Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms

Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically desig...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in genetics Vol. 12; p. 617282
Main Authors: Kang, Yoonjee, Thieffry, Denis, Cantini, Laura
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media 22.03.2021
Frontiers Media S.A
Subjects:
ISSN:1664-8021, 1664-8021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000–100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET .
AbstractList Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000–100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET .
Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000–100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET .
Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000-100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET.Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000-100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET.
Author Cantini, Laura
Thieffry, Denis
Kang, Yoonjee
AuthorAffiliation Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University , Paris , France
AuthorAffiliation_xml – name: Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University , Paris , France
Author_xml – sequence: 1
  givenname: Yoonjee
  surname: Kang
  fullname: Kang, Yoonjee
– sequence: 2
  givenname: Denis
  surname: Thieffry
  fullname: Thieffry, Denis
– sequence: 3
  givenname: Laura
  surname: Cantini
  fullname: Cantini, Laura
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33828580$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03358193$$DView record in HAL
BookMark eNp1kk1v2zAMhoWhw9p1_QG7DD6uh2SWZMvSZUAQdG2AYAP2cdlFkGXaUadYmSxnyL8fU7dDW2DSQQL58iEl8jU56UMPhLyl-ZxzqT60HfQwZzmjc0ErJtkLckaFKGYSTSeP7qfkYhhuc1yF4pwXr8gpApgsZX5Gfl7tjR9Ncn2XpQ1kX2EXQzNaVzvv0iELbfYNfR5mS_A-u8acqOlGb1KIh-wzpD8h_spWfQsRegvZwnchurTZDm_Iy9b4AS7uz3Py49PV9-XNbP3lerVcrGe2UCphiVVppOW0UQJsrqRUbQGillVLBS1wtw0tpSosSMGBtyUAmMZWFigzrOLnZDVxm2Bu9S66rYkHHYzTd4YQO21ictaDpkzUiirZ4PsLasqaGRBIpqUxQkGDrI8TazfWW2gs9Cka_wT61NO7je7CXsscsYwj4HICbJ6F3SzW-mjLOS8lVXxPUfv-PlkMv0cYkt66weI3mx7COGhW0pyJolICpe8e1_WP_NBIFFSTwMYwDBFabV3CtoZjmc5rmh-1St9NjT5OjZ6mBiPps8gH-P9j_gKfasXp
CitedBy_id crossref_primary_10_1186_s13059_023_03054_0
crossref_primary_10_1371_journal_pone_0331218
crossref_primary_10_1093_bib_bbad370
crossref_primary_10_1093_bib_bbaf089
crossref_primary_10_1093_nargab_lqad018
crossref_primary_10_2174_1574893617666220823114108
crossref_primary_10_3390_ijms241713339
crossref_primary_10_1177_11779322241287120
crossref_primary_10_26508_lsa_202302415
crossref_primary_10_1038_s44320_025_00088_3
crossref_primary_10_1002_bies_202300210
crossref_primary_10_1093_nargab_lqad024
crossref_primary_10_1093_bioinformatics_btae433
crossref_primary_10_1093_pnasnexus_pgaf228
crossref_primary_10_1038_s41540_023_00312_6
crossref_primary_10_1093_bib_bbae382
crossref_primary_10_3390_brainsci12091196
crossref_primary_10_1161_CIRCULATIONAHA_122_062984
crossref_primary_10_1093_nargab_lqae130
crossref_primary_10_1126_science_adi7453
crossref_primary_10_1371_journal_pcbi_1011254
crossref_primary_10_3390_ijms24032796
crossref_primary_10_1093_g3journal_jkac212
crossref_primary_10_1186_s13073_023_01162_x
Cites_doi 10.1093/bioinformatics/btt432
10.1038/s41597-019-0131-5
10.1038/nmeth.4463
10.1371/journal.pbio.0050008
10.1371/journal.pcbi.1005662
10.1093/bioinformatics/bty916
10.1038/ng1532
10.1016/j.cels.2017.08.014
10.1038/s41592-019-0690-6
10.1093/bfgp/elx046
10.1038/s41467-019-12780-8
10.1371/journal.pbio.1000435
10.3389/fgene.2019.00294
10.1186/1752-0509-1-37
10.1371/journal.pone.0012776
10.1038/s41598-019-53708-y
10.1371/journal.pone.0013397
10.1016/j.exphem.2018.09.004
10.5351/CSAM.2015.22.6.665
10.1101/gr.071852.107
10.1186/s12859-018-2217-z
10.15252/embj.2018100811
10.1093/bioinformatics/btx194
10.1038/nmeth.3799
10.1038/nrg1272
10.1038/nrg2918
10.1038/s41587-019-0068-4
10.1038/ng.3818
10.1002/wsbm.1489
10.1186/1471-2105-7-S1-S7
10.1038/nmeth.2016
ContentType Journal Article
Copyright Copyright © 2021 Kang, Thieffry and Cantini.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2021 Kang, Thieffry and Cantini. 2021 Kang, Thieffry and Cantini
Copyright_xml – notice: Copyright © 2021 Kang, Thieffry and Cantini.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2021 Kang, Thieffry and Cantini. 2021 Kang, Thieffry and Cantini
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fgene.2021.617282
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
Mathematics
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_126b9198d38241a5b2ae694c15aa69ed
PMC8019823
oai:HAL:hal-03358193v1
33828580
10_3389_fgene_2021_617282
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c499t-8075a8c31d96ec09889f4e6b87f1614141fd15894ce863e3f5eeeadc7ce12a273
IEDL.DBID DOA
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636670900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-8021
IngestDate Fri Oct 03 12:52:47 EDT 2025
Tue Sep 30 16:45:06 EDT 2025
Tue Oct 14 20:41:14 EDT 2025
Sun Nov 09 11:44:26 EST 2025
Thu Apr 03 07:07:41 EDT 2025
Tue Nov 18 21:18:28 EST 2025
Sat Nov 29 03:02:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords scRNA-seq
reproducibility
transcriptome
single-cell
network theory
network inference
biological networks
Language English
License Copyright © 2021 Kang, Thieffry and Cantini.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-8075a8c31d96ec09889f4e6b87f1614141fd15894ce863e3f5eeeadc7ce12a273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Marieke Lydia Kuijjer, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Norway
This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics
Reviewed by: Van Anh Huynh-Thu, University of Liège, Belgium; Rudiyanto Gunawan, University at Buffalo, United States
ORCID 0000-0003-0271-1757
0000-0001-6360-4440
OpenAccessLink https://doaj.org/article/126b9198d38241a5b2ae694c15aa69ed
PMID 33828580
PQID 2510264796
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_126b9198d38241a5b2ae694c15aa69ed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8019823
hal_primary_oai_HAL_hal_03358193v1
proquest_miscellaneous_2510264796
pubmed_primary_33828580
crossref_citationtrail_10_3389_fgene_2021_617282
crossref_primary_10_3389_fgene_2021_617282
PublicationCentury 2000
PublicationDate 2021-03-22
PublicationDateYYYYMMDD 2021-03-22
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-22
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genetics
PublicationTitleAlternate Front Genet
PublicationYear 2021
Publisher Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Media
– name: Frontiers Media S.A
References Chan (B6) 2017; 5
Aerts (B1) 2010; 8
Greenfield (B11) 2010; 5
Zhang (B31) 2019; 6
Moerman (B22) 2019; 35
Setty (B25) 2019; 37
Matsumoto (B20) 2017; 33
Huynh-Thu (B13) 2010; 5
Sonawane (B27) 2019; 10
Kim (B15) 2015; 22
Chen (B8) 2018; 19
Aibar (B2) 2017; 14
Barabási (B3) 2011; 12
Opgen-Rhein (B23) 2007; 1
Marbach (B18) 2016; 13
Marbach (B29) 2012; 9
Fiers (B10) 2018; 17
Basso (B5) 2005; 37
Tantardini (B28) 2019; 9
Pratapa (B24) 2020; 17
Chawla (B7) 2013; 29
Silverman (B26) 2020; 12
Faith (B9) 2007; 5
Li (B16) 2017; 49
Lukowski (B17) 2019; 38
Menon (B21) 2019; 10
Margolin (B19) 2006
Ideker (B14) 2008; 18
Barabási (B4) 2004; 5
Hay (B12) 2018; 68
Verny (B30) 2017; 13
References_xml – volume: 29
  start-page: 2519
  year: 2013
  ident: B7
  article-title: TFcheckpoint: a curated compendium of specific DNA-binding RNA polymerase II transcription factors.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt432
– volume: 6
  year: 2019
  ident: B31
  article-title: Deep single-cell RNA sequencing data of individual T cells from treatment-naïve colorectal cancer patients.
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0131-5
– volume: 14
  start-page: 1083
  year: 2017
  ident: B2
  article-title: SCENIC: single-cell regulatory network inference and clustering.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4463
– volume: 5
  year: 2007
  ident: B9
  article-title: Large-Scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles.
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050008
– volume: 13
  year: 2017
  ident: B30
  article-title: Learning causal networks with latent variables from multivariate information in genomic data.
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005662
– volume: 35
  start-page: 2159
  year: 2019
  ident: B22
  article-title: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/bty916
– volume: 37
  start-page: 382
  year: 2005
  ident: B5
  article-title: Reverse engineering of regulatory networks in human B cells.
  publication-title: Nat. Genet.
  doi: 10.1038/ng1532
– volume: 5
  start-page: 251
  year: 2017
  ident: B6
  article-title: Gene regulatory network inference from single-cell data using multivariate information measures.
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.08.014
– volume: 17
  start-page: 147
  year: 2020
  ident: B24
  article-title: Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data.
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0690-6
– volume: 17
  start-page: 246
  year: 2018
  ident: B10
  article-title: Mapping gene regulatory networks from single-cell omics data.
  publication-title: Brief. Funct. Genom.
  doi: 10.1093/bfgp/elx046
– volume: 10
  year: 2019
  ident: B21
  article-title: Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12780-8
– volume: 8
  year: 2010
  ident: B1
  article-title: Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification.
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000435
– volume: 10
  year: 2019
  ident: B27
  article-title: Network medicine in the age of biomedical big data.
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00294
– volume: 1
  year: 2007
  ident: B23
  article-title: From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data.
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-1-37
– volume: 5
  year: 2010
  ident: B13
  article-title: Inferring regulatory networks from expression data using tree-based methods.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012776
– volume: 9
  year: 2019
  ident: B28
  article-title: Comparing methods for comparing networks.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53708-y
– volume: 5
  year: 2010
  ident: B11
  article-title: DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013397
– volume: 68
  start-page: 51
  year: 2018
  ident: B12
  article-title: The human cell Atlas bone marrow single-cell interactive web portal.
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2018.09.004
– volume: 22
  start-page: 665
  year: 2015
  ident: B15
  article-title: ppcor: an R package for a fast calculation to semi-partial correlation coefficients.
  publication-title: Commun. Stat. Appl. Methods
  doi: 10.5351/CSAM.2015.22.6.665
– volume: 18
  start-page: 644
  year: 2008
  ident: B14
  article-title: Protein networks in disease.
  publication-title: Genome Res.
  doi: 10.1101/gr.071852.107
– volume: 19
  year: 2018
  ident: B8
  article-title: Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2217-z
– volume: 38
  year: 2019
  ident: B17
  article-title: A single−cell transcriptome atlas of the adult human retina.
  publication-title: EMBO J.
  doi: 10.15252/embj.2018100811
– volume: 33
  start-page: 2314
  year: 2017
  ident: B20
  article-title: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx194
– volume: 13
  start-page: 366
  year: 2016
  ident: B18
  article-title: Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3799
– volume: 5
  start-page: 101
  year: 2004
  ident: B4
  article-title: Network biology: understanding the cell’s functional organization.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1272
– volume: 12
  start-page: 56
  year: 2011
  ident: B3
  article-title: Network medicine: a network-based approach to human disease.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2918
– volume: 37
  start-page: 451
  year: 2019
  ident: B25
  article-title: Characterization of cell fate probabilities in single-cell data with Palantir.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0068-4
– volume: 49
  start-page: 708
  year: 2017
  ident: B16
  article-title: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3818
– volume: 12
  year: 2020
  ident: B26
  article-title: Molecular networks in network medicine: development and applications.
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
  doi: 10.1002/wsbm.1489
– year: 2006
  ident: B19
  article-title: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-S1-S7
– volume: 9
  start-page: 796
  year: 2012
  ident: B29
  article-title: Wisdom of crowds for robust gene network inference.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2016
SSID ssj0000493334
Score 2.4167666
Snippet Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 617282
SubjectTerms biological networks
Genetics
Life Sciences
Mathematics
network inference
network theory
scRNA-seq
single-cell
Statistics
transcriptome
Title Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/33828580
https://www.proquest.com/docview/2510264796
https://hal.science/hal-03358193
https://pubmed.ncbi.nlm.nih.gov/PMC8019823
https://doaj.org/article/126b9198d38241a5b2ae694c15aa69ed
Volume 12
WOSCitedRecordID wos000636670900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdb2WAvZd9ztxVt7Gng1bJsS3rMSkoHXRjsg7AXIcunJsO1S5IW8rK_fSfLCXEH3csw-MGSbenu5PsdOv-OkHdcWVE4JeKS2yzOwPLYVCaJczA5eCJK6Mq9_TgTk4mcTtWXnVJfPics0AMHwR2xtCgVRsYVl-hsTF6mBgqVWZYbUyio_Nc3EWonmPoVcC_nPAvbmBiFqSOH-vC0mCn74J22TAeOqOPrR_cy89mQf0PNmxmTOy7o5CHZ77EjHYUxPyJ3oHlM7odqkusn5Oe4Z-5uzinCOorYuqNzDfmva9o6-hXbaoiPoa6pJ5zGPl0p-naxppOQEE4_bX4BpKP6vF3MV7OL5VPy_WT87fg07ksnxBZDmFVHMWyk5axSBdhESalcBkUphUOIl-HhKpZLlCPIggN3OQDalBUWWGoQ0jwje03bwAtChQErBGcM1YDYikmXJKVwsshdlQgoIpJs5Khtzyvuy1vUGuMLL3rdiV570esg-oi8395yGUg1buv80Stn29HzYXcX0Ep0byX6X1YSkbeo2sEzTkdn2l9LuKeAU_yaReTNRvMaF5nfOTENtFdLjSAQY9VMKJzt82AJ22fhqFOZyyQiYmAjg5cNW5r5rCPyRnSgZMoP_scMX5IHXmg-PS5NX5G91eIKXpN79no1Xy4OyV0xlYfdGsHz59_jP8MVFkI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+Reproducibility+of+Single-Cell+Gene+Regulatory+Network+Inference+Algorithms&rft.jtitle=Frontiers+in+genetics&rft.au=Kang%2C+Yoonjee&rft.au=Thieffry%2C+Denis&rft.au=Cantini%2C+Laura&rft.date=2021-03-22&rft.pub=Frontiers+Media&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=12&rft_id=info:doi/10.3389%2Ffgene.2021.617282&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03358193v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon