Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution

Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. I...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomaterials Ročník 26; číslo 15; s. 2455 - 2465
Hlavní autori: Boontheekul, Tanyarut, Kong, Hyun-Joon, Mooney, David J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier Ltd 01.05.2005
Predmet:
ISSN:0142-9612, 1878-5905
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering.
AbstractList Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering.
Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering.Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering.
Author Kong, Hyun-Joon
Boontheekul, Tanyarut
Mooney, David J.
Author_xml – sequence: 1
  givenname: Tanyarut
  surname: Boontheekul
  fullname: Boontheekul, Tanyarut
  organization: Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 2
  givenname: Hyun-Joon
  surname: Kong
  fullname: Kong, Hyun-Joon
  organization: Department of Biologic & Materials Science, 1011 North University Avenue, Room 5213 Dental Building, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 3
  givenname: David J.
  surname: Mooney
  fullname: Mooney, David J.
  email: mooneyd@umich.edu
  organization: Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15585248$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2PFCEQholZ486u_gXT8eCt22qaZsCTOn4mm3jRM6GBbWukmxFodf31Ms4YzV52TgTqqQdSLxfkbA6zI-RJC00LLX-2bQYMk84uovapoQCsAd4AY_fIqhVrUfcS-jOygpbRWvKWnpOLlLZQ9sDoA3Le9r3oKRMrst2EOcfgPc5jpf2Ic_FWo_OVdWPUVmcMc7Vk9Phrj-x0zOXWKvzEY03PthpwCracTsE7s3gdqx8Oxy-5sphyxGHZkw_J_evyXvfouF6Sz2_ffNq8r68-vvuweXlVGyZlrgXwAWAYDAguqdSUtraz1OgBrGQ9E-uOG2kEG3grDKw1s05ICVozI4eed5fk6cG7i-Hb4lJWEybjvNezC0tSfN11HafrO0EqemBdB3eCrWSsp1QU8PERXIbJWbWLOOl4o_7OuwDPD4CJIaXorv8hoPbhqq36P1y1D1cBVyXc0vziVrPB_CeEHDX60xSvDwpXAviOLqpk0M3GWYzOZGUDnqZ5dUtjygdCo_1Xd3Oq5DdI_OKZ
CitedBy_id crossref_primary_10_1007_s10856_018_6205_7
crossref_primary_10_1016_j_polymer_2019_01_004
crossref_primary_10_1016_j_apsusc_2020_145811
crossref_primary_10_1016_j_biomaterials_2014_03_028
crossref_primary_10_3390_biology13010021
crossref_primary_10_1021_acsbiomaterials_5b00003
crossref_primary_10_1002_biot_201900439
crossref_primary_10_1016_j_colsurfa_2018_05_061
crossref_primary_10_3390_md17070405
crossref_primary_10_1007_s11095_011_0449_y
crossref_primary_10_3390_molecules25235751
crossref_primary_10_1039_D0BM00263A
crossref_primary_10_1002_ijch_201300084
crossref_primary_10_3389_fphys_2018_01130
crossref_primary_10_1016_j_biomaterials_2006_09_017
crossref_primary_10_1007_s10439_016_1768_2
crossref_primary_10_1007_s10904_012_9804_7
crossref_primary_10_1016_j_cis_2023_102957
crossref_primary_10_1016_j_ijbiomac_2023_127192
crossref_primary_10_1002_adfm_202400585
crossref_primary_10_1002_term_2058
crossref_primary_10_1016_j_actbio_2015_08_012
crossref_primary_10_1016_j_ijpharm_2011_01_027
crossref_primary_10_1080_09506608_2022_2069451
crossref_primary_10_1007_s10439_019_02282_5
crossref_primary_10_3390_md20100598
crossref_primary_10_1126_scitranslmed_aay6853
crossref_primary_10_1016_j_biomaterials_2010_12_048
crossref_primary_10_1016_j_reactfunctpolym_2023_105578
crossref_primary_10_3390_molecules26237264
crossref_primary_10_1016_j_carbpol_2018_11_077
crossref_primary_10_1016_j_ijbiomac_2019_01_065
crossref_primary_10_1016_j_actbio_2014_06_015
crossref_primary_10_1016_j_eurpolymj_2015_07_021
crossref_primary_10_1016_S1369_7021_10_70013_4
crossref_primary_10_1016_j_foodhyd_2020_106343
crossref_primary_10_1016_j_ijbiomac_2024_138682
crossref_primary_10_1016_j_jconrel_2013_04_015
crossref_primary_10_1016_j_jconrel_2014_06_030
crossref_primary_10_1016_j_jmbbm_2023_105941
crossref_primary_10_1002_jbm_a_30626
crossref_primary_10_1002_adbi_202000071
crossref_primary_10_1021_acs_chemrev_5c00159
crossref_primary_10_1007_s10439_014_1192_4
crossref_primary_10_3390_pharmaceutics14071333
crossref_primary_10_3390_app14198977
crossref_primary_10_1002_advs_202001066
crossref_primary_10_3727_096368912X647252
crossref_primary_10_1002_mabi_201800469
crossref_primary_10_1155_2023_6661452
crossref_primary_10_1002_smll_202309599
crossref_primary_10_1007_s00343_019_8127_8
crossref_primary_10_1016_j_snb_2018_12_101
crossref_primary_10_3389_fbioe_2020_00776
crossref_primary_10_1038_s41578_022_00483_4
crossref_primary_10_1016_j_jcis_2021_11_119
crossref_primary_10_1163_092050610X519462
crossref_primary_10_1016_j_biomaterials_2020_120223
crossref_primary_10_1002_adma_202408616
crossref_primary_10_1016_j_biomaterials_2018_10_013
crossref_primary_10_1089_ten_2006_0356
crossref_primary_10_1111_cpr_12178
crossref_primary_10_1002_app_30328
crossref_primary_10_1016_j_jddst_2017_03_028
crossref_primary_10_1016_j_ijbiomac_2018_05_104
crossref_primary_10_1016_j_addr_2013_07_009
crossref_primary_10_1016_j_biomaterials_2012_07_001
crossref_primary_10_1007_s10439_016_1594_6
crossref_primary_10_1517_14712590802630666
crossref_primary_10_1177_08853282221085690
crossref_primary_10_1080_00914037_2020_1760270
crossref_primary_10_3390_ma7031957
crossref_primary_10_1016_j_actbio_2014_06_034
crossref_primary_10_1016_j_biomaterials_2008_05_033
crossref_primary_10_1016_j_algal_2022_102740
crossref_primary_10_1016_j_actbio_2008_11_019
crossref_primary_10_1016_j_ijbiomac_2025_139809
crossref_primary_10_1021_ja054820t
crossref_primary_10_1039_c2jm30564j
crossref_primary_10_1002_adfm_201901693
crossref_primary_10_1016_j_matt_2024_05_036
crossref_primary_10_1007_s10856_009_3692_6
crossref_primary_10_1002_adtp_201800038
crossref_primary_10_1016_j_carbpol_2021_118360
crossref_primary_10_1016_j_arabjc_2021_103520
crossref_primary_10_1371_journal_pone_0214411
crossref_primary_10_1016_j_tibtech_2008_03_011
crossref_primary_10_1016_j_reactfunctpolym_2022_105292
crossref_primary_10_1016_j_biomaterials_2009_10_052
crossref_primary_10_3390_polym13193321
crossref_primary_10_1039_D0BM01012J
crossref_primary_10_1155_2012_921034
crossref_primary_10_1007_s11483_025_10011_w
crossref_primary_10_1016_j_ijbiomac_2019_07_014
crossref_primary_10_1016_j_biomaterials_2009_07_034
crossref_primary_10_1016_j_carbpol_2012_06_037
crossref_primary_10_1016_j_carbpol_2012_05_002
crossref_primary_10_1002_pat_1318
crossref_primary_10_1073_pnas_1517517113
crossref_primary_10_1016_j_biomaterials_2010_03_001
crossref_primary_10_1016_j_ijpharm_2021_120673
crossref_primary_10_1016_j_ijbiomac_2020_10_256
crossref_primary_10_1016_j_biomaterials_2015_03_010
crossref_primary_10_1039_D4BM00039K
crossref_primary_10_1016_j_biomaterials_2011_06_045
crossref_primary_10_1016_j_watres_2020_116316
crossref_primary_10_1002_pi_5927
crossref_primary_10_1016_j_carbpol_2013_08_036
crossref_primary_10_1097_01_ASW_0000666912_86854_2b
crossref_primary_10_1111_j_1538_7836_2007_02386_x
crossref_primary_10_1007_s13233_011_0501_1
crossref_primary_10_1016_j_ijbiomac_2025_144591
crossref_primary_10_3390_gels9030204
crossref_primary_10_1002_jbm_a_35011
crossref_primary_10_1016_j_actbio_2014_02_049
crossref_primary_10_1038_nrm_2017_108
crossref_primary_10_1002_jbio_201600049
crossref_primary_10_1016_j_actbio_2018_01_013
crossref_primary_10_1038_ncomms2271
crossref_primary_10_1038_srep27072
crossref_primary_10_1002_jbm_a_36217
crossref_primary_10_1016_j_progpolymsci_2011_06_003
crossref_primary_10_1002_jbm_a_35126
crossref_primary_10_1016_j_carbpol_2011_09_048
crossref_primary_10_1002_jbm_a_33085
crossref_primary_10_1016_j_jmbbm_2024_106797
crossref_primary_10_1002_app_44358
crossref_primary_10_1016_j_bioadv_2024_214154
crossref_primary_10_1172_JCI87624
crossref_primary_10_1016_j_ijbiomac_2024_138620
crossref_primary_10_1089_ten_tea_2011_0658
crossref_primary_10_1016_j_ijbiomac_2021_11_046
crossref_primary_10_1163_092050609X12560455246676
crossref_primary_10_1111_j_1582_4934_2008_00532_x
crossref_primary_10_1016_j_ijbiomac_2022_05_157
crossref_primary_10_1371_journal_pone_0091662
crossref_primary_10_1002_jbm_b_34271
crossref_primary_10_1371_journal_pone_0090454
crossref_primary_10_1016_j_ceramint_2025_03_194
crossref_primary_10_1371_journal_pone_0181484
crossref_primary_10_1016_j_carpta_2025_100699
crossref_primary_10_1007_s10965_020_02342_8
crossref_primary_10_3390_v17091205
crossref_primary_10_1002_smsc_202400320
crossref_primary_10_1016_j_cis_2020_102167
crossref_primary_10_3389_fbioe_2021_630943
crossref_primary_10_1039_D3BM00721A
crossref_primary_10_4028_www_scientific_net_AMR_403_408_2985
crossref_primary_10_1002_jbm_a_36552
crossref_primary_10_1016_j_actbio_2008_03_008
crossref_primary_10_1016_j_tice_2021_101539
crossref_primary_10_1016_j_polymdegradstab_2010_05_015
crossref_primary_10_1016_j_ijbiomac_2015_03_061
crossref_primary_10_1517_17425247_2015_1001362
crossref_primary_10_1016_j_progpolymsci_2011_11_004
crossref_primary_10_1038_s41598_017_17286_1
crossref_primary_10_1007_s12221_014_1835_y
crossref_primary_10_1016_j_carbpol_2014_03_005
crossref_primary_10_1016_j_biomaterials_2009_07_060
crossref_primary_10_3389_fmolb_2021_719972
crossref_primary_10_1002_adma_202008553
crossref_primary_10_3390_pharmaceutics15122729
crossref_primary_10_1016_j_biomaterials_2015_10_008
crossref_primary_10_1002_adma_200801303
crossref_primary_10_1016_j_ijbiomac_2025_143461
crossref_primary_10_3390_ijms18040858
crossref_primary_10_3390_ijms17121976
crossref_primary_10_1002_adhm_201500254
crossref_primary_10_1016_j_addr_2013_09_009
crossref_primary_10_1002_app_48923
crossref_primary_10_1016_j_biomaterials_2010_12_027
crossref_primary_10_1007_s11095_006_9222_z
crossref_primary_10_1016_j_carbpol_2024_122409
crossref_primary_10_1016_j_ijbiomac_2019_09_125
crossref_primary_10_1002_adhm_201700670
crossref_primary_10_1016_j_carbpol_2017_08_020
crossref_primary_10_1016_j_jcis_2020_12_026
crossref_primary_10_1038_s41565_020_0636_2
crossref_primary_10_1016_j_carbpol_2016_12_007
crossref_primary_10_3390_polym14091679
crossref_primary_10_1016_j_biomaterials_2009_10_002
crossref_primary_10_1016_j_matdes_2022_111404
crossref_primary_10_1016_j_actbio_2010_12_029
crossref_primary_10_1016_j_mser_2020_100543
crossref_primary_10_1016_j_msec_2016_04_104
crossref_primary_10_3390_polym12040919
crossref_primary_10_1016_j_carbpol_2021_117791
crossref_primary_10_1016_j_cej_2018_10_065
crossref_primary_10_1002_adhm_202000895
crossref_primary_10_1016_j_carbpol_2010_11_048
crossref_primary_10_1016_j_ijbiomac_2025_145764
crossref_primary_10_3390_pr12050944
crossref_primary_10_1016_j_addr_2015_04_021
crossref_primary_10_1002_adma_200902265
crossref_primary_10_1002_ppsc_201500025
crossref_primary_10_1211_jpp_59_4_0002
crossref_primary_10_1007_s40204_020_00127_2
crossref_primary_10_1002_btpr_260
crossref_primary_10_1016_j_biomaterials_2011_07_013
crossref_primary_10_1016_j_biomaterials_2024_122508
crossref_primary_10_1016_j_jconrel_2016_06_047
crossref_primary_10_1016_j_carbpol_2008_02_017
crossref_primary_10_1186_s40824_017_0110_x
crossref_primary_10_3390_gels10090596
crossref_primary_10_1038_natrevmats_2015_6
crossref_primary_10_1016_j_carbpol_2017_08_046
crossref_primary_10_1088_1758_5090_ab98e4
crossref_primary_10_1007_s40883_022_00252_3
crossref_primary_10_1016_j_jconrel_2023_08_016
crossref_primary_10_1039_D4PM00334A
crossref_primary_10_1016_j_biomaterials_2012_01_041
crossref_primary_10_1016_j_jdent_2022_104219
crossref_primary_10_1016_j_actbio_2009_04_035
crossref_primary_10_1016_j_polymdegradstab_2009_05_011
crossref_primary_10_1016_j_ijpharm_2008_12_013
crossref_primary_10_1016_j_actbio_2020_03_014
crossref_primary_10_1088_1758_5090_ab98e5
crossref_primary_10_1016_j_carbpol_2021_118746
crossref_primary_10_1002_jbm_a_36403
crossref_primary_10_1002_adhm_202101723
crossref_primary_10_1007_s11483_016_9428_5
crossref_primary_10_1002_adhm_202000905
crossref_primary_10_1902_jop_2012_110684
crossref_primary_10_1007_s12257_010_0099_7
crossref_primary_10_1177_09506608241280419
crossref_primary_10_1002_app_34041
crossref_primary_10_1177_0885328211404265
crossref_primary_10_1016_j_foodchem_2022_132885
crossref_primary_10_1016_j_biomaterials_2018_07_031
crossref_primary_10_3390_gels1020194
crossref_primary_10_1080_03639045_2017_1328434
crossref_primary_10_1002_advs_202307232
crossref_primary_10_1002_mrd_22814
crossref_primary_10_1016_j_biomaterials_2018_06_003
crossref_primary_10_1016_j_carbpol_2022_119161
crossref_primary_10_1007_s41061_021_00360_8
crossref_primary_10_1016_j_biomaterials_2019_01_005
crossref_primary_10_1089_ten_tea_2011_0250
crossref_primary_10_1016_j_biomaterials_2013_06_061
crossref_primary_10_1016_j_jmrt_2025_03_188
crossref_primary_10_1016_j_foodres_2020_109376
crossref_primary_10_1007_s11095_013_1103_7
crossref_primary_10_1080_01496395_2025_2514956
crossref_primary_10_3390_ijms23094486
crossref_primary_10_1038_natrevmats_2016_71
crossref_primary_10_4155_tde_12_16
crossref_primary_10_2174_1381612825666190423155835
crossref_primary_10_1039_C8BM01218K
crossref_primary_10_1016_j_cdev_2022_203776
crossref_primary_10_1163_092050610X528561
crossref_primary_10_1016_j_cej_2018_08_115
crossref_primary_10_1021_acsbiomaterials_6b00470
crossref_primary_10_1007_BF03261887
crossref_primary_10_1002_slct_202304419
crossref_primary_10_1080_10426910903031727
crossref_primary_10_57634_RCR5062
crossref_primary_10_1371_journal_pone_0107952
crossref_primary_10_1007_s11243_015_0004_5
crossref_primary_10_3109_07388551_2010_505561
crossref_primary_10_1002_adfm_201500055
crossref_primary_10_1016_j_jiec_2023_03_053
crossref_primary_10_1002_btpr_509
crossref_primary_10_1016_j_chemosphere_2024_141959
crossref_primary_10_1016_j_dental_2008_02_001
crossref_primary_10_1038_mt_2014_78
crossref_primary_10_1016_j_addr_2018_04_018
crossref_primary_10_1177_0883911512473230
crossref_primary_10_1016_j_engmed_2024_100003
crossref_primary_10_1039_D3RA00851G
crossref_primary_10_1016_j_carbpol_2020_116465
crossref_primary_10_1088_1758_5082_6_2_025009
crossref_primary_10_1063_1_5059393
crossref_primary_10_1002_term_1879
crossref_primary_10_1007_s43032_020_00445_7
crossref_primary_10_1002_jbm_a_31033
crossref_primary_10_1016_j_biomaterials_2019_119458
crossref_primary_10_1016_j_mtbio_2025_101743
crossref_primary_10_1016_j_ijbiomac_2024_135839
crossref_primary_10_1088_1758_5090_ab0631
crossref_primary_10_1002_mabi_202200113
crossref_primary_10_1016_j_foodhyd_2025_111749
crossref_primary_10_1007_s13577_024_01134_2
crossref_primary_10_1016_j_ymeth_2015_08_005
crossref_primary_10_1089_ten_tec_2009_0582
crossref_primary_10_1016_j_biomaterials_2010_07_111
crossref_primary_10_4155_tde_12_163
crossref_primary_10_1016_j_carbpol_2017_12_013
crossref_primary_10_3390_polym13111852
crossref_primary_10_3390_foods11182829
crossref_primary_10_1016_j_cej_2009_05_014
crossref_primary_10_4028_p_LHxqi1
crossref_primary_10_1016_j_dyepig_2018_11_026
crossref_primary_10_1002_adem_200700222
crossref_primary_10_1002_jbm_b_33070
crossref_primary_10_3390_biomedicines10071621
crossref_primary_10_1002_mame_202500121
crossref_primary_10_1016_j_carbpol_2015_10_076
crossref_primary_10_1002_app_44396
crossref_primary_10_1063_1_4824851
crossref_primary_10_1002_polb_22259
crossref_primary_10_1002_adfm_201401502
crossref_primary_10_1016_j_jconrel_2019_03_006
crossref_primary_10_1002_cctc_201300531
crossref_primary_10_1016_j_heliyon_2020_e04686
crossref_primary_10_1007_s40778_021_00190_w
crossref_primary_10_1089_ten_tea_2011_0663
crossref_primary_10_1016_j_carbpol_2006_05_025
crossref_primary_10_1016_j_actbio_2010_03_026
crossref_primary_10_1016_j_prosdent_2016_11_021
crossref_primary_10_1038_s41467_018_04245_1
crossref_primary_10_1002_mabi_200600069
crossref_primary_10_3390_polym10101159
crossref_primary_10_1016_j_biomaterials_2017_06_019
crossref_primary_10_1016_j_biomaterials_2019_119246
crossref_primary_10_1177_0022034511405326
crossref_primary_10_1016_j_ijbiomac_2023_128653
crossref_primary_10_1016_j_actbio_2019_05_055
crossref_primary_10_3390_gels11060439
crossref_primary_10_1088_1758_5090_acb6b7
crossref_primary_10_3390_ma15227945
crossref_primary_10_1007_s13399_024_06329_z
crossref_primary_10_3390_ma14040858
crossref_primary_10_3390_bioengineering9120807
crossref_primary_10_1038_srep12374
crossref_primary_10_1016_j_ijbiomac_2022_03_024
crossref_primary_10_1016_j_reactfunctpolym_2018_09_016
crossref_primary_10_1016_j_carbpol_2013_03_021
crossref_primary_10_1002_jbm_a_31472
crossref_primary_10_1002_jbm_a_32441
crossref_primary_10_1007_s13399_022_02706_8
crossref_primary_10_1039_C9BM00992B
crossref_primary_10_1016_j_carbpol_2016_11_068
crossref_primary_10_1016_j_actbio_2015_07_038
crossref_primary_10_3109_03639045_2011_653813
crossref_primary_10_1016_j_carbpol_2016_04_051
crossref_primary_10_1016_j_dsx_2024_103002
crossref_primary_10_1089_ten_tea_2018_0046
crossref_primary_10_1016_j_ijbiomac_2023_123525
crossref_primary_10_1016_j_actbio_2013_03_002
crossref_primary_10_3390_ma8095286
crossref_primary_10_1002_advs_202303279
crossref_primary_10_1002_jbm_a_30474
crossref_primary_10_1208_s12249_022_02236_6
crossref_primary_10_1016_j_ijbiomac_2023_126133
crossref_primary_10_1016_j_ejps_2022_106204
crossref_primary_10_1007_s10439_015_1400_x
crossref_primary_10_1016_j_actbio_2017_11_024
crossref_primary_10_1038_nmat2203
crossref_primary_10_1002_mabi_200700313
crossref_primary_10_1016_j_lwt_2016_09_005
crossref_primary_10_3389_fbioe_2020_00188
crossref_primary_10_1002_chem_202100204
crossref_primary_10_3390_polym14040694
crossref_primary_10_1038_nbt_3104
crossref_primary_10_1002_adfm_202002448
crossref_primary_10_1002_adhm_201500618
crossref_primary_10_1557_jmr_2010_35
crossref_primary_10_1089_ten_tea_2020_0305
crossref_primary_10_1007_s11095_009_9922_2
crossref_primary_10_1016_j_foodres_2020_110059
crossref_primary_10_1039_D5RA01397F
crossref_primary_10_1016_j_actbio_2014_08_019
crossref_primary_10_1038_s41598_024_78044_8
crossref_primary_10_1039_C3CS60040H
crossref_primary_10_1002_mabi_202500276
crossref_primary_10_1016_j_jconrel_2020_09_020
crossref_primary_10_1007_s10856_012_4757_5
crossref_primary_10_1021_acsbiomaterials_9b01520
crossref_primary_10_1016_j_biomaterials_2006_12_029
crossref_primary_10_1080_09205063_2017_1318030
crossref_primary_10_1016_j_jhazmat_2024_135818
crossref_primary_10_1021_acsomega_4c06984
crossref_primary_10_1016_j_mtchem_2021_100623
crossref_primary_10_1016_j_ejpb_2022_10_021
crossref_primary_10_1002_polb_23081
crossref_primary_10_1038_nmat3758
crossref_primary_10_3390_ma11101880
crossref_primary_10_3389_fbioe_2021_692648
crossref_primary_10_1016_j_jddst_2025_107272
crossref_primary_10_1515_rams_2023_0180
crossref_primary_10_1016_j_carbpol_2017_06_091
crossref_primary_10_1080_09205063_2019_1613292
crossref_primary_10_1016_j_jconrel_2024_06_003
crossref_primary_10_1002_adhm_201701393
crossref_primary_10_1016_j_joen_2020_06_022
crossref_primary_10_1080_10601325_2017_1294452
crossref_primary_10_1007_s42242_020_00117_0
crossref_primary_10_1016_j_dental_2019_11_005
crossref_primary_10_1038_s41467_021_27529_5
crossref_primary_10_1002_cm_21658
crossref_primary_10_1016_j_carbpol_2014_06_010
crossref_primary_10_3390_polym15030534
crossref_primary_10_3390_ma6041285
crossref_primary_10_1002_chem_201801710
crossref_primary_10_1016_j_mtcomm_2021_102701
crossref_primary_10_1039_D1RA02744A
crossref_primary_10_4155_tde_12_53
crossref_primary_10_1016_j_mtcomm_2023_107950
crossref_primary_10_1016_j_biomaterials_2015_01_048
crossref_primary_10_1016_j_jconrel_2015_09_011
crossref_primary_10_1016_j_mtchem_2021_100656
crossref_primary_10_1016_j_pmatsci_2025_101518
crossref_primary_10_1016_j_biomaterials_2012_10_008
crossref_primary_10_1159_000479869
crossref_primary_10_1016_j_ejpb_2017_04_025
crossref_primary_10_1016_j_mseb_2005_08_088
crossref_primary_10_1134_S1068162019060219
crossref_primary_10_1007_s10856_012_4759_3
crossref_primary_10_1557_mrs2006_25
crossref_primary_10_1021_acs_chemrev_5c00069
crossref_primary_10_1016_j_ijbiomac_2023_127041
crossref_primary_10_1002_term_1968
crossref_primary_10_1016_j_carbpol_2019_115665
crossref_primary_10_3109_02652048_2014_985343
crossref_primary_10_1002_adhm_201701069
crossref_primary_10_1016_j_ijbiomac_2018_03_110
crossref_primary_10_1002_adfm_200900865
crossref_primary_10_1002_adhm_202202370
crossref_primary_10_1089_ten_tea_2013_0223
crossref_primary_10_1016_j_carbpol_2020_115858
crossref_primary_10_1073_pnas_2417290122
crossref_primary_10_1089_ten_tea_2011_0279
crossref_primary_10_3390_polym10030335
crossref_primary_10_1016_j_jconrel_2019_06_016
crossref_primary_10_1016_j_addr_2023_115028
crossref_primary_10_1016_j_jiec_2016_01_010
crossref_primary_10_1016_j_memsci_2016_03_040
crossref_primary_10_1007_s10811_025_03560_7
Cites_doi 10.1021/ma9921347
10.1016/0142-9612(96)87644-7
10.1177/154405910308201111
10.1083/jcb.132.4.657
10.1021/bm025567h
10.1038/scientificamerican0499-60
10.1073/pnas.94.25.13661
10.1016/S0008-6215(00)85029-6
10.1016/S0169-409X(01)00243-5
10.1016/S0012-1606(89)80001-6
10.1021/bp010070p
10.1097/00003086-200110001-00024
10.1081/DDC-120003853
10.1016/S0962-8924(01)02205-X
10.1021/cr000108x
10.1002/(SICI)1097-4636(199824)43:4<422::AID-JBM9>3.0.CO;2-1
10.1016/S0032-3861(99)00776-4
10.1038/83481
10.1016/S0142-9612(98)00107-0
10.1111/j.1749-6632.2002.tb03056.x
10.1016/S0303-7207(03)00209-0
10.1016/S0032-3861(98)00550-3
10.1016/0040-6031(95)02476-X
10.1038/8700
10.1016/0167-7799(90)90139-O
10.1073/pnas.192291499
10.1016/S0032-3861(02)00559-1
ContentType Journal Article
Copyright 2004 Elsevier Ltd
Copyright_xml – notice: 2004 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
F28
7X8
DOI 10.1016/j.biomaterials.2004.06.044
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Engineering Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 2465
ExternalDocumentID 15585248
10_1016_j_biomaterials_2004_06_044
S0142961204006064
Genre Research Support, U.S. Gov't, P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE13349
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
8FD
FR3
P64
F28
7X8
ID FETCH-LOGICAL-c499t-806b00bbc086929a221d3d2cab0d94548736c9c84b618c07a4de8990aa4c9b563
ISICitedReferencesCount 560
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226698400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
IngestDate Thu Oct 02 05:14:48 EDT 2025
Sun Sep 28 07:15:27 EDT 2025
Tue Oct 07 09:26:23 EDT 2025
Wed Feb 19 01:38:53 EST 2025
Tue Nov 18 22:38:58 EST 2025
Sat Nov 29 07:26:26 EST 2025
Fri Feb 23 02:17:11 EST 2024
Tue Oct 14 19:35:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Chain scission
Biocompatibility
Tissue engineering
Calcium cross-linking
Myoblasts
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-806b00bbc086929a221d3d2cab0d94548736c9c84b618c07a4de8990aa4c9b563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 15585248
PQID 19445228
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_67333627
proquest_miscellaneous_28504330
proquest_miscellaneous_19445228
pubmed_primary_15585248
crossref_primary_10_1016_j_biomaterials_2004_06_044
crossref_citationtrail_10_1016_j_biomaterials_2004_06_044
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2004_06_044
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2004_06_044
PublicationCentury 2000
PublicationDate 2005-05-01
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2005
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kikuchi, Okano (bib7) 2002; 54
Persidis (bib1) 1999; 17
Kreeger, Woodruff, Shea (bib18) 2003; 205
Lee, Bouhadir, Mooney (bib29) 2002; 3
Opas (bib31) 1989; 131
Lee, Mooney (bib4) 2001; 101
Tonnesen, Karlsen (bib6) 2002; 28
Alsberg, Kong, Hirano, Smith, Albeiruti, Mooney (bib13) 2003; 82
Drury, Dennis, Mooney (bib20) 2004; 25
Griffith (bib2) 2002; 961
Lee, Rowley, Eiselt, Moy, Bouhadir, Mooney (bib23) 2000; 33
Iza, Woerly, Danumah, Kaliaguine, Bousmina (bib25) 2000; 21
Smidrød, Painter (bib28) 1973; 26
Bouhadir, Hausman, Mooney (bib19) 1999; 40
Alsberg, Anderson, Albeiruti, Rowley, Mooney (bib16) 2002; 99
Chin (bib15) 1991
Theloar (bib22) 1975
Ishikiriyama, Sakamoto, Todoki, Tayama, Tanaka, Kobayashi (bib24) 1995; 267
Bouhadir, Lee, Alsberg, Damm, Anderson, Mooney (bib11) 2001; 17
Chamberlain, Jaynes, Hauschka (bib27) 1985; 5
Joki, Machluf, Atala, Zhu, Seyfried, Dunn, Abe, Carroll, Black (bib8) 2001; 19
Anseth, Bowman, Peppas (bib21) 1996; 17
Pelham, Wang (bib32) 1997; 94
Rowley, Madlambayan, Mooney (bib17) 1999; 20
Peter, Miller, Yasko, Yaszemski, Mikos (bib5) 1998; 43
Beningo, Wang (bib30) 2002; 12
Andres, Walsh (bib26) 1996; 132
Smidsrød, Painter (bib12) 1973; 26
Lu, Zhu, Valenzuela, Currier, Yaszemski (bib10) 2001; 391S
Smidrød, Skjåk-Bræk (bib9) 1990; 8
Mooney, Mikos (bib3) 1999; 280
Kong, Lee, Mooney (bib14) 2002; 43
Peter (10.1016/j.biomaterials.2004.06.044_bib5) 1998; 43
Mooney (10.1016/j.biomaterials.2004.06.044_bib3) 1999; 280
Smidrød (10.1016/j.biomaterials.2004.06.044_bib9) 1990; 8
Kong (10.1016/j.biomaterials.2004.06.044_bib14) 2002; 43
Kikuchi (10.1016/j.biomaterials.2004.06.044_bib7) 2002; 54
Griffith (10.1016/j.biomaterials.2004.06.044_bib2) 2002; 961
Lu (10.1016/j.biomaterials.2004.06.044_bib10) 2001; 391S
Pelham (10.1016/j.biomaterials.2004.06.044_bib32) 1997; 94
Chamberlain (10.1016/j.biomaterials.2004.06.044_bib27) 1985; 5
Tonnesen (10.1016/j.biomaterials.2004.06.044_bib6) 2002; 28
Ishikiriyama (10.1016/j.biomaterials.2004.06.044_bib24) 1995; 267
Kreeger (10.1016/j.biomaterials.2004.06.044_bib18) 2003; 205
Bouhadir (10.1016/j.biomaterials.2004.06.044_bib11) 2001; 17
Persidis (10.1016/j.biomaterials.2004.06.044_bib1) 1999; 17
Chin (10.1016/j.biomaterials.2004.06.044_bib15) 1991
Drury (10.1016/j.biomaterials.2004.06.044_bib20) 2004; 25
Theloar (10.1016/j.biomaterials.2004.06.044_bib22) 1975
Anseth (10.1016/j.biomaterials.2004.06.044_bib21) 1996; 17
Beningo (10.1016/j.biomaterials.2004.06.044_bib30) 2002; 12
Andres (10.1016/j.biomaterials.2004.06.044_bib26) 1996; 132
Opas (10.1016/j.biomaterials.2004.06.044_bib31) 1989; 131
Alsberg (10.1016/j.biomaterials.2004.06.044_bib13) 2003; 82
Iza (10.1016/j.biomaterials.2004.06.044_bib25) 2000; 21
Lee (10.1016/j.biomaterials.2004.06.044_bib29) 2002; 3
Alsberg (10.1016/j.biomaterials.2004.06.044_bib16) 2002; 99
Lee (10.1016/j.biomaterials.2004.06.044_bib23) 2000; 33
Rowley (10.1016/j.biomaterials.2004.06.044_bib17) 1999; 20
Bouhadir (10.1016/j.biomaterials.2004.06.044_bib19) 1999; 40
Smidrød (10.1016/j.biomaterials.2004.06.044_bib28) 1973; 26
Lee (10.1016/j.biomaterials.2004.06.044_bib4) 2001; 101
Joki (10.1016/j.biomaterials.2004.06.044_bib8) 2001; 19
Smidsrød (10.1016/j.biomaterials.2004.06.044_bib12) 1973; 26
References_xml – volume: 8
  start-page: 71
  year: 1990
  end-page: 78
  ident: bib9
  article-title: Alginate as immobilization matrix for cells
  publication-title: TIBTECH
– volume: 17
  start-page: 945
  year: 2001
  end-page: 950
  ident: bib11
  article-title: Degradation of partially oxidized alginate and its potential application for tissue engineering
  publication-title: Biotechnol Prog
– volume: 25
  start-page: 3187
  year: 2004
  end-page: 3199
  ident: bib20
  publication-title: The tensile properties of alginate hydrogels, Biomaterials
– volume: 54
  start-page: 53
  year: 2002
  end-page: 77
  ident: bib7
  article-title: Pulsatile drug release control using hydrogels
  publication-title: Adv Drug Deliv Rev.
– volume: 21
  start-page: 5885
  year: 2000
  end-page: 5893
  ident: bib25
  article-title: Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements
  publication-title: Polymer
– volume: 17
  start-page: 508
  year: 1999
  end-page: 510
  ident: bib1
  article-title: Tissue engineering
  publication-title: Nat Biotech
– volume: 33
  start-page: 4291
  year: 2000
  end-page: 4294
  ident: bib23
  article-title: Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density
  publication-title: Macromolecules
– volume: 94
  start-page: 13661
  year: 1997
  end-page: 13665
  ident: bib32
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc Natl Acad Sci (USA)
– volume: 99
  start-page: 12025
  year: 2002
  end-page: 12030
  ident: bib16
  article-title: Engineering growing tissues
  publication-title: Proc Natl Acad Sci (USA)
– volume: 40
  start-page: 3575
  year: 1999
  end-page: 3584
  ident: bib19
  article-title: Synthesis of cross-linked poly(aldehyde guluronate) hydrogels
  publication-title: Polymer
– year: 1975
  ident: bib22
  article-title: Physics of rubber elasticity
– volume: 280
  start-page: 60
  year: 1999
  end-page: 65
  ident: bib3
  article-title: Growing new organs
  publication-title: Sci Am
– volume: 5
  start-page: 484
  year: 1985
  end-page: 492
  ident: bib27
  article-title: Regulation of creatine kinase induction in differentiating mouse myoblasts
  publication-title: Mol Cell Biol
– volume: 43
  start-page: 422
  year: 1998
  end-page: 427
  ident: bib5
  article-title: Polymer concepts in tissue engineering
  publication-title: J. Biomed Mater Res (Appl Biomater)
– volume: 205
  start-page: 1
  year: 2003
  end-page: 10
  ident: bib18
  article-title: Murine granulosa cell morphology and function are regulated by a synthetic Arg-Gly-Asp matrix
  publication-title: Mol Cell Endocrinol
– volume: 101
  start-page: 1869
  year: 2001
  end-page: 1879
  ident: bib4
  article-title: Hydrogels for tissue engineering
  publication-title: Chem Rev
– volume: 391S
  start-page: S251
  year: 2001
  end-page: 70
  ident: bib10
  article-title: Biodegradable polymer scaffolds for cartilage tissue engineering
  publication-title: Clin Orthop
– volume: 28
  start-page: 621
  year: 2002
  end-page: 630
  ident: bib6
  article-title: Alginate in drug delivery systems
  publication-title: Drug Dev Ind Pharm
– volume: 26
  start-page: 125
  year: 1973
  end-page: 132
  ident: bib12
  article-title: Effect of periodate oxidation upon the stiffness of the alginate molecule in solution
  publication-title: Carbohydr Res
– volume: 131
  start-page: 281
  year: 1989
  end-page: 293
  ident: bib31
  article-title: Expression of the differentiated phenotype by epithelial cells in vitro is regulated by both biochemistry and mechanics of the substratum
  publication-title: Dev Biol
– volume: 20
  start-page: 45
  year: 1999
  end-page: 53
  ident: bib17
  article-title: Alginate hydrogels as synthetic extracelllar matrix materials
  publication-title: Biomaterials
– start-page: 1597
  year: 1991
  end-page: 1608
  ident: bib15
  article-title: Biomaterials
  publication-title: The biomedical engineering handbook
– volume: 961
  start-page: 83
  year: 2002
  end-page: 95
  ident: bib2
  article-title: Emerging design principles in biomaterials and scaffolds for tissue engineering
  publication-title: Ann NY Acad Sci
– volume: 19
  start-page: 35
  year: 2001
  end-page: 39
  ident: bib8
  article-title: Continuous release of endostatin from microencapsulated engineered cells for tumor therapy
  publication-title: Nat Biotech
– volume: 43
  start-page: 6239
  year: 2002
  end-page: 6246
  ident: bib14
  article-title: Decoupling the dependence of rheological/mechanical properties of hydrogels from solid concentration
  publication-title: Polymer
– volume: 82
  start-page: 903
  year: 2003
  end-page: 908
  ident: bib13
  article-title: Regulating bone formation via controlled scaffold degradation
  publication-title: J Dent Res
– volume: 3
  start-page: 1129
  year: 2002
  end-page: 1134
  ident: bib29
  article-title: Evaluation of chain stiffness of partially oxidized polyguluronate
  publication-title: Biomacromolecules
– volume: 17
  start-page: 1647
  year: 1996
  end-page: 1657
  ident: bib21
  article-title: Mechanical properties of hydrogels and their experimental determination
  publication-title: Biomaterials
– volume: 132
  start-page: 657
  year: 1996
  end-page: 666
  ident: bib26
  article-title: Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis
  publication-title: J Cell Biol
– volume: 12
  start-page: 79
  year: 2002
  end-page: 84
  ident: bib30
  article-title: Flexible substrata for the detection of cellular traction forces
  publication-title: Trends Cell Biol
– volume: 267
  start-page: 169
  year: 1995
  end-page: 180
  ident: bib24
  article-title: Pore size distribution measurements of polymer hydrogel membranes for artificial kidneys using differential scanning calorimetry
  publication-title: Thermochimica Acta
– volume: 26
  start-page: 125
  year: 1973
  end-page: 132
  ident: bib28
  article-title: Effect of periodate oxidation upon the stiffness of the alginate molecule in solution
  publication-title: Carbo Res
– volume: 33
  start-page: 4291
  year: 2000
  ident: 10.1016/j.biomaterials.2004.06.044_bib23
  article-title: Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density
  publication-title: Macromolecules
  doi: 10.1021/ma9921347
– volume: 17
  start-page: 1647
  year: 1996
  ident: 10.1016/j.biomaterials.2004.06.044_bib21
  article-title: Mechanical properties of hydrogels and their experimental determination
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)87644-7
– volume: 82
  start-page: 903
  year: 2003
  ident: 10.1016/j.biomaterials.2004.06.044_bib13
  article-title: Regulating bone formation via controlled scaffold degradation
  publication-title: J Dent Res
  doi: 10.1177/154405910308201111
– volume: 132
  start-page: 657
  year: 1996
  ident: 10.1016/j.biomaterials.2004.06.044_bib26
  article-title: Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis
  publication-title: J Cell Biol
  doi: 10.1083/jcb.132.4.657
– volume: 3
  start-page: 1129
  year: 2002
  ident: 10.1016/j.biomaterials.2004.06.044_bib29
  article-title: Evaluation of chain stiffness of partially oxidized polyguluronate
  publication-title: Biomacromolecules
  doi: 10.1021/bm025567h
– volume: 280
  start-page: 60
  year: 1999
  ident: 10.1016/j.biomaterials.2004.06.044_bib3
  article-title: Growing new organs
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0499-60
– volume: 94
  start-page: 13661
  year: 1997
  ident: 10.1016/j.biomaterials.2004.06.044_bib32
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc Natl Acad Sci (USA)
  doi: 10.1073/pnas.94.25.13661
– volume: 26
  start-page: 125
  year: 1973
  ident: 10.1016/j.biomaterials.2004.06.044_bib12
  article-title: Effect of periodate oxidation upon the stiffness of the alginate molecule in solution
  publication-title: Carbohydr Res
  doi: 10.1016/S0008-6215(00)85029-6
– volume: 54
  start-page: 53
  year: 2002
  ident: 10.1016/j.biomaterials.2004.06.044_bib7
  article-title: Pulsatile drug release control using hydrogels
  publication-title: Adv Drug Deliv Rev.
  doi: 10.1016/S0169-409X(01)00243-5
– start-page: 1597
  year: 1991
  ident: 10.1016/j.biomaterials.2004.06.044_bib15
  article-title: Biomaterials
– volume: 131
  start-page: 281
  year: 1989
  ident: 10.1016/j.biomaterials.2004.06.044_bib31
  article-title: Expression of the differentiated phenotype by epithelial cells in vitro is regulated by both biochemistry and mechanics of the substratum
  publication-title: Dev Biol
  doi: 10.1016/S0012-1606(89)80001-6
– volume: 17
  start-page: 945
  year: 2001
  ident: 10.1016/j.biomaterials.2004.06.044_bib11
  article-title: Degradation of partially oxidized alginate and its potential application for tissue engineering
  publication-title: Biotechnol Prog
  doi: 10.1021/bp010070p
– volume: 391S
  start-page: S251
  year: 2001
  ident: 10.1016/j.biomaterials.2004.06.044_bib10
  article-title: Biodegradable polymer scaffolds for cartilage tissue engineering
  publication-title: Clin Orthop
  doi: 10.1097/00003086-200110001-00024
– year: 1975
  ident: 10.1016/j.biomaterials.2004.06.044_bib22
– volume: 28
  start-page: 621
  year: 2002
  ident: 10.1016/j.biomaterials.2004.06.044_bib6
  article-title: Alginate in drug delivery systems
  publication-title: Drug Dev Ind Pharm
  doi: 10.1081/DDC-120003853
– volume: 12
  start-page: 79
  year: 2002
  ident: 10.1016/j.biomaterials.2004.06.044_bib30
  article-title: Flexible substrata for the detection of cellular traction forces
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(01)02205-X
– volume: 101
  start-page: 1869
  year: 2001
  ident: 10.1016/j.biomaterials.2004.06.044_bib4
  article-title: Hydrogels for tissue engineering
  publication-title: Chem Rev
  doi: 10.1021/cr000108x
– volume: 43
  start-page: 422
  year: 1998
  ident: 10.1016/j.biomaterials.2004.06.044_bib5
  article-title: Polymer concepts in tissue engineering
  publication-title: J. Biomed Mater Res (Appl Biomater)
  doi: 10.1002/(SICI)1097-4636(199824)43:4<422::AID-JBM9>3.0.CO;2-1
– volume: 25
  start-page: 3187
  year: 2004
  ident: 10.1016/j.biomaterials.2004.06.044_bib20
  publication-title: The tensile properties of alginate hydrogels, Biomaterials
– volume: 21
  start-page: 5885
  year: 2000
  ident: 10.1016/j.biomaterials.2004.06.044_bib25
  article-title: Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements
  publication-title: Polymer
  doi: 10.1016/S0032-3861(99)00776-4
– volume: 26
  start-page: 125
  year: 1973
  ident: 10.1016/j.biomaterials.2004.06.044_bib28
  article-title: Effect of periodate oxidation upon the stiffness of the alginate molecule in solution
  publication-title: Carbo Res
  doi: 10.1016/S0008-6215(00)85029-6
– volume: 19
  start-page: 35
  year: 2001
  ident: 10.1016/j.biomaterials.2004.06.044_bib8
  article-title: Continuous release of endostatin from microencapsulated engineered cells for tumor therapy
  publication-title: Nat Biotech
  doi: 10.1038/83481
– volume: 20
  start-page: 45
  year: 1999
  ident: 10.1016/j.biomaterials.2004.06.044_bib17
  article-title: Alginate hydrogels as synthetic extracelllar matrix materials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00107-0
– volume: 5
  start-page: 484
  year: 1985
  ident: 10.1016/j.biomaterials.2004.06.044_bib27
  article-title: Regulation of creatine kinase induction in differentiating mouse myoblasts
  publication-title: Mol Cell Biol
– volume: 961
  start-page: 83
  year: 2002
  ident: 10.1016/j.biomaterials.2004.06.044_bib2
  article-title: Emerging design principles in biomaterials and scaffolds for tissue engineering
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.2002.tb03056.x
– volume: 205
  start-page: 1
  year: 2003
  ident: 10.1016/j.biomaterials.2004.06.044_bib18
  article-title: Murine granulosa cell morphology and function are regulated by a synthetic Arg-Gly-Asp matrix
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/S0303-7207(03)00209-0
– volume: 40
  start-page: 3575
  year: 1999
  ident: 10.1016/j.biomaterials.2004.06.044_bib19
  article-title: Synthesis of cross-linked poly(aldehyde guluronate) hydrogels
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00550-3
– volume: 267
  start-page: 169
  year: 1995
  ident: 10.1016/j.biomaterials.2004.06.044_bib24
  article-title: Pore size distribution measurements of polymer hydrogel membranes for artificial kidneys using differential scanning calorimetry
  publication-title: Thermochimica Acta
  doi: 10.1016/0040-6031(95)02476-X
– volume: 17
  start-page: 508
  year: 1999
  ident: 10.1016/j.biomaterials.2004.06.044_bib1
  article-title: Tissue engineering
  publication-title: Nat Biotech
  doi: 10.1038/8700
– volume: 8
  start-page: 71
  year: 1990
  ident: 10.1016/j.biomaterials.2004.06.044_bib9
  article-title: Alginate as immobilization matrix for cells
  publication-title: TIBTECH
  doi: 10.1016/0167-7799(90)90139-O
– volume: 99
  start-page: 12025
  year: 2002
  ident: 10.1016/j.biomaterials.2004.06.044_bib16
  article-title: Engineering growing tissues
  publication-title: Proc Natl Acad Sci (USA)
  doi: 10.1073/pnas.192291499
– volume: 43
  start-page: 6239
  year: 2002
  ident: 10.1016/j.biomaterials.2004.06.044_bib14
  article-title: Decoupling the dependence of rheological/mechanical properties of hydrogels from solid concentration
  publication-title: Polymer
  doi: 10.1016/S0032-3861(02)00559-1
SSID ssj0014042
Score 2.401404
Snippet Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2455
SubjectTerms Alginates - analysis
Alginates - chemistry
Animals
Biocompatibility
Biocompatible Materials - analysis
Biocompatible Materials - chemistry
Calcium - chemistry
Calcium cross-linking
Cell Adhesion - physiology
Cell Culture Techniques - methods
Cell Differentiation - physiology
Cell Line
Chain scission
Compressive Strength
Elasticity
Glucuronic Acid - analysis
Glucuronic Acid - chemistry
Hexuronic Acids - analysis
Hexuronic Acids - chemistry
Hydrogels - analysis
Hydrogels - chemistry
Materials Testing
Mice
Molecular Weight
Myoblasts
Myoblasts - cytology
Myoblasts - physiology
Oxidation-Reduction
Porosity
Tensile Strength
Tissue engineering
Tissue Engineering - methods
Title Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961204006064
https://dx.doi.org/10.1016/j.biomaterials.2004.06.044
https://www.ncbi.nlm.nih.gov/pubmed/15585248
https://www.proquest.com/docview/19445228
https://www.proquest.com/docview/28504330
https://www.proquest.com/docview/67333627
Volume 26
WOSCitedRecordID wos000226698400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB7RFiF6QFAohKXMAXGJjBx7xuMR4lBVqUpJAwcX5WZ5xg4kRE6aBQK_njeLJ46QRThwsSzb4-19fn7bvA-hV4TmqlMV9Rj8PT1CKPG4P2ReIDi4Q2ARUE0G87nH-v14MOCfbMZ0oekEWFnG6zWf_VdRwzYQtpo6-w_idieFDbAOQocliB2WOwn-zBSf62nm2UTRLiyL9pdi0s5VXwhDodSG609Gv_RMdHUKZZGuR3afCqULEGGuJpZU7LntHzqGqhI6jiNrKyE8moLta57PufhTuJWvRfFtpePMCeidbL5ydTYfbDXwxc9V6V1ON_UAV7BuIum64t5mrqrQBN0UArpoZeDxqLOlbs0E-QpWtK48ienY-4dWNwGG8RtRexTt2uvWq6Z_5HYr7f7H9Py610uT7iB5PbvxFMuYysZbypU9dBAwykELHpy-7w4uXd6J-Jpuyd141aZWVwQ2Xb7JpGlyWbTpktxH96zPgU8NVh6gW0V5hA5rnSiP0J0rW2PxEI1rAMIVgDAACNcAhB2AsAUQdgDCACBsAYQdgLABEK4D6BG6Pu8mZxeeZeTwJHjGSzBnIlDTQkhwhMGuzoKgk4d5IDPh55wo5zeMJJcxEVEnlj7LSF6AQ-9nGZFc0Cg8RvslQOgJwiQLieBDIQMpwCSXWTEEbUE7ksWCMV-2EK9eaiptu3rFmjJJq7rEcVoXiOJTJakq0iSkhUI3dmaatuw06m0lu7Salgw_0hRQuNPod260NV6NUbrz-JcVXFLQ8Cptl5XFdLVIO5wo2oO4-Ygg1n0I_eYjIhaGYKqyFnpskLh5L5SCPibx07-OfYbubj7y52h_OV8VL9Bt-X05WsxP0B4bxCf2e_oNjA3viQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+alginate+gel+degradation+utilizing+partial+oxidation+and+bimodal+molecular+weight+distribution&rft.jtitle=Biomaterials&rft.au=Boontheekul%2C+Tanyarut&rft.au=Kong%2C+Hyun-Joon&rft.au=Mooney%2C+David+J&rft.date=2005-05-01&rft.issn=0142-9612&rft.volume=26&rft.issue=15&rft.spage=2455&rft_id=info:doi/10.1016%2Fj.biomaterials.2004.06.044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon