Dynamic Bayesian Networks for Symbolic Polyphonic Pitch Modeling
Symbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of analyzing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the "horizontal" and the &q...
Uloženo v:
| Vydáno v: | IEEE transactions on audio, speech, and language processing Ročník 21; číslo 9; s. 1830 - 1840 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway, NJ
IEEE
01.09.2013
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1558-7916, 1558-7924 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Symbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of analyzing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the "horizontal" and the "vertical" pitch structure. These models are formulated as linear or log-linear interpolations of up to five sub-models, each of which is responsible for modeling a different type of relation. The ability of the models to predict symbolic pitch data is evaluated in terms of their cross-entropy, and of a newly proposed "contextual cross-entropy" measure. Their performance is then measured on synthesized polyphonic audio signals in terms of the accuracy of multiple pitch estimation in combination with a Nonnegative Matrix Factorization-based acoustic model. In both experiments, the log-linear combination of at least one "vertical" (e.g., harmony) and one "horizontal" (e.g., note duration) sub-model outperformed a pitch-dependent Bernoulli prior by more than 60% in relative cross-entropy and 3% in absolute multiple pitch estimation accuracy. This work provides a proof of concept of the usefulness of model interpolation, which may be used for improved symbolic modeling of other aspects of music in the future. |
|---|---|
| AbstractList | Symbolic pitch modelling is a way of incorporating knowledge about relations between pitches into the process of analysing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the ''horizontal'' and the ''vertical'' pitch structure. These models are formulated as linear or log-linear interpolations of up to five sub-models, each of which is responsible for modelling a different type of relation. The ability of the models to predict symbolic pitch data is evaluated in terms of their cross-entropy, and of a newly proposed ''contextual cross-entropy'' measure. Their performance is then measured on synthesised polyphonic audio signals in terms of the accuracy of multiple pitch estimation in combination with a Nonnegative Matrix Factorisation-based acoustic model. In both experiments, the log-linear combination of at least one ''vertical'' (e.g., harmony) and one ''horizontal'' (e.g., note duration) sub-model outperformed a pitch-dependent Bernoulli prior by more than 60% in relative cross-entropy and 3% in absolute multiple pitch estimation accuracy. This work provides a proof of concept of the usefulness of model interpolation, which may be used for improved symbolic modelling of other aspects of music in the future. Symbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of analyzing musical information or signals. In this paper, we propose a family of probabilistic symbolic polyphonic pitch models, which account for both the "horizontal" and the "vertical" pitch structure. These models are formulated as linear or log-linear interpolations of up to five sub-models, each of which is responsible for modeling a different type of relation. The ability of the models to predict symbolic pitch data is evaluated in terms of their cross-entropy, and of a newly proposed "contextual cross-entropy" measure. Their performance is then measured on synthesized polyphonic audio signals in terms of the accuracy of multiple pitch estimation in combination with a Nonnegative Matrix Factorization-based acoustic model. In both experiments, the log-linear combination of at least one "vertical" (e.g., harmony) and one "horizontal" (e.g., note duration) sub-model outperformed a pitch-dependent Bernoulli prior by more than 60% in relative cross-entropy and 3% in absolute multiple pitch estimation accuracy. This work provides a proof of concept of the usefulness of model interpolation, which may be used for improved symbolic modeling of other aspects of music in the future. |
| Author | Sagayama, Shigeki Vincent, Emmanuel Raczyński, Stanisław A. |
| Author_xml | – sequence: 1 givenname: Stanisław A. surname: Raczyński fullname: Raczyński, Stanisław A. email: stanislaw.raczynski@inria.fr organization: Inria, Rennes, France – sequence: 2 givenname: Emmanuel surname: Vincent fullname: Vincent, Emmanuel email: emmanuel.vincent@inria.fr organization: Inria, Rennes, France – sequence: 3 givenname: Shigeki surname: Sagayama fullname: Sagayama, Shigeki email: sagayama@hil.t.u-tokyo.ac.jp organization: Grad. Sch. of Inf. Sci. & Technol., Univ. of Tokyo, Tokyo, Japan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27812354$$DView record in Pascal Francis https://inria.hal.science/hal-00803886$$DView record in HAL |
| BookMark | eNp9kUlv2zAQhYkiBZrtBwS96FKgOdjhIlLUrW6WpoCzAHbOxIgZ1Wxp0iWVBPr3kWDDhx56moeZ7807vCNyEGJAQs4YnTJG64vlbDGfcsrElHOpKeMfyCGTUk-qmpcHe83UJ3KU829KS6FKdki-XfUB1s4W36HH7CAU99i9xfQnF21MxaJfN9EP58fo-80qhlG6zq6Ku_iM3oVfJ-RjCz7j6W4ek6eb6-Xl7WT-8OPn5Ww-sWVddxONrGqpRN02trESFMOqFLbSSoIEFLoRuq64BN6gamurEQGZqMsSn1UjW3FMzrd_V-DNJrk1pN5EcOZ2NjfjjlJNhdbqlQ3s1y27SfHvC-bOrF226D0EjC_ZMKUoHcJkPaBfdihkC75NEKzL-wBeacaFLAeObTmbYs4J2z3CqBkbMGMDZmzA7BoYPNU_Hus66FwMXQLn_-v8vHU6RNwnKUk5p5V4B5velCY |
| CODEN | ITASD8 |
| CitedBy_id | crossref_primary_10_1109_TASLP_2014_2300344 crossref_primary_10_3390_signals2030031 crossref_primary_10_3390_app8030470 crossref_primary_10_1016_j_sigpro_2023_109134 crossref_primary_10_1109_TASLP_2014_2352453 crossref_primary_10_1109_TASLP_2016_2533858 crossref_primary_10_1109_TASLP_2020_2987130 crossref_primary_10_1002_cpe_7604 crossref_primary_10_1186_s13636_018_0132_x crossref_primary_10_1109_TASLP_2017_2722103 |
| Cites_doi | 10.1109/ICASSP.2009.4959518 10.1109/TNN.2005.861031 10.1109/ASPAA.2003.1285860 10.1109/TASL.2009.2034186 10.1109/TASL.2009.2032947 10.1007/978-3-642-21602-2_53 10.1109/5.18626 10.1109/TASL.2006.885248 10.3115/981863.981904 10.1109/CBMI.2007.385392 10.1162/neco.2008.04-08-771 10.1007/978-1-4471-4123-5_3 10.1109/ICASSP.2010.5495218 10.1109/ASPAA.2005.1540233 10.1109/TASL.2007.908129 10.21437/Eurospeech.2003-694 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2014 INIST-CNRS – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1109/TASL.2013.2258012 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences Music Computer Science |
| EISSN | 1558-7924 |
| EndPage | 1840 |
| ExternalDocumentID | oai:HAL:hal-00803886v1 27812354 10_1109_TASL_2013_2258012 6502207 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG AETIX AGQYO AGSQL AHBIQ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION IQODW RIG 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c499t-8e17f05e8fbcbc5a61e743c7865a5ae38b389725a2be6f9c8eeae13944ed6b5f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321906500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1558-7916 |
| IngestDate | Wed Nov 05 07:43:20 EST 2025 Thu Sep 04 18:04:41 EDT 2025 Wed Apr 02 07:27:12 EDT 2025 Sat Nov 29 02:11:23 EST 2025 Tue Nov 18 20:48:39 EST 2025 Wed Aug 27 02:48:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Performance evaluation Linear interpolation Dynamic Bayesian Networks Probabilistic approach Acoustic signal Signal estimation Entropy Matrix factorization Modeling Information analysis Accuracy Non negative matrix Audio signal Linear combination symbolic pitch modeling multipitch analysis Bayes network Musical sound Pitch(acoustics) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-8e17f05e8fbcbc5a61e743c7865a5ae38b389725a2be6f9c8eeae13944ed6b5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0183-7289 |
| OpenAccessLink | https://inria.hal.science/hal-00803886 |
| PQID | 1660072559 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | pascalfrancis_primary_27812354 hal_primary_oai_HAL_hal_00803886v1 crossref_citationtrail_10_1109_TASL_2013_2258012 crossref_primary_10_1109_TASL_2013_2258012 ieee_primary_6502207 proquest_miscellaneous_1660072559 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway, NJ |
| PublicationPlace_xml | – name: Piscataway, NJ |
| PublicationTitle | IEEE transactions on audio, speech, and language processing |
| PublicationTitleAbbrev | TASL |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref12 (ref29) 2011 ref15 boulanger-lewandowski (ref20) 2012 ref36 hu (ref40) 2003 ref14 ref30 ref11 vincent (ref10) 2010 charniak (ref35) 1996 ref17 ref18 fujishima (ref31) 1999 pauwels (ref2) 2010 jelinek (ref26) 1980 raczy?ski (ref16) 2007 fukayama (ref6) 2010 klapuri (ref13) 2006 klakow (ref27) 1998; 5 raphael (ref22) 2003 ryyn nen (ref21) 2004 kaneko (ref34) 2010 niedermayer (ref19) 2008 zweig (ref38) 1996 (ref33) 2011 ref25 kashino (ref24) 1995 (ref41) 2012 paulus (ref1) 2008 ref28 ref8 ref7 raczy?ski (ref37) 2009 ref4 goto (ref32) 2003 ref3 kim (ref9) 2010 ref5 raczy?ski (ref23) 2010 murphy (ref39) 2002 |
| References_xml | – ident: ref30 doi: 10.1109/ICASSP.2009.4959518 – year: 2011 ident: ref29 publication-title: R A Language and Environment for Statistical Computing – year: 2012 ident: ref20 article-title: Discriminative non-negative matrix factorization for multiple pitch estimation publication-title: Proc 13th Int Conf Music Inf Retrieval (ISMIR) – ident: ref11 doi: 10.1109/TNN.2005.861031 – ident: ref17 doi: 10.1109/ASPAA.2003.1285860 – start-page: 299 year: 2010 ident: ref6 article-title: Automatic song composition from the lyrics exploiting prosody of the Japanese language publication-title: Proc 7th Sound and Music Comput Conf (SMC) – start-page: 216 year: 2006 ident: ref13 article-title: Multiple fundamental frequency estimation by summing harmonic amplitudes publication-title: Proc 7th Int Conf Music Inf Retrieval (ISMIR) – ident: ref18 doi: 10.1109/TASL.2009.2034186 – year: 2010 ident: ref34 article-title: Functional harmony annotation database for statistical music analysis publication-title: Proc Int Conf Music Information Retrieval (ISMIR) – ident: ref25 doi: 10.1109/TASL.2009.2032947 – start-page: 34 year: 1996 ident: ref35 publication-title: Statistical Language Learning – start-page: 544 year: 2008 ident: ref19 article-title: Non-negative matrix division for the automatic transcription of polyphonic music publication-title: Proc 9th Int Conf Music Inf Retrieval (ISMIR) – ident: ref7 doi: 10.1007/978-3-642-21602-2_53 – start-page: 381 year: 2007 ident: ref16 article-title: Multipitch analysis with harmonic nonnegative matrix approximation publication-title: Proc 8th Int Conf Music Inf Retrieval (ISMIR) – start-page: 52 year: 1995 ident: ref24 article-title: Application of Bayesian probability network to music scene analysis publication-title: Working Notes of IJCAI Workshop on CASA – year: 2011 ident: ref33 publication-title: Free classical and contemporary sheet music – ident: ref36 doi: 10.1109/5.18626 – ident: ref14 doi: 10.1109/TASL.2006.885248 – ident: ref28 doi: 10.3115/981863.981904 – ident: ref5 doi: 10.1109/CBMI.2007.385392 – year: 2010 ident: ref2 article-title: Integrating musicological knowledge into a probabilistic framework for chord and key extraction publication-title: Proc 128th Audio Eng Soc Conv – start-page: 934 year: 2009 ident: ref37 article-title: Extending nonnegative matrix factorization?A discussion in the context of multiple frequency estimation of musical signals publication-title: Proc 17th Eur Signal Process Conf (EUSIPCO) – start-page: 23 year: 2010 ident: ref9 article-title: Performance rendering for polyphonic piano music with a combination of probabilistic models for melody and harmony publication-title: Proc Sound Music Comput Conf (SMC) – start-page: 177 year: 2003 ident: ref22 article-title: Harmonic analysis with probabilistic graphical models publication-title: Proc 4th Int Conf Music Inf Retrieval (ISMIR) – start-page: 363 year: 2010 ident: ref23 article-title: Multiple pitch transcription using DBN-based musicological models publication-title: Proc 11th Int Conf Music Inf Retrieval (ISMIR) – start-page: 381 year: 1980 ident: ref26 article-title: Interpolated estimation of Markov source parameters from sparse data publication-title: Proc 1st Int Workshop Pattern Recognition in Practice – ident: ref15 doi: 10.1162/neco.2008.04-08-771 – ident: ref8 doi: 10.1007/978-1-4471-4123-5_3 – ident: ref4 doi: 10.1109/ICASSP.2010.5495218 – year: 1996 ident: ref38 publication-title: A forward-backward algorithm for inference in Bayesian networks and an empirical comparison with HMMs – year: 2012 ident: ref41 publication-title: Music information retrieval evaluation exchange (Mirex) – ident: ref3 doi: 10.1109/ASPAA.2005.1540233 – start-page: 464 year: 1999 ident: ref31 article-title: Realtime chord recognition of musical sound: A system using Common Lisp music publication-title: Proc Int Comput Music Conf (ICMC) – start-page: 369 year: 2008 ident: ref1 article-title: Music structure analysis using a probabilistic fitness measure and an integrated musicological model publication-title: Proc 9th Int Conf Music Information Retrieval (ISMIR) – year: 2004 ident: ref21 article-title: Modelling of note events for singing transcription publication-title: Proc ISCA Tutorial Res Workshop Statist Percept Audio – year: 2002 ident: ref39 publication-title: Dynamic Bayesian Networks Representation Inference and Learning – volume: 5 start-page: 1695 year: 1998 ident: ref27 article-title: Log-linear interpolation of language models publication-title: Proc Int Conf Spoken Lang Process – start-page: 662 year: 2010 ident: ref10 article-title: A roadmap towards versatile MIR publication-title: Proc 11th Int Conf Music Inf Retrieval (ISMIR) – ident: ref12 doi: 10.1109/TASL.2007.908129 – start-page: 229 year: 2003 ident: ref32 article-title: RWC music database: Music genre database and musical instrument sound database publication-title: Proc 4th Int Conf Music Inf Retrieval (ISMIR) – start-page: 2533 year: 2003 ident: ref40 article-title: An efficient Viterbi algorithm on DBNs publication-title: Proc 7th Eur Conf Speech Commun Technol (Eurospeech) doi: 10.21437/Eurospeech.2003-694 |
| SSID | ssj0043641 |
| Score | 2.244993 |
| Snippet | Symbolic pitch modeling is a way of incorporating knowledge about relations between pitches into the process of analyzing musical information or signals. In... Symbolic pitch modelling is a way of incorporating knowledge about relations between pitches into the process of analysing musical information or signals. In... |
| SourceID | hal proquest pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1830 |
| SubjectTerms | Accuracy Acoustics Applied sciences Audio signals Bayes methods Computer Science Context modeling Data models Detection, estimation, filtering, equalization, prediction Dynamic Bayesian Networks Engineering Sciences Estimation Exact sciences and technology Hidden Markov models Horizontal Information theory Information, signal and communications theory Interpolation Mathematical models multipitch analysis Music Pitch estimation Signal and communications theory Signal and Image Processing Signal, noise symbolic pitch modeling Telecommunications and information theory Training Transaction processing |
| Title | Dynamic Bayesian Networks for Symbolic Polyphonic Pitch Modeling |
| URI | https://ieeexplore.ieee.org/document/6502207 https://www.proquest.com/docview/1660072559 https://inria.hal.science/hal-00803886 |
| Volume | 21 |
| WOSCitedRecordID | wos000321906500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-7924 dateEnd: 20131231 omitProxy: false ssIdentifier: ssj0043641 issn: 1558-7916 databaseCode: RIE dateStart: 20060101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBVxXjiyiexLTJJtnd3KyP0oOUQit4C7vJBAVtpC_ov3cnSYOiCN5Csglhv808sjPfB3CpTRDOMPAcZSyhSVBS7kSMKSczrkQbD0Q0fIXYhOj15PNz1F-B67oXBhGL4jNs0mGxl5_myYx-lbVMNMEYtY6vCiHKXq2l1Q18HpTcqKEkCkZe7WB6btQatgePVMTlN83iJYv8zQetvlAFZCGtQoWRamLmJitFLX7Y58LpdLb_97o7sFUFl3a7XA27sIKjPdj8QjnYgJv7UoLevlULpAZKu1cWgk9sE77ag8W7JqZgu5-_LahsnQ5fDbI2iaZR6_o-PHUehnddp1JRcBKTzUwdiZ7I3BBlphOdhIp7aKKGREgeqlChL7WJWQQLFdPIsyiRiAo96pfFlOsw8w9gbZSP8JD6uzWySKQcdRD4yLVPArppFmjX4BoqC9zlvMZJRTFOShdvcZFquFFMUMQERVxBYcFVfctHya_x1-ALA1Y9jpixu-3HmM5R5OtLyeeeBQ2Coh5VoWDB2Tds6-tMSOoXDiw4X4Idm0-M9k3UCPPZJPY4kfhT7nX0-7OPYYMVKhlUenYCa9PxDE9hPZlPXyfjs2KdfgIKIuNw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-NAFD64Kuz64H0x66pRfJJNTSYzk8nb1hsVaxGs4Nswk5ygoK3YVui_3zlJGpSVhX0LySSE-Sbnkjnn-wAOrQvCGfIoMM4SugQll0HKmAkK50qs80BEw1eKTSS9nrq_T2_m4FfTC4OIZfEZtuiw3MvPh9mEfpUdu2iCMWodXxCcs6jq1prZXR5LXrGjCkUkjLLew4zC9Ljfvu1SGVfccsuXbPIHL_TlgWogS3EVKo00Izc7RSVr8ZeFLt3Oxcr_vfAqLNfhpd-u1sMazOFgHZbekQ5uwO-zSoTePzFTpBZKv1eVgo98F8D6t9NnS1zB_s3waUqF63T46LD1STaNmtc34e7ivH_aCWodhSBz-cw4UBglRShQFTazmTAyQhc3ZImSwgiDsbIuakmYMMyiLNJMIRqMqGMWc2lFEX-H-cFwgFvU4W2RpUku0XIeo7QxSejmBbehQ1YYD8LZvOqsJhknrYsnXSYbYaoJCk1Q6BoKD46aW14qho1_DT5wYDXjiBu70-5qOkexb6yUfIs82CAomlE1Ch7sfsC2uc4SRR3D3IP9GdjafWS0c2IGOJyMdCSJxp-yrx-fP3sPvnb6113dvexdbcM3VmpmUCHaT5gfv05wBxazt_Hj6HW3XLN_AAOi5rc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Bayesian+Networks+for+Symbolic+Polyphonic+Pitch+Modeling&rft.jtitle=IEEE+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Raczyn%CC%81ski%2C+Stanis%C5%82aw+A.&rft.au=Vincent%2C+Emmanuel&rft.au=Sagayama%2C+Shigeki&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1558-7916&rft.volume=21&rft.issue=9&rft.spage=1830&rft.epage=1840&rft_id=info:doi/10.1109%2FTASL.2013.2258012&rft.externalDocID=6502207 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-7916&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-7916&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-7916&client=summon |