Dynamic Bayesian Networks for Symbolic Polyphonic Pitch Modeling

Symbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of analyzing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the "horizontal" and the &q...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on audio, speech, and language processing Ročník 21; číslo 9; s. 1830 - 1840
Hlavní autoři: Raczyński, Stanisław A., Vincent, Emmanuel, Sagayama, Shigeki
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway, NJ IEEE 01.09.2013
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1558-7916, 1558-7924
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Symbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of analyzing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the "horizontal" and the "vertical" pitch structure. These models are formulated as linear or log-linear interpolations of up to five sub-models, each of which is responsible for modeling a different type of relation. The ability of the models to predict symbolic pitch data is evaluated in terms of their cross-entropy, and of a newly proposed "contextual cross-entropy" measure. Their performance is then measured on synthesized polyphonic audio signals in terms of the accuracy of multiple pitch estimation in combination with a Nonnegative Matrix Factorization-based acoustic model. In both experiments, the log-linear combination of at least one "vertical" (e.g., harmony) and one "horizontal" (e.g., note duration) sub-model outperformed a pitch-dependent Bernoulli prior by more than 60% in relative cross-entropy and 3% in absolute multiple pitch estimation accuracy. This work provides a proof of concept of the usefulness of model interpolation, which may be used for improved symbolic modeling of other aspects of music in the future.
AbstractList Symbolic pitch modelling is a way of incorporating knowledge about relations between pitches into the process of analysing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the ''horizontal'' and the ''vertical'' pitch structure. These models are formulated as linear or log-linear interpolations of up to five sub-models, each of which is responsible for modelling a different type of relation. The ability of the models to predict symbolic pitch data is evaluated in terms of their cross-entropy, and of a newly proposed ''contextual cross-entropy'' measure. Their performance is then measured on synthesised polyphonic audio signals in terms of the accuracy of multiple pitch estimation in combination with a Nonnegative Matrix Factorisation-based acoustic model. In both experiments, the log-linear combination of at least one ''vertical'' (e.g., harmony) and one ''horizontal'' (e.g., note duration) sub-model outperformed a pitch-dependent Bernoulli prior by more than 60% in relative cross-entropy and 3% in absolute multiple pitch estimation accuracy. This work provides a proof of concept of the usefulness of model interpolation, which may be used for improved symbolic modelling of other aspects of music in the future.
Symbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of analyzing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the "horizontal" and the "vertical" pitch structure. These models are formulated as linear or log-linear interpolations of up to five sub-models, each of which is responsible for modeling a different type of relation. The ability of the models to predict symbolic pitch data is evaluated in terms of their cross-entropy, and of a newly proposed "contextual cross-entropy" measure. Their performance is then measured on synthesized polyphonic audio signals in terms of the accuracy of multiple pitch estimation in combination with a Nonnegative Matrix Factorization-based acoustic model. In both experiments, the log-linear combination of at least one "vertical" (e.g., harmony) and one "horizontal" (e.g., note duration) sub-model outperformed a pitch-dependent Bernoulli prior by more than 60% in relative cross-entropy and 3% in absolute multiple pitch estimation accuracy. This work provides a proof of concept of the usefulness of model interpolation, which may be used for improved symbolic modeling of other aspects of music in the future.
Author Sagayama, Shigeki
Vincent, Emmanuel
Raczyński, Stanisław A.
Author_xml – sequence: 1
  givenname: Stanisław A.
  surname: Raczyński
  fullname: Raczyński, Stanisław A.
  email: stanislaw.raczynski@inria.fr
  organization: Inria, Rennes, France
– sequence: 2
  givenname: Emmanuel
  surname: Vincent
  fullname: Vincent, Emmanuel
  email: emmanuel.vincent@inria.fr
  organization: Inria, Rennes, France
– sequence: 3
  givenname: Shigeki
  surname: Sagayama
  fullname: Sagayama, Shigeki
  email: sagayama@hil.t.u-tokyo.ac.jp
  organization: Grad. Sch. of Inf. Sci. & Technol., Univ. of Tokyo, Tokyo, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27812354$$DView record in Pascal Francis
https://inria.hal.science/hal-00803886$$DView record in HAL
BookMark eNp9kUlv2zAQhYkiBZrtBwS96FKgOdjhIlLUrW6WpoCzAHbOxIgZ1Wxp0iWVBPr3kWDDhx56moeZ7807vCNyEGJAQs4YnTJG64vlbDGfcsrElHOpKeMfyCGTUk-qmpcHe83UJ3KU829KS6FKdki-XfUB1s4W36HH7CAU99i9xfQnF21MxaJfN9EP58fo-80qhlG6zq6Ku_iM3oVfJ-RjCz7j6W4ek6eb6-Xl7WT-8OPn5Ww-sWVddxONrGqpRN02trESFMOqFLbSSoIEFLoRuq64BN6gamurEQGZqMsSn1UjW3FMzrd_V-DNJrk1pN5EcOZ2NjfjjlJNhdbqlQ3s1y27SfHvC-bOrF226D0EjC_ZMKUoHcJkPaBfdihkC75NEKzL-wBeacaFLAeObTmbYs4J2z3CqBkbMGMDZmzA7BoYPNU_Hus66FwMXQLn_-v8vHU6RNwnKUk5p5V4B5velCY
CODEN ITASD8
CitedBy_id crossref_primary_10_1109_TASLP_2014_2300344
crossref_primary_10_3390_signals2030031
crossref_primary_10_3390_app8030470
crossref_primary_10_1016_j_sigpro_2023_109134
crossref_primary_10_1109_TASLP_2014_2352453
crossref_primary_10_1109_TASLP_2016_2533858
crossref_primary_10_1109_TASLP_2020_2987130
crossref_primary_10_1002_cpe_7604
crossref_primary_10_1186_s13636_018_0132_x
crossref_primary_10_1109_TASLP_2017_2722103
Cites_doi 10.1109/ICASSP.2009.4959518
10.1109/TNN.2005.861031
10.1109/ASPAA.2003.1285860
10.1109/TASL.2009.2034186
10.1109/TASL.2009.2032947
10.1007/978-3-642-21602-2_53
10.1109/5.18626
10.1109/TASL.2006.885248
10.3115/981863.981904
10.1109/CBMI.2007.385392
10.1162/neco.2008.04-08-771
10.1007/978-1-4471-4123-5_3
10.1109/ICASSP.2010.5495218
10.1109/ASPAA.2005.1540233
10.1109/TASL.2007.908129
10.21437/Eurospeech.2003-694
ContentType Journal Article
Copyright 2014 INIST-CNRS
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2014 INIST-CNRS
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TASL.2013.2258012
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Music
Computer Science
EISSN 1558-7924
EndPage 1840
ExternalDocumentID oai:HAL:hal-00803886v1
27812354
10_1109_TASL_2013_2258012
6502207
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AETIX
AGQYO
AGSQL
AHBIQ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
IQODW
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c499t-8e17f05e8fbcbc5a61e743c7865a5ae38b389725a2be6f9c8eeae13944ed6b5f3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321906500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1558-7916
IngestDate Wed Nov 05 07:43:20 EST 2025
Thu Sep 04 18:04:41 EDT 2025
Wed Apr 02 07:27:12 EDT 2025
Sat Nov 29 02:11:23 EST 2025
Tue Nov 18 20:48:39 EST 2025
Wed Aug 27 02:48:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Performance evaluation
Linear interpolation
Dynamic Bayesian Networks
Probabilistic approach
Acoustic signal
Signal estimation
Entropy
Matrix factorization
Modeling
Information analysis
Accuracy
Non negative matrix
Audio signal
Linear combination
symbolic pitch modeling
multipitch analysis
Bayes network
Musical sound
Pitch(acoustics)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-8e17f05e8fbcbc5a61e743c7865a5ae38b389725a2be6f9c8eeae13944ed6b5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0183-7289
OpenAccessLink https://inria.hal.science/hal-00803886
PQID 1660072559
PQPubID 23500
PageCount 11
ParticipantIDs pascalfrancis_primary_27812354
hal_primary_oai_HAL_hal_00803886v1
crossref_citationtrail_10_1109_TASL_2013_2258012
crossref_primary_10_1109_TASL_2013_2258012
ieee_primary_6502207
proquest_miscellaneous_1660072559
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway, NJ
PublicationPlace_xml – name: Piscataway, NJ
PublicationTitle IEEE transactions on audio, speech, and language processing
PublicationTitleAbbrev TASL
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref12
(ref29) 2011
ref15
boulanger-lewandowski (ref20) 2012
ref36
hu (ref40) 2003
ref14
ref30
ref11
vincent (ref10) 2010
charniak (ref35) 1996
ref17
ref18
fujishima (ref31) 1999
pauwels (ref2) 2010
jelinek (ref26) 1980
raczy?ski (ref16) 2007
fukayama (ref6) 2010
klapuri (ref13) 2006
klakow (ref27) 1998; 5
raphael (ref22) 2003
ryyn nen (ref21) 2004
kaneko (ref34) 2010
niedermayer (ref19) 2008
zweig (ref38) 1996
(ref33) 2011
ref25
kashino (ref24) 1995
(ref41) 2012
paulus (ref1) 2008
ref28
ref8
ref7
raczy?ski (ref37) 2009
ref4
goto (ref32) 2003
ref3
kim (ref9) 2010
ref5
raczy?ski (ref23) 2010
murphy (ref39) 2002
References_xml – ident: ref30
  doi: 10.1109/ICASSP.2009.4959518
– year: 2011
  ident: ref29
  publication-title: R A Language and Environment for Statistical Computing
– year: 2012
  ident: ref20
  article-title: Discriminative non-negative matrix factorization for multiple pitch estimation
  publication-title: Proc 13th Int Conf Music Inf Retrieval (ISMIR)
– ident: ref11
  doi: 10.1109/TNN.2005.861031
– ident: ref17
  doi: 10.1109/ASPAA.2003.1285860
– start-page: 299
  year: 2010
  ident: ref6
  article-title: Automatic song composition from the lyrics exploiting prosody of the Japanese language
  publication-title: Proc 7th Sound and Music Comput Conf (SMC)
– start-page: 216
  year: 2006
  ident: ref13
  article-title: Multiple fundamental frequency estimation by summing harmonic amplitudes
  publication-title: Proc 7th Int Conf Music Inf Retrieval (ISMIR)
– ident: ref18
  doi: 10.1109/TASL.2009.2034186
– year: 2010
  ident: ref34
  article-title: Functional harmony annotation database for statistical music analysis
  publication-title: Proc Int Conf Music Information Retrieval (ISMIR)
– ident: ref25
  doi: 10.1109/TASL.2009.2032947
– start-page: 34
  year: 1996
  ident: ref35
  publication-title: Statistical Language Learning
– start-page: 544
  year: 2008
  ident: ref19
  article-title: Non-negative matrix division for the automatic transcription of polyphonic music
  publication-title: Proc 9th Int Conf Music Inf Retrieval (ISMIR)
– ident: ref7
  doi: 10.1007/978-3-642-21602-2_53
– start-page: 381
  year: 2007
  ident: ref16
  article-title: Multipitch analysis with harmonic nonnegative matrix approximation
  publication-title: Proc 8th Int Conf Music Inf Retrieval (ISMIR)
– start-page: 52
  year: 1995
  ident: ref24
  article-title: Application of Bayesian probability network to music scene analysis
  publication-title: Working Notes of IJCAI Workshop on CASA
– year: 2011
  ident: ref33
  publication-title: Free classical and contemporary sheet music
– ident: ref36
  doi: 10.1109/5.18626
– ident: ref14
  doi: 10.1109/TASL.2006.885248
– ident: ref28
  doi: 10.3115/981863.981904
– ident: ref5
  doi: 10.1109/CBMI.2007.385392
– year: 2010
  ident: ref2
  article-title: Integrating musicological knowledge into a probabilistic framework for chord and key extraction
  publication-title: Proc 128th Audio Eng Soc Conv
– start-page: 934
  year: 2009
  ident: ref37
  article-title: Extending nonnegative matrix factorization?A discussion in the context of multiple frequency estimation of musical signals
  publication-title: Proc 17th Eur Signal Process Conf (EUSIPCO)
– start-page: 23
  year: 2010
  ident: ref9
  article-title: Performance rendering for polyphonic piano music with a combination of probabilistic models for melody and harmony
  publication-title: Proc Sound Music Comput Conf (SMC)
– start-page: 177
  year: 2003
  ident: ref22
  article-title: Harmonic analysis with probabilistic graphical models
  publication-title: Proc 4th Int Conf Music Inf Retrieval (ISMIR)
– start-page: 363
  year: 2010
  ident: ref23
  article-title: Multiple pitch transcription using DBN-based musicological models
  publication-title: Proc 11th Int Conf Music Inf Retrieval (ISMIR)
– start-page: 381
  year: 1980
  ident: ref26
  article-title: Interpolated estimation of Markov source parameters from sparse data
  publication-title: Proc 1st Int Workshop Pattern Recognition in Practice
– ident: ref15
  doi: 10.1162/neco.2008.04-08-771
– ident: ref8
  doi: 10.1007/978-1-4471-4123-5_3
– ident: ref4
  doi: 10.1109/ICASSP.2010.5495218
– year: 1996
  ident: ref38
  publication-title: A forward-backward algorithm for inference in Bayesian networks and an empirical comparison with HMMs
– year: 2012
  ident: ref41
  publication-title: Music information retrieval evaluation exchange (Mirex)
– ident: ref3
  doi: 10.1109/ASPAA.2005.1540233
– start-page: 464
  year: 1999
  ident: ref31
  article-title: Realtime chord recognition of musical sound: A system using Common Lisp music
  publication-title: Proc Int Comput Music Conf (ICMC)
– start-page: 369
  year: 2008
  ident: ref1
  article-title: Music structure analysis using a probabilistic fitness measure and an integrated musicological model
  publication-title: Proc 9th Int Conf Music Information Retrieval (ISMIR)
– year: 2004
  ident: ref21
  article-title: Modelling of note events for singing transcription
  publication-title: Proc ISCA Tutorial Res Workshop Statist Percept Audio
– year: 2002
  ident: ref39
  publication-title: Dynamic Bayesian Networks Representation Inference and Learning
– volume: 5
  start-page: 1695
  year: 1998
  ident: ref27
  article-title: Log-linear interpolation of language models
  publication-title: Proc Int Conf Spoken Lang Process
– start-page: 662
  year: 2010
  ident: ref10
  article-title: A roadmap towards versatile MIR
  publication-title: Proc 11th Int Conf Music Inf Retrieval (ISMIR)
– ident: ref12
  doi: 10.1109/TASL.2007.908129
– start-page: 229
  year: 2003
  ident: ref32
  article-title: RWC music database: Music genre database and musical instrument sound database
  publication-title: Proc 4th Int Conf Music Inf Retrieval (ISMIR)
– start-page: 2533
  year: 2003
  ident: ref40
  article-title: An efficient Viterbi algorithm on DBNs
  publication-title: Proc 7th Eur Conf Speech Commun Technol (Eurospeech)
  doi: 10.21437/Eurospeech.2003-694
SSID ssj0043641
Score 2.244993
Snippet Symbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of analyzing musical information or signals. In...
Symbolic pitch modelling is a way of incorporating knowledge about relations between pitches into the process of analysing musical information or signals. In...
SourceID hal
proquest
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1830
SubjectTerms Accuracy
Acoustics
Applied sciences
Audio signals
Bayes methods
Computer Science
Context modeling
Data models
Detection, estimation, filtering, equalization, prediction
Dynamic Bayesian Networks
Engineering Sciences
Estimation
Exact sciences and technology
Hidden Markov models
Horizontal
Information theory
Information, signal and communications theory
Interpolation
Mathematical models
multipitch analysis
Music
Pitch estimation
Signal and communications theory
Signal and Image Processing
Signal, noise
symbolic pitch modeling
Telecommunications and information theory
Training
Transaction processing
Title Dynamic Bayesian Networks for Symbolic Polyphonic Pitch Modeling
URI https://ieeexplore.ieee.org/document/6502207
https://www.proquest.com/docview/1660072559
https://inria.hal.science/hal-00803886
Volume 21
WOSCitedRecordID wos000321906500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-7924
  dateEnd: 20131231
  omitProxy: false
  ssIdentifier: ssj0043641
  issn: 1558-7916
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBVxXjiyiexLTJJtnd3KyP0oOUQit4C7vJBAVtpC_ov3cnSYOiCN5Csglhv808sjPfB3CpTRDOMPAcZSyhSVBS7kSMKSczrkQbD0Q0fIXYhOj15PNz1F-B67oXBhGL4jNs0mGxl5_myYx-lbVMNMEYtY6vCiHKXq2l1Q18HpTcqKEkCkZe7WB6btQatgePVMTlN83iJYv8zQetvlAFZCGtQoWRamLmJitFLX7Y58LpdLb_97o7sFUFl3a7XA27sIKjPdj8QjnYgJv7UoLevlULpAZKu1cWgk9sE77ag8W7JqZgu5-_LahsnQ5fDbI2iaZR6_o-PHUehnddp1JRcBKTzUwdiZ7I3BBlphOdhIp7aKKGREgeqlChL7WJWQQLFdPIsyiRiAo96pfFlOsw8w9gbZSP8JD6uzWySKQcdRD4yLVPArppFmjX4BoqC9zlvMZJRTFOShdvcZFquFFMUMQERVxBYcFVfctHya_x1-ALA1Y9jpixu-3HmM5R5OtLyeeeBQ2Coh5VoWDB2Tds6-tMSOoXDiw4X4Idm0-M9k3UCPPZJPY4kfhT7nX0-7OPYYMVKhlUenYCa9PxDE9hPZlPXyfjs2KdfgIKIuNw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-NAFD64Kuz64H0x66pRfJJNTSYzk8nb1hsVaxGs4Nswk5ygoK3YVui_3zlJGpSVhX0LySSE-Sbnkjnn-wAOrQvCGfIoMM4SugQll0HKmAkK50qs80BEw1eKTSS9nrq_T2_m4FfTC4OIZfEZtuiw3MvPh9mEfpUdu2iCMWodXxCcs6jq1prZXR5LXrGjCkUkjLLew4zC9Ljfvu1SGVfccsuXbPIHL_TlgWogS3EVKo00Izc7RSVr8ZeFLt3Oxcr_vfAqLNfhpd-u1sMazOFgHZbekQ5uwO-zSoTePzFTpBZKv1eVgo98F8D6t9NnS1zB_s3waUqF63T46LD1STaNmtc34e7ivH_aCWodhSBz-cw4UBglRShQFTazmTAyQhc3ZImSwgiDsbIuakmYMMyiLNJMIRqMqGMWc2lFEX-H-cFwgFvU4W2RpUku0XIeo7QxSejmBbehQ1YYD8LZvOqsJhknrYsnXSYbYaoJCk1Q6BoKD46aW14qho1_DT5wYDXjiBu70-5qOkexb6yUfIs82CAomlE1Ch7sfsC2uc4SRR3D3IP9GdjafWS0c2IGOJyMdCSJxp-yrx-fP3sPvnb6113dvexdbcM3VmpmUCHaT5gfv05wBxazt_Hj6HW3XLN_AAOi5rc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Bayesian+Networks+for+Symbolic+Polyphonic+Pitch+Modeling&rft.jtitle=IEEE+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Raczyn%CC%81ski%2C+Stanis%C5%82aw+A.&rft.au=Vincent%2C+Emmanuel&rft.au=Sagayama%2C+Shigeki&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1558-7916&rft.volume=21&rft.issue=9&rft.spage=1830&rft.epage=1840&rft_id=info:doi/10.1109%2FTASL.2013.2258012&rft.externalDocID=6502207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-7916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-7916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-7916&client=summon