CR45 doi: 10.1609/aaai.v25i1.7852 – ident: 5494_CR22 – ident: 5494_CR19 doi: 10.3115/1220575.1220611 – ident: 5494_CR28 – ident: 5494_CR18 doi: 10.1007/978-3-642-24206-9_11 – volume: 62 start-page: 107 issue: 1–2 year: 2006 ident: 5494_CR72 publication-title: Machine Learning doi: 10.1007/s10994-006-5833-1 – ident: 5494_CR34 – volume: 9 start-page: 1594 issue: 7 year: 2013 ident: 5494_CR15 publication-title: Molecular BioSystems doi: 10.1039/c3mb25551d – volume: 17 start-page: 589 issue: 6 year: 2009 ident: 5494_CR73 publication-title: Logic Journal of the IGPL doi: 10.1093/jigpal/jzp025 – ident: 5494_CR14 – ident: 5494_CR71 doi: 10.1609/aaai.v28i1.9067 – ident: 5494_CR37 – ident: 5494_CR40 – volume: 9 start-page: 245 issue: 3 year: 2009 ident: 5494_CR101 publication-title: Theory and Practice of Logic Programming (TPLP) doi: 10.1017/S1471068409003767 – ident: 5494_CR38 doi: 10.1007/978-3-540-78652-8_13 – ident: 5494_CR95 doi: 10.1609/aaai.v24i1.7755 – volume-title: Artificial intelligence: A modern approach year: 2003 ident: 5494_CR79 – volume: 28 start-page: 636 issue: 5 year: 2012 ident: 5494_CR55 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr698 – volume-title: Simply logical: Intelligent reasoning by example year: 1994 ident: 5494_CR24 – volume-title: Foundations of Logic Programming year: 1989 ident: 5494_CR49 – ident: 5494_CR8 – volume: 25 start-page: 425 year: 2006 ident: 5494_CR42 publication-title: Journal of Artificial Intelligence Research (JAIR) doi: 10.1613/jair.1675 – start-page: 254 volume-title: Advances in inductive logic programming year: 1996 ident: 5494_CR56 – ident: 5494_CR13 doi: 10.1016/B978-012088469-8.50076-0 – ident: 5494_CR52 – volume: 54 start-page: 135 issue: 1–3 year: 2008 ident: 5494_CR88 publication-title: Annals of Mathematics and Artificial Intelligence doi: 10.1007/s10472-009-9135-8 – ident: 5494_CR58 doi: 10.1109/IROS.2013.6696747 – ident: 5494_CR48 – ident: 5494_CR69 – ident: 5494_CR17 – ident: 5494_CR66 – ident: 5494_CR57 doi: 10.1145/1102351.1102428 – ident: 5494_CR97 – ident: 5494_CR80 – ident: 5494_CR51 – ident: 5494_CR32 – ident: 5494_CR92 doi: 10.1007/978-3-031-01879-4 – ident: 5494_CR68 – volume: 15 start-page: 391 year: 2001 ident: 5494_CR86 publication-title: Journal of Artificial Intelligence Research (JAIR) doi: 10.1613/jair.912 – ident: 5494_CR67 doi: 10.1007/978-3-540-78652-8_8 – volume: 8 start-page: 410 issue: 3 year: 1979 ident: 5494_CR94 publication-title: SIAM Journal on Computing doi: 10.1137/0208032 – ident: 5494_CR100 doi: 10.1007/11853886_37 – volume: 15 start-page: 358 issue: 3 year: 2013 ident: 5494_CR23 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068414000076 – ident: 5494_CR83 doi: 10.7551/mitpress/4298.003.0069 – volume: 14 start-page: 681 issue: 4–5 year: 2014 ident: 5494_CR6 publication-title: Theory and Practice of Logic Programming (TPLP) doi: 10.1017/S1471068414000283 – ident: 5494_CR29 – ident: 5494_CR2 – ident: 5494_CR60 – ident: 5494_CR12 – ident: 5494_CR85 – ident: 5494_CR91 – volume: 10 start-page: 433 issue: 4–6 year: 2010 ident: 5494_CR90 publication-title: Theory and Practice of Logic Programming (TPLP) doi: 10.1017/S1471068410000207 – ident: 5494_CR74 – volume-title: Probabilistic reasoning in intelligent systems: Networks of plausible inference year: 1988 ident: 5494_CR59 – ident: 5494_CR9 doi: 10.1609/aaai.v24i1.7519 |
| SSID | ssj0002686 |
| Score | 2.5736618 |
| Snippet | A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling... Issue Title: Special Issue on Inductive Logic Programming and on Multi-Relational Learning; Guest Editors: Gerson Zaverucha and Vitor Santos Costa A multitude... A multitude of different probabilistic programming languages exists today, allextending a traditional programming language with primitives to support modeling... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5 |
| SubjectTerms | Artificial Intelligence Computer Science Control Inference in probabilistic languages Logic programming Mechatronics Natural Language Processing (NLP) Probabilistic logic programming Probabilistic methods Probabilistic programming languages Probability theory Programming Programming languages Prolog Prolog (programming language) Robotics Semantics Simulation and Modeling Statistical relational learning |
| SummonAdditionalLinks | – databaseName: SpringerLINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86fXV-YnVKBQWdBJq2SZvHoQ4fZAw_xt5Cm6Qy0E3azYf99V76tSkq6EOfmibhLpe76939DqHTSEckZkxiqhyJfR77mEvlYpdK7lFNAzfKQVzvgl4vHA55v6zjzqps9yokmd_US8VuOYwtoRh8Gh_PV9EaaLvQSOP9w6C-fl2Wt3cE6aHYqO8qlPndFJ-V0cLCrIOiXwBEc6XTbf5ru5too7Qx7U5xKLbQih5vo2bVv8EuxXkHtfspSLPJjjVgzfZ5fg1e2GXK1iusZsuiqjHbRU_dm8erW1z2TsASfJgpEJxpxQMnYZx4TDJu-kQyX0USDB6pTBsw7igpFSEJuAym6wtxk9DTseK-JrG3hxrjyVjvIztUVOmIOknigcQzGsWUBRENY7DFWKBcCzkVEYUsgcVNf4sXsYBENrQQQAthaCHmFmrXn7wVqBq_DW5VnBGlgGWCMOA8DcF5tNBJ_RpEw8Q7orGezGCMweLnJOS-hS4rJi1N8fOCZwXT670ZDO7r0aAjJukzPDMRgp1GDv4066H5JUDK_LUWakzTmT5C6_J9OsrS4_wMfwCO2-u7 priority: 102 providerName: Springer Nature |
| Title | Probabilistic (logic) programming concepts |
| URI | https://link.springer.com/article/10.1007/s10994-015-5494-z https://www.proquest.com/docview/1698158249 https://www.proquest.com/docview/1730091894 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86351 |
| Volume | 100 |
| WOSCitedRecordID | wos000358326000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5By4ELLS-xfSlIIEGR1diJnfhU9SkkYBUVqCouVmI7qBLdbffBob-emcTJ0krtpYf4EiexPA_PeJzvA3hX-pJXSlkmXWxZqquUaesEE9LqRHqZibIBcf2aDYf52ZkuwobbNByr7Hxi46jd2NIe-Q5XOucyx2xh9_KKEWsUVVcDhcZjWOZCcNLzLxnrPbFQDdMjGpJktJJ3Vc3217kGFJdLhhlSyq5vrkuLYLOvj97CEm3Wn-OVh458FZ6FyDPaa1XlOTzyoxew0rE6RMHIX8J2MUEbpzOzBOEcfWic48coHOS6wFFGtv3XcfoKfh4f_Tj4zAKjArOY2cxQDMo7ncW10jxRVmlij1SpKy2GQdYROZiOnbWO8xoTCeKC4aLOE185nXpeJa9haTQe-TcQ5U46X8q4rhP0A0qWlVRZKfMKIzSVOTGAuJtPYwPcOLFe_DELoGQSgUERGBKBuR7Adv_IZYu1cV_njW62TTC7qVlM9QDe9rfRYKgKUo78eI59CKFf81ynA_jUCfe_V9z9wfet_PuxETL34fnpnhlPfuM1NzlGb3zt_oGtw1NBWtec-N2Apdlk7jfhif07O59OtmB5_2hYnGw1eoztN1FgW8hf2J58P_0HB__55A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9VAEJ8gmshFRCA-RK2JJArZ2N12t92DMUQkEJ4v7wCGcFna3S0h0ffgfUDkj_JvdKZfT03kxoFDT223m52Z3850ZucH8DbzGc-Vsky60LJY5zHT1gkmpNWR9DIRWdnEtZv0eunxse7Pwa_mLAyVVTaYWAK1G1r6R_6BK51ymWK08OnikhFrFGVXGwqNSi0O_M9rDNnGH_d3UL4bQux-Ofy8x2pWAWbRu5_gVJR3OgkLpXmkrNLEoKhil1l0BawjgiwdOmsd5wU608SHwkWRRj53OvY8j3DcB_AwjjFYQvvpy5MW-YUqmSXRcCUjz6HJolZH9comvFwyjMhidvP3Pjhzbtt87D-9S8v9bnfxvq3UU3hSe9bBdmUKSzDnB89gsWGtCGoQW4bN_ggxjGqCqUV18K4E__dBXaj2A1clsNVZzvEKHN3JjFdhfjAc-OcQpE46n8mwKCLEOSWzXKokk2mOHqhKnOhA2MjP2LqdOrF6fDezRtAkcoMiNyRyc9OBzfaVi6qXyG0PrzfSNTWsjM1MtB14095GQKAsTzbwwyk-QwwEmqc67sBWo0x_DPH_D25U-tbOjTqP75x_2zbD0RleU5Oid8rXbp_Ya3i8d_i1a7r7vYMXsCBI48vq5nWYn4ym_iU8sleT8_HoVWk7AZzetQr-BiRWUsk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqCouhb7EtkBTqUgtlUXsxE58QAh1uyoCrfbQVqgXk9gOQoJd2Eer8tP4dczktW2lcuPQQ05JHMsznvkmM54P4G3mM54rZZl0oWWxzmOmrRNMSKsj6WUisrKJ61HS76fHx3qwADfNWRgqq2xsYmmo3cjSP_IdrnTKZYrRwk5Rl0UMur29yytGDFKUaW3oNCoVOfS_fmL4Ntk96KKst4Toffry8TOrGQaYRaQ_xWkp73QSFkrzSFmliU1RxS6zCAusI7IsHTprHecFAmviRuGiSCOfOx17nkc47gNYSjDGpMBvIL-3XkCokmUSN7FkhCKajGp1bK9syMslw-gsZtd_-sQ50G1zs3_1MS19X2_lf161VXhcI-5gv9oiT2DBD5_CSsNmEdTG7RlsD8Zo26hWmFpXB-9Kp_A-qAvYLnCFAlud8Zw8h6_3MuMXsDgcDf0aBKmTzmcyLIoI7Z-SWS5Vksk0R2SqEic6EDayNLZus05sH-dm3iCaxG9Q_IbEb647sN2-cln1GLnr4fVG0qY2NxMzF3MH3rS30VBQ9icb-tEMnyFmAs1THXfgQ6NYvw3x7w9uVbrXzo06knfPvu2b0fgUr5lJEbXyl3dP7DU8Qs0zRwf9w1ewLEj5y6LndVicjmd-Ax7aH9OzyXiz3EYBnNy3Bt4CwRVbnQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+%28logic%29+programming+concepts&rft.jtitle=Machine+learning&rft.au=De+Raedt%2C+Luc&rft.au=Kimmig%2C+Angelika&rft.date=2015-07-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=100&rft.issue=1&rft.spage=5&rft.epage=47&rft_id=info:doi/10.1007%2Fs10994-015-5494-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_015_5494_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |