Probabilistic (logic) programming concepts

A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 100; číslo 1; s. 5 - 47
Hlavní autoři: De Raedt, Luc, Kimmig, Angelika
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2015
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years.
AbstractList A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years.
A multitude of different probabilistic programming languages exists today, allextending a traditional programming language with primitives to support modeling ofcomplex, structured probability distributions. Each of these languages employs its own prob-abilistic primitives, and comes with a particular syntax, semantics and inference procedure.This makes it hard to understand the underlying programming concepts and appreciate thedifferences between the different languages. To obtain a better understanding of probabilisticprogramming, we identify a number of core programming concepts underlying the primi-tives used by various probabilistic languages, discuss the execution mechanisms that theyrequire and use these to position and survey state-of-the-art probabilistic languages and theirimplementation. While doing so, we focus on probabilistic extensions oflogicprogramminglanguages such as Prolog, which have been considered for over 20 years.
Issue Title: Special Issue on Inductive Logic Programming and on Multi-Relational Learning; Guest Editors: Gerson Zaverucha and Vitor Santos Costa A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years.
A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years.
Author De Raedt, Luc
Kimmig, Angelika
Author_xml – sequence: 1
  givenname: Luc
  surname: De Raedt
  fullname: De Raedt, Luc
  organization: Department of Computer Science, KU Leuven
– sequence: 2
  givenname: Angelika
  surname: Kimmig
  fullname: Kimmig, Angelika
  email: angelika.kimmig@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86351$$DView record from Swedish Publication Index (Örebro universitet)
BookMark eNp9kF9LwzAUxYMouE0_gG8DX6ZYzW2bNHkc8y8M9EF9DWmaloy2mUmLuE9vRifIQB8u9z78zuWcM0aHrW01QmeArwHj7MYD5jyNMJCIpOHYHKARkCyJMKHkEI0wYySiEJNjNPZ-hTGOKaMjdPnibC5zUxvfGTWd1bYy6mK6drZysmlMW02VbZVed_4EHZWy9vp0tyfo7f7udfEYLZ8fnhbzZaRSzruIK6oLnuGSckioopwzzmhaSEVorAqlY8lxoVQBUGaEAUsTiEuW6LzgqYY8maCr4a__1Os-F2tnGum-hJVG3Jr3ubCuCtMLRhMCAZ8NePD80WvficZ4petattr2XkCWYMyB8TSg53voyvauDWEEUM6AsDjlgcoGSjnrvdOlUKaTnbFt56SpBWCxrVwMlYtQudhWLjZBCXvKH-__aeJd2sC2lXa_PP0p-gZ53pTn
CitedBy_id crossref_primary_10_1007_s10994_024_06543_w
crossref_primary_10_1093_logcom_exaf023
crossref_primary_10_1007_s00521_025_11512_y
crossref_primary_10_1016_j_jlamp_2024_100975
crossref_primary_10_1145_3447581
crossref_primary_10_1007_s10994_019_05842_x
crossref_primary_10_1016_j_inffus_2022_11_025
crossref_primary_10_1016_j_jlamp_2024_101020
crossref_primary_10_1145_3132700
crossref_primary_10_1177_29498732251339951
crossref_primary_10_1098_rsos_230785
crossref_primary_10_1038_s41598_022_21801_4
crossref_primary_10_3390_ijgi8020092
crossref_primary_10_1007_s13218_019_00618_w
crossref_primary_10_1017_S1471068421000314
crossref_primary_10_1017_S0263574723001339
crossref_primary_10_1016_j_future_2019_08_020
crossref_primary_10_1016_j_media_2020_101872
crossref_primary_10_1017_S1471068418000522
crossref_primary_10_1016_j_artint_2023_103967
crossref_primary_10_3390_info10110335
crossref_primary_10_1007_s10458_023_09600_1
crossref_primary_10_1145_3729325
crossref_primary_10_1016_j_artint_2023_104062
crossref_primary_10_1016_j_ijar_2019_05_003
crossref_primary_10_3233_NAI_240672
crossref_primary_10_1016_j_ic_2023_105061
crossref_primary_10_1016_j_ijar_2024_109130
crossref_primary_10_3389_frobt_2020_00100
crossref_primary_10_1016_j_ins_2022_12_012
crossref_primary_10_3233_IA_170106
crossref_primary_10_1007_s10994_018_5750_0
crossref_primary_10_1016_j_future_2021_10_021
crossref_primary_10_1016_j_ijar_2019_12_006
crossref_primary_10_1016_j_artint_2021_103452
crossref_primary_10_1109_TNNLS_2023_3246980
crossref_primary_10_1016_j_ijar_2016_05_005
crossref_primary_10_1145_3588719
crossref_primary_10_1007_s10489_020_02165_6
crossref_primary_10_1016_j_ijar_2016_06_009
crossref_primary_10_1080_11663081_2023_2244716
crossref_primary_10_1016_j_ins_2021_12_062
crossref_primary_10_1038_nature19477
crossref_primary_10_1007_s10994_021_06007_5
crossref_primary_10_1007_s10994_024_06610_2
crossref_primary_10_1016_j_artint_2024_104227
crossref_primary_10_1007_s12652_020_01989_x
crossref_primary_10_1007_s10472_019_09620_2
crossref_primary_10_1016_j_artint_2024_104109
crossref_primary_10_1016_j_ijar_2020_01_009
crossref_primary_10_1017_S1471068421000016
crossref_primary_10_1016_j_artint_2021_103504
crossref_primary_10_1016_j_ijar_2016_10_002
crossref_primary_10_1007_s10115_021_01620_1
crossref_primary_10_1007_s11432_020_3569_0
crossref_primary_10_1002_aaai_12053
crossref_primary_10_1080_0952813X_2022_2062456
crossref_primary_10_3390_cryptography6020029
crossref_primary_10_3389_fdigh_2019_00006
Cites_doi 10.1017/CBO9780511810275
10.1145/215206.215372
10.1007/978-3-642-39091-3_37
10.1007/s10994-014-5443-2
10.1017/S147106841100010X
10.1016/S0004-3702(99)00102-2
10.1007/978-3-540-78652-8_6
10.3233/FI-2013-847
10.1007/978-3-540-25974-9_10
10.1145/131295.131299
10.1016/j.artmed.2013.09.003
10.1007/s10994-012-5304-9
10.1007/978-3-540-78652-8_7
10.1007/978-3-642-04180-8_53
10.1007/s10994-010-5213-8
10.1016/S0743-1066(99)00071-0
10.1145/2505515.2505573
10.1002/(SICI)1097-4571(2000)51:2<95::AID-ASI2>3.0.CO;2-H
10.3233/978-1-61499-098-7-33
10.1017/S1471068413000690
10.1017/S0269888900006147
10.1017/S1471068411000238
10.1016/0004-3702(93)90061-F
10.1007/978-3-540-89982-2_22
10.1145/6012.15399
10.1007/11536314_8
10.1017/S1471068410000566
10.1093/comjnl/bxt096
10.1145/959242.959247
10.1007/978-3-540-89982-2_18
10.1017/S1471068408003645
10.1007/978-3-540-27775-0_30
10.1609/aaai.v25i1.7852
10.3115/1220575.1220611
10.1007/978-3-642-24206-9_11
10.1007/s10994-006-5833-1
10.1039/c3mb25551d
10.1093/jigpal/jzp025
10.1609/aaai.v28i1.9067
10.1017/S1471068409003767
10.1007/978-3-540-78652-8_13
10.1609/aaai.v24i1.7755
10.1093/bioinformatics/btr698
10.1613/jair.1675
10.1016/B978-012088469-8.50076-0
10.1007/s10472-009-9135-8
10.1109/IROS.2013.6696747
10.1145/1102351.1102428
10.1007/978-3-031-01879-4
10.1613/jair.912
10.1007/978-3-540-78652-8_8
10.1137/0208032
10.1007/11853886_37
10.1017/S1471068414000076
10.7551/mitpress/4298.003.0069
10.1017/S1471068414000283
10.1017/S1471068410000207
10.1609/aaai.v24i1.7519
ContentType Journal Article
Copyright The Author(s) 2015
Copyright_xml – notice: The Author(s) 2015
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
AABEP
ADTPV
AOWAS
D8T
D91
ZZAVC
DOI 10.1007/s10994-015-5494-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
SWEPUB Örebro universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Örebro universitet
SwePub Articles full text
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts

Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 47
ExternalDocumentID oai_DiVA_org_oru_86351
3752188901
10_1007_s10994_015_5494_z
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
PUEGO
AABEP
ADTPV
AOWAS
D8T
D91
ZZAVC
ID FETCH-LOGICAL-c499t-9c6ed970f69136c69989864dac562cdce2a90dccd11f758184312f83ebd94e1b3
IEDL.DBID K7-
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358326000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
1573-0565
IngestDate Tue Nov 04 16:40:07 EST 2025
Thu Sep 04 20:20:55 EDT 2025
Tue Nov 04 21:34:10 EST 2025
Sat Nov 29 07:53:31 EST 2025
Tue Nov 18 22:31:47 EST 2025
Fri Feb 21 02:28:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Inference in probabilistic languages
Statistical relational learning
Probabilistic programming languages
Probabilistic logic programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-9c6ed970f69136c69989864dac562cdce2a90dccd11f758184312f83ebd94e1b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86351
PQID 1698158249
PQPubID 54194
PageCount 43
ParticipantIDs swepub_primary_oai_DiVA_org_oru_86351
proquest_miscellaneous_1730091894
proquest_journals_1698158249
crossref_citationtrail_10_1007_s10994_015_5494_z
crossref_primary_10_1007_s10994_015_5494_z
springer_journals_10_1007_s10994_015_5494_z
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PooleDProbabilistic Horn abduction and Bayesian networksArtificial Intelligence1993648112910.1016/0004-3702(93)90061-F
ThonILandwehrNDe RaedtLStochastic relational processes: Efficient inference and applicationsMachine Learning2011822239272310819410.1007/s10994-010-5213-8
Pfeffer, A. (2009). Figaro: An object-oriented probabilistic programming language. Charles River Analytics: Technical report.
Poole, D. (2010). Probabilistic programming languages: Independent choices and deterministic systems. In R. Dechter, H. Geffner & J. Halpern (Eds.), Heuristics, probability and causality: A tribute to Judea Pearl (pp. 253–269). NY: College Publications.
Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), Proceedings of the 18th international joint conference on artificial intelligence (IJCAI-03) (pp. 985–991). Morgan Kaufmann Publishers.
Hommersom, A., de Carvalho Ferreira, N., & Lucas, P. J. F. (2009). Integrating logical reasoning and probabilistic chain graphs. In W. L. Buntine, M. Grobelnik, D. Mladenic & J. Shawe-Taylor (Eds.), Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML/PKDD-09), Lecture Notes in Computer Science (Vol. 5781, pp. 548–563). Springer.
Baral, C., Gelfond, M., & Rushton, J. N. (2004). Probabilistic reasoning with answer sets. In V. Lifschitz & I. Niemelä (Eds.), Proceedings of the 7th international conference on logic programming and nonmonotonic reasoning (LPNMR-04), Lecture Notes in Computer Science, (Vol. 2923, pp. 21–33). Springer.
RichardsonMDomingosPMarkov logic networksMachine Learning2006621–210713610.1007/s10994-006-5833-1
Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T. G., Fern, A., & Restificar, A. C. (2005). Learning first-order probabilistic models with combining rules. In L. De Raedt & S. Wrobel (Eds.), Proceedings of the 22nd international conference on machine learning (ICML-05), ACM International conference proceeding series (Vol. 119, pp. 609–616). ACM.
Fierens, D., Van den Broeck, G., Bruynooghe, M., & De Raedt, L. (2012). Constraints for probabilistic logic programming. In V. Mansinghka, D. Roy & N. Goodman (Eds.), Proceedings of the NIPS probabilistic programming workshop.
MørkSHolmesIEvaluating bacterial gene-finding HMM structures as probabilistic logic programsBioinformatics201228563664210.1093/bioinformatics/btr698
WarrenDSMemoing for logic programsCommunications of the ACM (CACM)19923539311110.1145/131295.131299
HuthMRyanMLogic in Computer Science: Modelling and Reasoning About Systems2004CambridgeCambridge University Press10.1017/CBO9780511810275
KerstingKDe RaedtLRaikoTLogical hidden Markov modelsJournal of Artificial Intelligence Research (JAIR)200625425456
Arora, N. S., de Salvo Braz, R., Sudderth, E. B., & Russell, S. J. (2010). Gibbs sampling in open-universe stochastic languages. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 30–39). AUAI Press.
Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In L. Sterling (Ed.), Proceedings of the 12th international conference on logic programming (ICLP-95) (pp. 715–729). MIT Press.
Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2013). Programming with personalized PageRank: A locally groundable first-order probabilistic logic. In Q. He, A. Iyengar, W. Nejdl, J. Pei & R. Rastogi (Eds.), Proceedings of the 22nd ACM international conference on information and knowledge management (CIKM-13) (pp. 2129–2138). ACM.
Kersting, K. (2012). Lifted probabilistic inference. In L. De Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz & P. J. F. Lucas (Eds.), Proceedings of the 20th European conference on artificial intelligence (ECAI-12), Frontiers in Artificial Intelligence and Applications (Vol. 242, pp. 33–38). IOS Press.
Fuhr, N. (1995). Probabilistic Datalog—A logic for powerful retrieval methods. In E. A. Fox, P. Ingwersen & R. Fidel (Eds.), Proceedings of the 18th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR-95), (pp. 282–290). ACM Press.
RenkensJVan den BroeckGNijssenSk-optimal: A novel approximate inference algorithm for ProbLogMachine Learning2012893215231297153110.1007/s10994-012-5304-9
Santos Costa, V., Page, D., & Cussens, J. (2008). CLP( BN): Constraint logic programming for probabilistic knowledge. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 156–188). Springer.
GutmannBThonIKimmigABruynoogheMDe RaedtLThe magic of logical inference in probabilistic programmingTheory and Practice of Logic Programming (TPLP)2011114–566368010.1017/S1471068411000238
Poole, D. (1992). Logic programming, abduction and probability. In Proceedings of the international conference on fifth generation computing systems (FGCS-92) (pp. 530–538). IOS Press.
RiguzziFMCINTYRE: A Monte Carlo system for probabilistic logic programmingFundamenta Informaticae201312445215413113202
Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In Y. Gil & R. J. Mooney (Eds.), Proceedings of the 21st national conference on artificial intelligence (AAAI-06) (pp. 458–463). AAAI Press.
De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic Prolog and its application in link discovery. In M. M. Veloso (Ed.), Proceedings of the 20th international joint conference on artificial intelligence (IJCAI-07), (pp. 2462–2467). Morgan Kaufmann Publishers.
ValiantLGThe complexity of enumeration and reliability problemsSIAM Journal on Computing19798341042153925810.1137/0208032
BellodiELammaERiguzziFSantos CostaVZeseRLifted variable elimination for probabilistic logic programmingTheory and Practice of Logic Programming (TPLP)2014144–568169510.1017/S1471068414000283
KimmigAMihalkovaLGetoorLLifted graphical models: A surveyMachine Learning.2015991145332423410.1007/s10994-014-5443-2
Bröcheler, M., Mihalkova, L., & Getoor, L. (2010). Probabilistic similarity logic. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 73–82). AUAI Press.
Stuhlmueller, A., Tenenbaum, J. B., & Goodman, N. D. (2010). Learning structured generative concepts. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 2296–2301). Cognitive Science Society.
Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. B. (2013). Approximate Bayesian image interpretation using generative probabilistic graphics programs. In C. J. C. Burges, L. Bottou, Z. Ghahramani & K. Q. Weinberger (Eds.), Proceedings of the 27th annual conference on neural information processing systems (NIPS-13), Neural Information Processing Systems, (pp. 1520–1528).
Van den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: A decision-theoretic probabilistic Prolog. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1217–1222). AAAI Press.
RiguzziFExtended semantics and inference for the Independent Choice LogicLogic Journal of the IGPL2009176589629256445710.1093/jigpal/jzp025
VennekensJDeneckerMBruynoogheMCP-logic: A language of causal probabilistic events and its relation to logic programmingTheory and Practice of Logic Programming (TPLP)200993245308252561510.1017/S1471068409003767
MuggletonSDe RaedtLStochastic logic programsAdvances in inductive logic programming1996AmsterdamIOS Press254264
Suciu, D., Olteanu, D., Ré, C., & Koch, C. (2011). Probabilistic databases, Synthesis lectures on data management (Vol. 16). Burlington: Morgan & Claypool Publishers.
Sato, T., & Kameya, Y. (1997). PRISM: A language for symbolic-statistical modeling. In M. E. Pollack (Ed.), Proceedings of the 15th international joint conference on artificial intelligence (IJCAI-97) (pp. 1330–1339). Morgan Kaufmann Publishers.
Poole, D. (1995). Exploiting the rule structure for decision making within the independent choice logic. In P. Besnard & S. Hanks (Eds.), Proceedings of the eleventh annual conference on uncertainty in artificial intelligence (UAI-95) (pp. 454–463). Morgan Kaufmann Publishers.
De MaeyerDRenkensJClootsLDeRaedt LMarchalKPhenetic: Network-based interpretation of unstructured gene lists in E. coliMolecular BioSystems2013971594160310.1039/c3mb25551d
Angelopoulos, N., & Cussens, J. (2004). On the implementation of MCMC proposals over stochastic logic programs. In M. Carro & J. F. Morales (Eds.), Proceedings of the colloquium on implementation of constraint and logic programming systems (CICLOPS-04).
SatoTKameyaYKuriharaKVariational Bayes via propositionalized probability computation in PRISMAnnals of Mathematics and Artificial Intelligence2008541–3135158255543510.1007/s10472-009-9135-8
Jaeger, M. (1997). Relational Bayesian networks. In D. Geiger & P. P. Shenoy (Eds.), Proceedings of the 13th conference on uncertainty in artificial intelligence (UAI-97) (pp. 266–273). Morgan Kaufmann Publishers.
Eisner, J., & Filardo, N. W. (2011). Dyna: Extending Datalog for modern AI. In O. de Moor, G. Gottlob, T. Furche & A. Sellers (Eds.), Datalog reloaded, Lecture Notes in Computer Science (Vol. 6702, pp. 181–220). Springer.
van der HeijdenMLucasPJFDescribing disease processes using a probabilistic logic of qualitative timeArtificial Intelligence in Medicine201359314315510.1016/j.artmed.2013.09.003
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E. R., & Mitchell, T. M. (2010). Toward an architecture for never-ending language learning. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1306–1313). AAAI Press.
Bancilhon, F., Maier, D., Sagiv, Y., & Ullman, J. D. (1986). Magic sets and other
PA Flach (5494_CR24) 1994
J Renkens (5494_CR70) 2012; 89
5494_CR41
5494_CR40
5494_CR43
5494_CR45
5494_CR44
5494_CR48
N Fuhr (5494_CR26) 2000; 51
5494_CR50
5494_CR52
5494_CR51
C Baral (5494_CR5) 2009; 9
5494_CR54
5494_CR53
SJ Russell (5494_CR79) 2003
WW Cohen (5494_CR11) 2000; 118
5494_CR58
5494_CR57
J Vennekens (5494_CR101) 2009; 9
LG Valiant (5494_CR94) 1979; 8
D Poole (5494_CR63) 1993; 64
5494_CR9
5494_CR8
5494_CR7
5494_CR4
L Raedt De (5494_CR16) 2003; 5
5494_CR21
5494_CR20
F Riguzzi (5494_CR75) 2013; 124
5494_CR22
E Bellodi (5494_CR6) 2014; 14
5494_CR25
5494_CR27
5494_CR29
5494_CR28
I Thon (5494_CR93) 2011; 82
M Heijden van der (5494_CR33) 2013; 59
5494_CR100
5494_CR102
M Huth (5494_CR36) 2004
F Riguzzi (5494_CR76) 2014; 57
5494_CR3
5494_CR30
5494_CR2
5494_CR1
5494_CR32
5494_CR34
F Riguzzi (5494_CR73) 2009; 17
5494_CR35
5494_CR38
5494_CR37
D Maeyer De (5494_CR15) 2013; 9
5494_CR39
D Poole (5494_CR65) 2000; 44
S Muggleton (5494_CR56) 1996
B Gutmann (5494_CR31) 2011; 11
5494_CR81
5494_CR80
5494_CR83
5494_CR82
5494_CR85
5494_CR84
5494_CR87
M Richardson (5494_CR72) 2006; 62
JW Lloyd (5494_CR49) 1989
T Sato (5494_CR88) 2008; 54
D Fierens (5494_CR23) 2013; 15
K Kersting (5494_CR42) 2006; 25
J Pearl (5494_CR59) 1988
A Kimmig (5494_CR47) 2015; 99
5494_CR92
5494_CR91
5494_CR96
5494_CR95
5494_CR10
5494_CR98
5494_CR97
5494_CR12
5494_CR99
5494_CR14
5494_CR13
5494_CR18
5494_CR17
5494_CR19
DS Warren (5494_CR103) 1992; 35
T Sato (5494_CR86) 2001; 15
MP Wellman (5494_CR104) 1992; 7
J Sneyers (5494_CR90) 2010; 10
5494_CR61
5494_CR60
5494_CR62
5494_CR64
5494_CR67
5494_CR66
F Riguzzi (5494_CR77) 2011; 11
5494_CR69
5494_CR68
A Kimmig (5494_CR46) 2011; 11
S Mørk (5494_CR55) 2012; 28
5494_CR71
5494_CR74
5494_CR78
A Skarlatidis (5494_CR89) 2015; 15
References_xml – reference: Cohen, S. B., Simmons, R. J., & Smith, N. A. (2008). Dynamic programming algorithms as products of weighted logic programs. In M. Garcia de la Banda & E. Pontelli (Eds.), Proceedings of the 24th international conference on logic programming (ICLP-08), Lecture Notes in Computer Science (Vol. 5366, pp. 114–129). Springer.
– reference: Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2013). Programming with personalized PageRank: A locally groundable first-order probabilistic logic. In Q. He, A. Iyengar, W. Nejdl, J. Pei & R. Rastogi (Eds.), Proceedings of the 22nd ACM international conference on information and knowledge management (CIKM-13) (pp. 2129–2138). ACM.
– reference: Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., & De Raedt, L. (2011). Inference in probabilistic logic programs using weighted CNFs. In F. G. Cozman & A. Pfeffer (Eds.), Proceedings of the 27th conference on uncertainty in artificial intelligence (UAI-11), (pp. 211–220). AUAI Press.
– reference: ThonILandwehrNDe RaedtLStochastic relational processes: Efficient inference and applicationsMachine Learning2011822239272310819410.1007/s10994-010-5213-8
– reference: Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E. R., & Mitchell, T. M. (2010). Toward an architecture for never-ending language learning. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1306–1313). AAAI Press.
– reference: Getoor, L., Friedman, N., Koller, D., Pfeffer, A., & Taskar, B. (2007). Probabilistic relational models. In L. Getoor & B. Taskar (Eds.), An introduction to statistical relational learning (pp. 129–174). Cambridge, MA: MIT Press.
– reference: PooleDAbducing through negation as failure: Stable models within the independent choice logicJournal of Logic Programming2000441–3535176837610.1016/S0743-1066(99)00071-0
– reference: LloydJWFoundations of Logic Programming19892BerlinSpringer
– reference: Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In N. Amato (Ed.), Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS-13) (pp. 2764–2771). IEEE.
– reference: Sato, T., Kameya, Y., & Zhou, N. F. (2005). Generative modeling with failure in PRISM. In L. P. Kaelbling & A. Saffiotti (Eds.), Proceedings of the 19th international joint conference on artificial intelligence (IJCAI-05) (pp. 847–852). Professional Book Center.
– reference: van der HeijdenMLucasPJFDescribing disease processes using a probabilistic logic of qualitative timeArtificial Intelligence in Medicine201359314315510.1016/j.artmed.2013.09.003
– reference: Eisner, J., Goldlust, E., & Smith, N. (2005). Compiling Comp Ling: Weighted dynamic programming and the Dyna language. In C. Brew, L. F. Chien & K. Kirchhoff (Eds.), Proceedings of the human language technology conference and conference on empirical methods in natural language processing (HLT/EMNLP-05), (pp. 281–290). The Association for Computational Linguistics.
– reference: RiguzziFMCINTYRE: A Monte Carlo system for probabilistic logic programmingFundamenta Informaticae201312445215413113202
– reference: Jaeger, M. (2008). Model-theoretic expressivity analysis. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 325–339). Springer.
– reference: Hommersom, A., & Lucas, P. J. F. (2011). Generalising the interaction rules in probabilistic logic. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11), (pp. 912–917). AAAI Press.
– reference: Kimmig, A., Gutmann, B., & Santos Costa, V. (2009). Trading memory for answers: Towards tabling ProbLog. In P. Domingos & K. Kersting (Eds.), Proceedings of the international workshop on statistical relational learning (SRL-2009).
– reference: WarrenDSMemoing for logic programsCommunications of the ACM (CACM)19923539311110.1145/131295.131299
– reference: RichardsonMDomingosPMarkov logic networksMachine Learning2006621–210713610.1007/s10994-006-5833-1
– reference: Hommersom, A., de Carvalho Ferreira, N., & Lucas, P. J. F. (2009). Integrating logical reasoning and probabilistic chain graphs. In W. L. Buntine, M. Grobelnik, D. Mladenic & J. Shawe-Taylor (Eds.), Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML/PKDD-09), Lecture Notes in Computer Science (Vol. 5781, pp. 548–563). Springer.
– reference: Roy, D., Mansinghka, V., Winn, J., McAllester, D., Tenenbaum, D. (Eds.) (2008) . Probabilistic programming, NIPS Workshop.
– reference: KimmigAMihalkovaLGetoorLLifted graphical models: A surveyMachine Learning.2015991145332423410.1007/s10994-014-5443-2
– reference: Baral, C., Gelfond, M., & Rushton, J. N. (2004). Probabilistic reasoning with answer sets. In V. Lifschitz & I. Niemelä (Eds.), Proceedings of the 7th international conference on logic programming and nonmonotonic reasoning (LPNMR-04), Lecture Notes in Computer Science, (Vol. 2923, pp. 21–33). Springer.
– reference: Kersting, K. (2012). Lifted probabilistic inference. In L. De Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz & P. J. F. Lucas (Eds.), Proceedings of the 20th European conference on artificial intelligence (ECAI-12), Frontiers in Artificial Intelligence and Applications (Vol. 242, pp. 33–38). IOS Press.
– reference: Pfeffer, A. (2001). IBAL: A probabilistic rational programming language. In B. Nebel (Ed.), Proceedings of the 17th international joint conference on artificial intelligence (IJCAI-01), (pp. 733–740). Morgan Kaufmann Publishers.
– reference: KerstingKDe RaedtLRaikoTLogical hidden Markov modelsJournal of Artificial Intelligence Research (JAIR)200625425456
– reference: SatoTKameyaYKuriharaKVariational Bayes via propositionalized probability computation in PRISMAnnals of Mathematics and Artificial Intelligence2008541–3135158255543510.1007/s10472-009-9135-8
– reference: Dantsin, E. (1991). Probabilistic logic programs and their semantics. In A. Voronkov (Ed.), Proceedings of the first Russian conference on logic programming, Lecture Notes in Computer Science (Vol. 592, pp. 152–164). Springer.
– reference: Bröcheler, M., Mihalkova, L., & Getoor, L. (2010). Probabilistic similarity logic. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 73–82). AUAI Press.
– reference: Haddawy, P. (1994). Generating Bayesian networks from probabilistic logic knowledge bases. In R. L. de Mántaras & D. Poole (Eds.), Proceedings of the 10th annual conference on uncertainty in artificial intelligence (UAI-94) (pp. 262–269). Morgan Kaufmann Publishers.
– reference: MuggletonSDe RaedtLStochastic logic programsAdvances in inductive logic programming1996AmsterdamIOS Press254264
– reference: Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of ProbLog programs. In M. Garcia de la Banda & E. Pontelli (Eds.), Proceedings of the 24th international conference on logic programming (ICLP-08), Lecture Notes in Computer Science (Vol. 5366, pp. 175–189). Springer.
– reference: SatoTKameyaYParameter learning of logic programs for symbolic-statistical modelingJournal of Artificial Intelligence Research (JAIR)2001153914541884084
– reference: Vennekens, J., Denecker, M., & Bruynooghe, M. (2006). Representing causal information about a probabilistic process. In M. Fisher, W. van der Hoek, B. Konev & A. Lisitsa (Eds.), Proceedings of the 10th European conference on logics in artificial intelligence (JELIA-06), Lecture Notes in Computer Science (Vol. 4160, pp. 452–464). Springer.
– reference: Cussens, J. (2005). Integrating by separating: Combining probability and logic with ICL, PRISM and SLPs. APRIL II project report.
– reference: RiguzziFExtended semantics and inference for the Independent Choice LogicLogic Journal of the IGPL2009176589629256445710.1093/jigpal/jzp025
– reference: SneyersJMeertWVennekensJKameyaYSatoTCHR(PRISM)-based probabilistic logic learningTheory and Practice of Logic Programming (TPLP)2010104–6433447267400810.1017/S1471068410000207
– reference: Kimmig, A., Van den Broeck, G., & De Raedt, L. (2011a). An algebraic Prolog for reasoning about possible worlds. In W. Burgard & D. Roth (Eds.), Proceedings of the 25th AAAI conference on artificial intelligence (AAAI-11) (pp. 209–214). AAAI Press.
– reference: SkarlatidisAArtikisAFilippouJPaliourasGA probabilistic logic programming event calculusTheory and Practice of Logic Programming (TPLP)201515221324510.1017/S1471068413000690
– reference: Bragaglia, S., & Riguzzi, F. (2010). Approximate inference for logic programs with annotated disjunctions. In P. Frasconi & F. A. Lisi (Eds.), Revised papers of the 20th international conference on inductive logic programming (ILP-10), Lecture Notes in Computer Science (Vol. 6489, pp. 30–37). Springer.
– reference: FuhrNProbabilistic Datalog: Implementing logical information retrieval for advanced applicationsJournal of the American Society for Information Science (JASIS)200051295110183741710.1002/(SICI)1097-4571(2000)51:2<95::AID-ASI2>3.0.CO;2-H
– reference: Dalvi, N. N., & Suciu, D. (2004). Efficient query evaluation on probabilistic databases. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley & K. B. Schiefer (Eds.), Proceedings of the 30th international conference on very large databases (VLDB-04), (pp. 864–875). Morgan Kaufmann Publishers.
– reference: Pfeffer, A. (2009). Figaro: An object-oriented probabilistic programming language. Charles River Analytics: Technical report.
– reference: Moldovan, B., Thon, I., Davis, J., & De Raedt, L. (2013). MCMC estimation of conditional probabilities in probabilistic programming languages. In L. C. van der Gaag (Ed.), Proceedings of the 12th European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU-13), Lecture Notes in Computer Science (Vol. 7958, pp. 436–448). Springer.
– reference: Poole, D. (2008). The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 222–243). Springer.
– reference: Vennekens, J. (2007). Algebraic and logical study of constructive processes in knowledge representation. PhD thesis, K.U. Leuven.
– reference: Fierens, D., Blockeel, H., Bruynooghe, M., & Ramon, J. (2005). Logical Bayesian networks and their relation to other probabilistic logical models. In S. Kramer & B. Pfahringer (Eds.), Proceedings of the 15th international conference on inductive logic programming (ILP-05), Lecture Notes in Computer Science (Vol. 3625, pp. 121–135). Springer.
– reference: FlachPASimply logical: Intelligent reasoning by example1994New YorkJohn Wiley
– reference: Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language for generative models. In D. A. McAllester & P. Myllymäki (Eds.), Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI-08), (pp. 220–229). AUAI Press.
– reference: Suciu, D., Olteanu, D., Ré, C., & Koch, C. (2011). Probabilistic databases, Synthesis lectures on data management (Vol. 16). Burlington: Morgan & Claypool Publishers.
– reference: Kersting, K., & De Raedt, L. (2008). Basic principles of learning Bayesian logic programs. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 189–221). Springer.
– reference: Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In L. Sterling (Ed.), Proceedings of the 12th international conference on logic programming (ICLP-95) (pp. 715–729). MIT Press.
– reference: Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T. G., Fern, A., & Restificar, A. C. (2005). Learning first-order probabilistic models with combining rules. In L. De Raedt & S. Wrobel (Eds.), Proceedings of the 22nd international conference on machine learning (ICML-05), ACM International conference proceeding series (Vol. 119, pp. 609–616). ACM.
– reference: Lodhi, H., & Muggleton, S. (2005). Modelling metabolic pathways using stochastic logic programs-based ensemble methods. In V. Danos & V. Schächter (Eds.), Revised selected papers of the international conference on computational methods in systems biology (CMSB-04), Lecture Notes in Computer Science (Vol. 3082, pp. 119–133). Springer.
– reference: Sato, T. (2011). A general MCMC method for Bayesian inference in logic-based probabilistic modeling. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11) (pp. 1472–1477). AAAI Press.
– reference: RiguzziFSpeeding up inference for probabilistic logic programsThe Computer Journal201457334736310.1093/comjnl/bxt096
– reference: MørkSHolmesIEvaluating bacterial gene-finding HMM structures as probabilistic logic programsBioinformatics201228563664210.1093/bioinformatics/btr698
– reference: Sato, T., & Kameya, Y. (1997). PRISM: A language for symbolic-statistical modeling. In M. E. Pollack (Ed.), Proceedings of the 15th international joint conference on artificial intelligence (IJCAI-97) (pp. 1330–1339). Morgan Kaufmann Publishers.
– reference: Van den Broeck, G., Meert, W., & Darwiche, A. (2014). Skolemization for weighted first-order model counting. In C. Baral, G. D. Giacomo & T. Eiter (Eds.), Proceedings of the 14th international conference on principles of knowledge representation and reasoning (KR-14) (pp. 111–120). AAAI Press.
– reference: ValiantLGThe complexity of enumeration and reliability problemsSIAM Journal on Computing19798341042153925810.1137/0208032
– reference: HuthMRyanMLogic in Computer Science: Modelling and Reasoning About Systems2004CambridgeCambridge University Press10.1017/CBO9780511810275
– reference: Stuhlmueller, A., Tenenbaum, J. B., & Goodman, N. D. (2010). Learning structured generative concepts. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 2296–2301). Cognitive Science Society.
– reference: Vennekens, J., Verbaeten, S., & Bruynooghe, M. (2004). Logic programs with annotated disjunctions. In: B. Demoen & V. Lifschitz (Eds.), Proceedings of the 20th international conference on logic programming (ICLP-04), Lecture Notes in Computer Science (Vol. 3132, pp. 431–445). Springer.
– reference: De MaeyerDRenkensJClootsLDeRaedt LMarchalKPhenetic: Network-based interpretation of unstructured gene lists in E. coliMolecular BioSystems2013971594160310.1039/c3mb25551d
– reference: KimmigADemoenBDe RaedtLSantos CostaVRochaROn the implementation of the probabilistic logic programming language ProbLogTheory and Practice of Logic Programming (TPLP)2011112–323526210.1017/S1471068410000566
– reference: WellmanMPBreeseJSGoldmanRPFrom knowledge bases to decision modelsThe Knowledge Engineering Review199271355310.1017/S0269888900006147
– reference: Gerstenberg, T., & Goodman, N. D. (2012). Ping pong in Church: Productive use of concepts in human probabilistic inference. In N. Miyake, D. Peebles & R. P. Cooper (Eds.), Proceedings of the 34th annual conference of the cognitive science society (pp. 1590–1595). Cognitive Science Society.
– reference: Kersting, K., & De Raedt, L. (2001). Bayesian logic programs. CoRR cs.AI/0111058.
– reference: Arora, N. S., de Salvo Braz, R., Sudderth, E. B., & Russell, S. J. (2010). Gibbs sampling in open-universe stochastic languages. In P. Grünwald & P. Spirtes (Eds.), Proceedings of the 26th conference on uncertainty in artificial intelligence (UAI-10) (pp. 30–39). AUAI Press.
– reference: Milch, B., Marthi, B., Russell, S. J., Sontag, D., Ong, D. L., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In L. P. Kaelbling & A. Saffiotti (Eds.), Proceedings of the 19th international joint conference on artificial intelligence (IJCAI-05) (pp. 1352–1359). NY: Professional Book Center.
– reference: Santos Costa, V., Page, D., Qazi, M., & Cussens, J. (2003). CLP( BN): Constraint logic programming for probabilistic knowledge. In C. Meek & U. Kjærulff (Eds.), Proceedings of the 19th conference on uncertainty in artificial intelligence (UAI-03) (pp. 517–524). Morgan Kaufmann Publishers.
– reference: Koller, D., & Pfeffer, A. (1998). Probabilistic frame-based systems. In J. Mostow & C. Rich (Eds.), Proceedings of the 15th national conference on artificial intelligence (AAAI-98) (pp. 580–587). AAAI Press/MIT Press.
– reference: PooleDProbabilistic Horn abduction and Bayesian networksArtificial Intelligence1993648112910.1016/0004-3702(93)90061-F
– reference: Riguzzi, F. (2013a). cplint Manual. https://sites.google.com/a/unife.it/ml/cplint/cplint-manual
– reference: VennekensJDeneckerMBruynoogheMCP-logic: A language of causal probabilistic events and its relation to logic programmingTheory and Practice of Logic Programming (TPLP)200993245308252561510.1017/S1471068409003767
– reference: Angelopoulos, N., & Cussens, J. (2004). On the implementation of MCMC proposals over stochastic logic programs. In M. Carro & J. F. Morales (Eds.), Proceedings of the colloquium on implementation of constraint and logic programming systems (CICLOPS-04).
– reference: PearlJProbabilistic reasoning in intelligent systems: Networks of plausible inference1988BurlingtonMorgan Kaufmann Publishers
– reference: Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), Proceedings of the 18th international joint conference on artificial intelligence (IJCAI-03) (pp. 985–991). Morgan Kaufmann Publishers.
– reference: BellodiELammaERiguzziFSantos CostaVZeseRLifted variable elimination for probabilistic logic programmingTheory and Practice of Logic Programming (TPLP)2014144–568169510.1017/S1471068414000283
– reference: Mantadelis, T., & Janssens, G. (2011). Nesting probabilistic inference. In S. Abreu & V. Santos Costa (Eds.), Proceedings of the colloquium on implementation of constraint and logic programming systems (CICLOPS-11).
– reference: GutmannBThonIKimmigABruynoogheMDe RaedtLThe magic of logical inference in probabilistic programmingTheory and Practice of Logic Programming (TPLP)2011114–566368010.1017/S1471068411000238
– reference: Poole, D. (1995). Exploiting the rule structure for decision making within the independent choice logic. In P. Besnard & S. Hanks (Eds.), Proceedings of the eleventh annual conference on uncertainty in artificial intelligence (UAI-95) (pp. 454–463). Morgan Kaufmann Publishers.
– reference: Santos Costa, V., & Paes, A. (2009). On the relationship between PRISM and CLP( BN). In P. Domingos & K. Kersting (Eds.), Proceedings of the international workshop on statistical relational learning (SRL-2009).
– reference: Van den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: A decision-theoretic probabilistic Prolog. In M. Fox & D. Poole (Eds.), Proceedings of the 24th AAAI conference on artificial intelligence (AAAI-10) (pp. 1217–1222). AAAI Press.
– reference: Fuhr, N. (1995). Probabilistic Datalog—A logic for powerful retrieval methods. In E. A. Fox, P. Ingwersen & R. Fidel (Eds.), Proceedings of the 18th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR-95), (pp. 282–290). ACM Press.
– reference: Bancilhon, F., Maier, D., Sagiv, Y., & Ullman, J. D. (1986). Magic sets and other strange ways to implement logic programs (extended abstract). In A. Silberschatz (Ed.), Proceedings of the 5th ACM SIGACT-SIGMOD symposium on principles of database systems (PODS-86) (pp. 1–15). ACM.
– reference: Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. B. (2013). Approximate Bayesian image interpretation using generative probabilistic graphics programs. In C. J. C. Burges, L. Bottou, Z. Ghahramani & K. Q. Weinberger (Eds.), Proceedings of the 27th annual conference on neural information processing systems (NIPS-13), Neural Information Processing Systems, (pp. 1520–1528).
– reference: De RaedtLKerstingKProbabilistic logic learningSIGKDD Explorations200351314810.1145/959242.959247
– reference: Jaeger, M. (1997). Relational Bayesian networks. In D. Geiger & P. P. Shenoy (Eds.), Proceedings of the 13th conference on uncertainty in artificial intelligence (UAI-97) (pp. 266–273). Morgan Kaufmann Publishers.
– reference: Gutmann, B., Jaeger, M., & De Raedt, L. (2010). Extending ProbLog with continuous distributions. In P. Frasconi & F. A. Lisi (Eds.), Proccedings of the 20th international conference on inductive logic programming (ILP-10), Lecture Notes in Computer Science (Vol. 6489, pp. 76–91). Springer.
– reference: RussellSJNorvigArtificial intelligence: A modern approach20032Upper Saddle RiverPrentice Hall
– reference: De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic Prolog and its application in link discovery. In M. M. Veloso (Ed.), Proceedings of the 20th international joint conference on artificial intelligence (IJCAI-07), (pp. 2462–2467). Morgan Kaufmann Publishers.
– reference: CohenWWWHIRL: A word-based information representation languageArtificial Intelligence2000118116319610.1016/S0004-3702(99)00102-2
– reference: Poole, D. (2010). Probabilistic programming languages: Independent choices and deterministic systems. In R. Dechter, H. Geffner & J. Halpern (Eds.), Heuristics, probability and causality: A tribute to Judea Pearl (pp. 253–269). NY: College Publications.
– reference: BaralCGelfondMRushtonNProbabilistic reasoning with answer setsTheory and Practice of Logic Programming (TPLP)20099157144248144210.1017/S1471068408003645
– reference: RenkensJVan den BroeckGNijssenSk-optimal: A novel approximate inference algorithm for ProbLogMachine Learning2012893215231297153110.1007/s10994-012-5304-9
– reference: Renkens, J., Kimmig, A., Van den Broeck, G., & De Raedt, L. (2014). Explanation-based approximate weighted model counting for probabilistic logics. In C. E. Brodley & P. Stone (Eds.), Proceedings of the 28th AAAI conference on artificial intelligence (AAAI-14) (pp. 2490–2496). AAAI Press.
– reference: Eisner, J., & Filardo, N. W. (2011). Dyna: Extending Datalog for modern AI. In O. de Moor, G. Gottlob, T. Furche & A. Sellers (Eds.), Datalog reloaded, Lecture Notes in Computer Science (Vol. 6702, pp. 181–220). Springer.
– reference: RiguzziFSwiftTThe PITA system: Tabling and answer subsumption for reasoning under uncertaintyTheory and Practice of Logic Programming (TPLP)2011114–5433449281933110.1017/S147106841100010X
– reference: Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted probabilistic inference by first-order knowledge compilation. In T. Walsh (Ed.), Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI-11) (pp. 2178–2185). AAAI Press.
– reference: FierensDVan den BroeckGRenkensJShterionovDGutmannBThonIInference and learning in probabilistic logic programs using weighted Boolean formulasTheory and Practice of Logic Programming201315335840110.1017/S1471068414000076
– reference: Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In Y. Gil & R. J. Mooney (Eds.), Proceedings of the 21st national conference on artificial intelligence (AAAI-06) (pp. 458–463). AAAI Press.
– reference: Santos Costa, V., Page, D., & Cussens, J. (2008). CLP( BN): Constraint logic programming for probabilistic knowledge. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic programming–Theory and applications, Lecture Notes in Artificial Intelligence (Vol. 4911, pp. 156–188). Springer.
– reference: Fierens, D., Van den Broeck, G., Bruynooghe, M., & De Raedt, L. (2012). Constraints for probabilistic logic programming. In V. Mansinghka, D. Roy & N. Goodman (Eds.), Proceedings of the NIPS probabilistic programming workshop.
– reference: Poole, D. (1992). Logic programming, abduction and probability. In Proceedings of the international conference on fifth generation computing systems (FGCS-92) (pp. 530–538). IOS Press.
– ident: 5494_CR7
– ident: 5494_CR30
– volume-title: Logic in Computer Science: Modelling and Reasoning About Systems
  year: 2004
  ident: 5494_CR36
  doi: 10.1017/CBO9780511810275
– ident: 5494_CR53
– ident: 5494_CR25
  doi: 10.1145/215206.215372
– ident: 5494_CR54
  doi: 10.1007/978-3-642-39091-3_37
– volume: 99
  start-page: 1
  issue: 1
  year: 2015
  ident: 5494_CR47
  publication-title: Machine Learning.
  doi: 10.1007/s10994-014-5443-2
– volume: 11
  start-page: 433
  issue: 4–5
  year: 2011
  ident: 5494_CR77
  publication-title: Theory and Practice of Logic Programming (TPLP)
  doi: 10.1017/S147106841100010X
– volume: 118
  start-page: 163
  issue: 1
  year: 2000
  ident: 5494_CR11
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(99)00102-2
– ident: 5494_CR82
  doi: 10.1007/978-3-540-78652-8_6
– volume: 124
  start-page: 521
  issue: 4
  year: 2013
  ident: 5494_CR75
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-2013-847
– ident: 5494_CR21
– ident: 5494_CR44
– ident: 5494_CR50
  doi: 10.1007/978-3-540-25974-9_10
– volume: 35
  start-page: 93
  issue: 3
  year: 1992
  ident: 5494_CR103
  publication-title: Communications of the ACM (CACM)
  doi: 10.1145/131295.131299
– volume: 59
  start-page: 143
  issue: 3
  year: 2013
  ident: 5494_CR33
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2013.09.003
– ident: 5494_CR96
– volume: 89
  start-page: 215
  issue: 3
  year: 2012
  ident: 5494_CR70
  publication-title: Machine Learning
  doi: 10.1007/s10994-012-5304-9
– ident: 5494_CR4
– ident: 5494_CR41
  doi: 10.1007/978-3-540-78652-8_7
– ident: 5494_CR27
– ident: 5494_CR35
  doi: 10.1007/978-3-642-04180-8_53
– volume: 82
  start-page: 239
  issue: 2
  year: 2011
  ident: 5494_CR93
  publication-title: Machine Learning
  doi: 10.1007/s10994-010-5213-8
– volume: 44
  start-page: 5
  issue: 1–3
  year: 2000
  ident: 5494_CR65
  publication-title: Journal of Logic Programming
  doi: 10.1016/S0743-1066(99)00071-0
– ident: 5494_CR87
– ident: 5494_CR62
– ident: 5494_CR102
  doi: 10.1145/2505515.2505573
– ident: 5494_CR78
– volume: 51
  start-page: 95
  issue: 2
  year: 2000
  ident: 5494_CR26
  publication-title: Journal of the American Society for Information Science (JASIS)
  doi: 10.1002/(SICI)1097-4571(2000)51:2<95::AID-ASI2>3.0.CO;2-H
– ident: 5494_CR39
  doi: 10.3233/978-1-61499-098-7-33
– ident: 5494_CR84
– volume: 15
  start-page: 213
  issue: 2
  year: 2015
  ident: 5494_CR89
  publication-title: Theory and Practice of Logic Programming (TPLP)
  doi: 10.1017/S1471068413000690
– ident: 5494_CR61
– volume: 7
  start-page: 35
  issue: 1
  year: 1992
  ident: 5494_CR104
  publication-title: The Knowledge Engineering Review
  doi: 10.1017/S0269888900006147
– volume: 11
  start-page: 663
  issue: 4–5
  year: 2011
  ident: 5494_CR31
  publication-title: Theory and Practice of Logic Programming (TPLP)
  doi: 10.1017/S1471068411000238
– volume: 64
  start-page: 81
  year: 1993
  ident: 5494_CR63
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(93)90061-F
– ident: 5494_CR43
  doi: 10.1007/978-3-540-89982-2_22
– ident: 5494_CR3
  doi: 10.1145/6012.15399
– ident: 5494_CR1
– ident: 5494_CR20
  doi: 10.1007/11536314_8
– ident: 5494_CR98
– volume: 11
  start-page: 235
  issue: 2–3
  year: 2011
  ident: 5494_CR46
  publication-title: Theory and Practice of Logic Programming (TPLP)
  doi: 10.1017/S1471068410000566
– ident: 5494_CR81
– volume: 57
  start-page: 347
  issue: 3
  year: 2014
  ident: 5494_CR76
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/bxt096
– volume: 5
  start-page: 31
  issue: 1
  year: 2003
  ident: 5494_CR16
  publication-title: SIGKDD Explorations
  doi: 10.1145/959242.959247
– ident: 5494_CR10
  doi: 10.1007/978-3-540-89982-2_18
– volume: 9
  start-page: 57
  issue: 1
  year: 2009
  ident: 5494_CR5
  publication-title: Theory and Practice of Logic Programming (TPLP)
  doi: 10.1017/S1471068408003645
– ident: 5494_CR64
– ident: 5494_CR99
  doi: 10.1007/978-3-540-27775-0_30
– ident: 5494_CR45
  doi: 10.1609/aaai.v25i1.7852
– ident: 5494_CR22
– ident: 5494_CR19
  doi: 10.3115/1220575.1220611
– ident: 5494_CR28
– ident: 5494_CR18
  doi: 10.1007/978-3-642-24206-9_11
– volume: 62
  start-page: 107
  issue: 1–2
  year: 2006
  ident: 5494_CR72
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– ident: 5494_CR34
– volume: 9
  start-page: 1594
  issue: 7
  year: 2013
  ident: 5494_CR15
  publication-title: Molecular BioSystems
  doi: 10.1039/c3mb25551d
– volume: 17
  start-page: 589
  issue: 6
  year: 2009
  ident: 5494_CR73
  publication-title: Logic Journal of the IGPL
  doi: 10.1093/jigpal/jzp025
– ident: 5494_CR14
– ident: 5494_CR71
  doi: 10.1609/aaai.v28i1.9067
– ident: 5494_CR37
– ident: 5494_CR40
– volume: 9
  start-page: 245
  issue: 3
  year: 2009
  ident: 5494_CR101
  publication-title: Theory and Practice of Logic Programming (TPLP)
  doi: 10.1017/S1471068409003767
– ident: 5494_CR38
  doi: 10.1007/978-3-540-78652-8_13
– ident: 5494_CR95
  doi: 10.1609/aaai.v24i1.7755
– volume-title: Artificial intelligence: A modern approach
  year: 2003
  ident: 5494_CR79
– volume: 28
  start-page: 636
  issue: 5
  year: 2012
  ident: 5494_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr698
– volume-title: Simply logical: Intelligent reasoning by example
  year: 1994
  ident: 5494_CR24
– volume-title: Foundations of Logic Programming
  year: 1989
  ident: 5494_CR49
– ident: 5494_CR8
– volume: 25
  start-page: 425
  year: 2006
  ident: 5494_CR42
  publication-title: Journal of Artificial Intelligence Research (JAIR)
  doi: 10.1613/jair.1675
– start-page: 254
  volume-title: Advances in inductive logic programming
  year: 1996
  ident: 5494_CR56
– ident: 5494_CR13
  doi: 10.1016/B978-012088469-8.50076-0
– ident: 5494_CR52
– volume: 54
  start-page: 135
  issue: 1–3
  year: 2008
  ident: 5494_CR88
  publication-title: Annals of Mathematics and Artificial Intelligence
  doi: 10.1007/s10472-009-9135-8
– ident: 5494_CR58
  doi: 10.1109/IROS.2013.6696747
– ident: 5494_CR48
– ident: 5494_CR69
– ident: 5494_CR17
– ident: 5494_CR66
– ident: 5494_CR57
  doi: 10.1145/1102351.1102428
– ident: 5494_CR97
– ident: 5494_CR80
– ident: 5494_CR51
– ident: 5494_CR32
– ident: 5494_CR92
  doi: 10.1007/978-3-031-01879-4
– ident: 5494_CR68
– volume: 15
  start-page: 391
  year: 2001
  ident: 5494_CR86
  publication-title: Journal of Artificial Intelligence Research (JAIR)
  doi: 10.1613/jair.912
– ident: 5494_CR67
  doi: 10.1007/978-3-540-78652-8_8
– volume: 8
  start-page: 410
  issue: 3
  year: 1979
  ident: 5494_CR94
  publication-title: SIAM Journal on Computing
  doi: 10.1137/0208032
– ident: 5494_CR100
  doi: 10.1007/11853886_37
– volume: 15
  start-page: 358
  issue: 3
  year: 2013
  ident: 5494_CR23
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068414000076
– ident: 5494_CR83
  doi: 10.7551/mitpress/4298.003.0069
– volume: 14
  start-page: 681
  issue: 4–5
  year: 2014
  ident: 5494_CR6
  publication-title: Theory and Practice of Logic Programming (TPLP)
  doi: 10.1017/S1471068414000283
– ident: 5494_CR29
– ident: 5494_CR2
– ident: 5494_CR60
– ident: 5494_CR12
– ident: 5494_CR85
– ident: 5494_CR91
– volume: 10
  start-page: 433
  issue: 4–6
  year: 2010
  ident: 5494_CR90
  publication-title: Theory and Practice of Logic Programming (TPLP)
  doi: 10.1017/S1471068410000207
– ident: 5494_CR74
– volume-title: Probabilistic reasoning in intelligent systems: Networks of plausible inference
  year: 1988
  ident: 5494_CR59
– ident: 5494_CR9
  doi: 10.1609/aaai.v24i1.7519
SSID ssj0002686
Score 2.5736618
Snippet A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling...
Issue Title: Special Issue on Inductive Logic Programming and on Multi-Relational Learning; Guest Editors: Gerson Zaverucha and Vitor Santos Costa A multitude...
A multitude of different probabilistic programming languages exists today, allextending a traditional programming language with primitives to support modeling...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5
SubjectTerms Artificial Intelligence
Computer Science
Control
Inference in probabilistic languages
Logic programming
Mechatronics
Natural Language Processing (NLP)
Probabilistic logic programming
Probabilistic methods
Probabilistic programming languages
Probability theory
Programming
Programming languages
Prolog
Prolog (programming language)
Robotics
Semantics
Simulation and Modeling
Statistical relational learning
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86fXV-YnVKBQWdBJq2SZvHoQ4fZAw_xt5Cm6Qy0E3azYf99V76tSkq6EOfmibhLpe76939DqHTSEckZkxiqhyJfR77mEvlYpdK7lFNAzfKQVzvgl4vHA55v6zjzqps9yokmd_US8VuOYwtoRh8Gh_PV9EaaLvQSOP9w6C-fl2Wt3cE6aHYqO8qlPndFJ-V0cLCrIOiXwBEc6XTbf5ru5too7Qx7U5xKLbQih5vo2bVv8EuxXkHtfspSLPJjjVgzfZ5fg1e2GXK1iusZsuiqjHbRU_dm8erW1z2TsASfJgpEJxpxQMnYZx4TDJu-kQyX0USDB6pTBsw7igpFSEJuAym6wtxk9DTseK-JrG3hxrjyVjvIztUVOmIOknigcQzGsWUBRENY7DFWKBcCzkVEYUsgcVNf4sXsYBENrQQQAthaCHmFmrXn7wVqBq_DW5VnBGlgGWCMOA8DcF5tNBJ_RpEw8Q7orGezGCMweLnJOS-hS4rJi1N8fOCZwXT670ZDO7r0aAjJukzPDMRgp1GDv4066H5JUDK_LUWakzTmT5C6_J9OsrS4_wMfwCO2-u7
  priority: 102
  providerName: Springer Nature
Title Probabilistic (logic) programming concepts
URI https://link.springer.com/article/10.1007/s10994-015-5494-z
https://www.proquest.com/docview/1698158249
https://www.proquest.com/docview/1730091894
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-86351
Volume 100
WOSCitedRecordID wos000358326000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5By4ELLS-xfSlIIEGR1diJnfhU9SkkYBUVqCouVmI7qBLdbffBob-emcTJ0krtpYf4EiexPA_PeJzvA3hX-pJXSlkmXWxZqquUaesEE9LqRHqZibIBcf2aDYf52ZkuwobbNByr7Hxi46jd2NIe-Q5XOucyx2xh9_KKEWsUVVcDhcZjWOZCcNLzLxnrPbFQDdMjGpJktJJ3Vc3217kGFJdLhhlSyq5vrkuLYLOvj97CEm3Wn-OVh458FZ6FyDPaa1XlOTzyoxew0rE6RMHIX8J2MUEbpzOzBOEcfWic48coHOS6wFFGtv3XcfoKfh4f_Tj4zAKjArOY2cxQDMo7ncW10jxRVmlij1SpKy2GQdYROZiOnbWO8xoTCeKC4aLOE185nXpeJa9haTQe-TcQ5U46X8q4rhP0A0qWlVRZKfMKIzSVOTGAuJtPYwPcOLFe_DELoGQSgUERGBKBuR7Adv_IZYu1cV_njW62TTC7qVlM9QDe9rfRYKgKUo78eI59CKFf81ynA_jUCfe_V9z9wfet_PuxETL34fnpnhlPfuM1NzlGb3zt_oGtw1NBWtec-N2Apdlk7jfhif07O59OtmB5_2hYnGw1eoztN1FgW8hf2J58P_0HB__55A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9VAEJ8gmshFRCA-RK2JJArZ2N12t92DMUQkEJ4v7wCGcFna3S0h0ffgfUDkj_JvdKZfT03kxoFDT223m52Z3850ZucH8DbzGc-Vsky60LJY5zHT1gkmpNWR9DIRWdnEtZv0eunxse7Pwa_mLAyVVTaYWAK1G1r6R_6BK51ymWK08OnikhFrFGVXGwqNSi0O_M9rDNnGH_d3UL4bQux-Ofy8x2pWAWbRu5_gVJR3OgkLpXmkrNLEoKhil1l0BawjgiwdOmsd5wU608SHwkWRRj53OvY8j3DcB_AwjjFYQvvpy5MW-YUqmSXRcCUjz6HJolZH9comvFwyjMhidvP3Pjhzbtt87D-9S8v9bnfxvq3UU3hSe9bBdmUKSzDnB89gsWGtCGoQW4bN_ggxjGqCqUV18K4E__dBXaj2A1clsNVZzvEKHN3JjFdhfjAc-OcQpE46n8mwKCLEOSWzXKokk2mOHqhKnOhA2MjP2LqdOrF6fDezRtAkcoMiNyRyc9OBzfaVi6qXyG0PrzfSNTWsjM1MtB14095GQKAsTzbwwyk-QwwEmqc67sBWo0x_DPH_D25U-tbOjTqP75x_2zbD0RleU5Oid8rXbp_Ya3i8d_i1a7r7vYMXsCBI48vq5nWYn4ym_iU8sleT8_HoVWk7AZzetQr-BiRWUsk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqCouhb7EtkBTqUgtlUXsxE58QAh1uyoCrfbQVqgXk9gOQoJd2Eer8tP4dczktW2lcuPQQ05JHMsznvkmM54P4G3mM54rZZl0oWWxzmOmrRNMSKsj6WUisrKJ61HS76fHx3qwADfNWRgqq2xsYmmo3cjSP_IdrnTKZYrRwk5Rl0UMur29yytGDFKUaW3oNCoVOfS_fmL4Ntk96KKst4Toffry8TOrGQaYRaQ_xWkp73QSFkrzSFmliU1RxS6zCAusI7IsHTprHecFAmviRuGiSCOfOx17nkc47gNYSjDGpMBvIL-3XkCokmUSN7FkhCKajGp1bK9syMslw-gsZtd_-sQ50G1zs3_1MS19X2_lf161VXhcI-5gv9oiT2DBD5_CSsNmEdTG7RlsD8Zo26hWmFpXB-9Kp_A-qAvYLnCFAlud8Zw8h6_3MuMXsDgcDf0aBKmTzmcyLIoI7Z-SWS5Vksk0R2SqEic6EDayNLZus05sH-dm3iCaxG9Q_IbEb647sN2-cln1GLnr4fVG0qY2NxMzF3MH3rS30VBQ9icb-tEMnyFmAs1THXfgQ6NYvw3x7w9uVbrXzo06knfPvu2b0fgUr5lJEbXyl3dP7DU8Qs0zRwf9w1ewLEj5y6LndVicjmd-Ax7aH9OzyXiz3EYBnNy3Bt4CwRVbnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+%28logic%29+programming+concepts&rft.jtitle=Machine+learning&rft.au=De+Raedt%2C+Luc&rft.au=Kimmig%2C+Angelika&rft.date=2015-07-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=100&rft.issue=1&rft.spage=5&rft.epage=47&rft_id=info:doi/10.1007%2Fs10994-015-5494-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_015_5494_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon