Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution
Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. I...
Uložené v:
| Vydané v: | Biomaterials Ročník 26; číslo 15; s. 2455 - 2465 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier Ltd
01.05.2005
|
| Predmet: | |
| ISSN: | 0142-9612, 1878-5905 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering. |
|---|---|
| AbstractList | Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering. Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering.Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering. |
| Author | Kong, Hyun-Joon Boontheekul, Tanyarut Mooney, David J. |
| Author_xml | – sequence: 1 givenname: Tanyarut surname: Boontheekul fullname: Boontheekul, Tanyarut organization: Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 2 givenname: Hyun-Joon surname: Kong fullname: Kong, Hyun-Joon organization: Department of Biologic & Materials Science, 1011 North University Avenue, Room 5213 Dental Building, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 3 givenname: David J. surname: Mooney fullname: Mooney, David J. email: mooneyd@umich.edu organization: Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15585248$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk2PFCEQholZ486u_gXT8eCt22qaZsCTOn4mm3jRM6GBbWukmxFodf31Ms4YzV52TgTqqQdSLxfkbA6zI-RJC00LLX-2bQYMk84uovapoQCsAd4AY_fIqhVrUfcS-jOygpbRWvKWnpOLlLZQ9sDoA3Le9r3oKRMrst2EOcfgPc5jpf2Ic_FWo_OVdWPUVmcMc7Vk9Phrj-x0zOXWKvzEY03PthpwCracTsE7s3gdqx8Oxy-5sphyxGHZkw_J_evyXvfouF6Sz2_ffNq8r68-vvuweXlVGyZlrgXwAWAYDAguqdSUtraz1OgBrGQ9E-uOG2kEG3grDKw1s05ICVozI4eed5fk6cG7i-Hb4lJWEybjvNezC0tSfN11HafrO0EqemBdB3eCrWSsp1QU8PERXIbJWbWLOOl4o_7OuwDPD4CJIaXorv8hoPbhqq36P1y1D1cBVyXc0vziVrPB_CeEHDX60xSvDwpXAviOLqpk0M3GWYzOZGUDnqZ5dUtjygdCo_1Xd3Oq5DdI_OKZ |
| CitedBy_id | crossref_primary_10_1007_s10856_018_6205_7 crossref_primary_10_1016_j_polymer_2019_01_004 crossref_primary_10_1016_j_apsusc_2020_145811 crossref_primary_10_1016_j_biomaterials_2014_03_028 crossref_primary_10_3390_biology13010021 crossref_primary_10_1021_acsbiomaterials_5b00003 crossref_primary_10_1002_biot_201900439 crossref_primary_10_1016_j_colsurfa_2018_05_061 crossref_primary_10_3390_md17070405 crossref_primary_10_1007_s11095_011_0449_y crossref_primary_10_3390_molecules25235751 crossref_primary_10_1039_D0BM00263A crossref_primary_10_1002_ijch_201300084 crossref_primary_10_3389_fphys_2018_01130 crossref_primary_10_1016_j_biomaterials_2006_09_017 crossref_primary_10_1007_s10439_016_1768_2 crossref_primary_10_1007_s10904_012_9804_7 crossref_primary_10_1016_j_cis_2023_102957 crossref_primary_10_1016_j_ijbiomac_2023_127192 crossref_primary_10_1002_adfm_202400585 crossref_primary_10_1002_term_2058 crossref_primary_10_1016_j_actbio_2015_08_012 crossref_primary_10_1016_j_ijpharm_2011_01_027 crossref_primary_10_1080_09506608_2022_2069451 crossref_primary_10_1007_s10439_019_02282_5 crossref_primary_10_3390_md20100598 crossref_primary_10_1126_scitranslmed_aay6853 crossref_primary_10_1016_j_biomaterials_2010_12_048 crossref_primary_10_1016_j_reactfunctpolym_2023_105578 crossref_primary_10_3390_molecules26237264 crossref_primary_10_1016_j_carbpol_2018_11_077 crossref_primary_10_1016_j_ijbiomac_2019_01_065 crossref_primary_10_1016_j_actbio_2014_06_015 crossref_primary_10_1016_j_eurpolymj_2015_07_021 crossref_primary_10_1016_S1369_7021_10_70013_4 crossref_primary_10_1016_j_foodhyd_2020_106343 crossref_primary_10_1016_j_ijbiomac_2024_138682 crossref_primary_10_1016_j_jconrel_2013_04_015 crossref_primary_10_1016_j_jconrel_2014_06_030 crossref_primary_10_1016_j_jmbbm_2023_105941 crossref_primary_10_1002_jbm_a_30626 crossref_primary_10_1002_adbi_202000071 crossref_primary_10_1021_acs_chemrev_5c00159 crossref_primary_10_1007_s10439_014_1192_4 crossref_primary_10_3390_pharmaceutics14071333 crossref_primary_10_3390_app14198977 crossref_primary_10_1002_advs_202001066 crossref_primary_10_3727_096368912X647252 crossref_primary_10_1002_mabi_201800469 crossref_primary_10_1155_2023_6661452 crossref_primary_10_1002_smll_202309599 crossref_primary_10_1007_s00343_019_8127_8 crossref_primary_10_1016_j_snb_2018_12_101 crossref_primary_10_3389_fbioe_2020_00776 crossref_primary_10_1038_s41578_022_00483_4 crossref_primary_10_1016_j_jcis_2021_11_119 crossref_primary_10_1163_092050610X519462 crossref_primary_10_1016_j_biomaterials_2020_120223 crossref_primary_10_1002_adma_202408616 crossref_primary_10_1016_j_biomaterials_2018_10_013 crossref_primary_10_1089_ten_2006_0356 crossref_primary_10_1111_cpr_12178 crossref_primary_10_1002_app_30328 crossref_primary_10_1016_j_jddst_2017_03_028 crossref_primary_10_1016_j_ijbiomac_2018_05_104 crossref_primary_10_1016_j_addr_2013_07_009 crossref_primary_10_1016_j_biomaterials_2012_07_001 crossref_primary_10_1007_s10439_016_1594_6 crossref_primary_10_1517_14712590802630666 crossref_primary_10_1177_08853282221085690 crossref_primary_10_1080_00914037_2020_1760270 crossref_primary_10_3390_ma7031957 crossref_primary_10_1016_j_actbio_2014_06_034 crossref_primary_10_1016_j_biomaterials_2008_05_033 crossref_primary_10_1016_j_algal_2022_102740 crossref_primary_10_1016_j_actbio_2008_11_019 crossref_primary_10_1016_j_ijbiomac_2025_139809 crossref_primary_10_1021_ja054820t crossref_primary_10_1039_c2jm30564j crossref_primary_10_1002_adfm_201901693 crossref_primary_10_1016_j_matt_2024_05_036 crossref_primary_10_1007_s10856_009_3692_6 crossref_primary_10_1002_adtp_201800038 crossref_primary_10_1016_j_carbpol_2021_118360 crossref_primary_10_1016_j_arabjc_2021_103520 crossref_primary_10_1371_journal_pone_0214411 crossref_primary_10_1016_j_tibtech_2008_03_011 crossref_primary_10_1016_j_reactfunctpolym_2022_105292 crossref_primary_10_1016_j_biomaterials_2009_10_052 crossref_primary_10_3390_polym13193321 crossref_primary_10_1039_D0BM01012J crossref_primary_10_1155_2012_921034 crossref_primary_10_1007_s11483_025_10011_w crossref_primary_10_1016_j_ijbiomac_2019_07_014 crossref_primary_10_1016_j_biomaterials_2009_07_034 crossref_primary_10_1016_j_carbpol_2012_06_037 crossref_primary_10_1016_j_carbpol_2012_05_002 crossref_primary_10_1002_pat_1318 crossref_primary_10_1073_pnas_1517517113 crossref_primary_10_1016_j_biomaterials_2010_03_001 crossref_primary_10_1016_j_ijpharm_2021_120673 crossref_primary_10_1016_j_ijbiomac_2020_10_256 crossref_primary_10_1016_j_biomaterials_2015_03_010 crossref_primary_10_1039_D4BM00039K crossref_primary_10_1016_j_biomaterials_2011_06_045 crossref_primary_10_1016_j_watres_2020_116316 crossref_primary_10_1002_pi_5927 crossref_primary_10_1016_j_carbpol_2013_08_036 crossref_primary_10_1097_01_ASW_0000666912_86854_2b crossref_primary_10_1111_j_1538_7836_2007_02386_x crossref_primary_10_1007_s13233_011_0501_1 crossref_primary_10_1016_j_ijbiomac_2025_144591 crossref_primary_10_3390_gels9030204 crossref_primary_10_1002_jbm_a_35011 crossref_primary_10_1016_j_actbio_2014_02_049 crossref_primary_10_1038_nrm_2017_108 crossref_primary_10_1002_jbio_201600049 crossref_primary_10_1016_j_actbio_2018_01_013 crossref_primary_10_1038_ncomms2271 crossref_primary_10_1038_srep27072 crossref_primary_10_1002_jbm_a_36217 crossref_primary_10_1016_j_progpolymsci_2011_06_003 crossref_primary_10_1002_jbm_a_35126 crossref_primary_10_1016_j_carbpol_2011_09_048 crossref_primary_10_1002_jbm_a_33085 crossref_primary_10_1016_j_jmbbm_2024_106797 crossref_primary_10_1002_app_44358 crossref_primary_10_1016_j_bioadv_2024_214154 crossref_primary_10_1172_JCI87624 crossref_primary_10_1016_j_ijbiomac_2024_138620 crossref_primary_10_1089_ten_tea_2011_0658 crossref_primary_10_1016_j_ijbiomac_2021_11_046 crossref_primary_10_1163_092050609X12560455246676 crossref_primary_10_1111_j_1582_4934_2008_00532_x crossref_primary_10_1016_j_ijbiomac_2022_05_157 crossref_primary_10_1371_journal_pone_0091662 crossref_primary_10_1002_jbm_b_34271 crossref_primary_10_1371_journal_pone_0090454 crossref_primary_10_1016_j_ceramint_2025_03_194 crossref_primary_10_1371_journal_pone_0181484 crossref_primary_10_1016_j_carpta_2025_100699 crossref_primary_10_1007_s10965_020_02342_8 crossref_primary_10_3390_v17091205 crossref_primary_10_1002_smsc_202400320 crossref_primary_10_1016_j_cis_2020_102167 crossref_primary_10_3389_fbioe_2021_630943 crossref_primary_10_1039_D3BM00721A crossref_primary_10_4028_www_scientific_net_AMR_403_408_2985 crossref_primary_10_1002_jbm_a_36552 crossref_primary_10_1016_j_actbio_2008_03_008 crossref_primary_10_1016_j_tice_2021_101539 crossref_primary_10_1016_j_polymdegradstab_2010_05_015 crossref_primary_10_1016_j_ijbiomac_2015_03_061 crossref_primary_10_1517_17425247_2015_1001362 crossref_primary_10_1016_j_progpolymsci_2011_11_004 crossref_primary_10_1038_s41598_017_17286_1 crossref_primary_10_1007_s12221_014_1835_y crossref_primary_10_1016_j_carbpol_2014_03_005 crossref_primary_10_1016_j_biomaterials_2009_07_060 crossref_primary_10_3389_fmolb_2021_719972 crossref_primary_10_1002_adma_202008553 crossref_primary_10_3390_pharmaceutics15122729 crossref_primary_10_1016_j_biomaterials_2015_10_008 crossref_primary_10_1002_adma_200801303 crossref_primary_10_1016_j_ijbiomac_2025_143461 crossref_primary_10_3390_ijms18040858 crossref_primary_10_3390_ijms17121976 crossref_primary_10_1002_adhm_201500254 crossref_primary_10_1016_j_addr_2013_09_009 crossref_primary_10_1002_app_48923 crossref_primary_10_1016_j_biomaterials_2010_12_027 crossref_primary_10_1007_s11095_006_9222_z crossref_primary_10_1016_j_carbpol_2024_122409 crossref_primary_10_1016_j_ijbiomac_2019_09_125 crossref_primary_10_1002_adhm_201700670 crossref_primary_10_1016_j_carbpol_2017_08_020 crossref_primary_10_1016_j_jcis_2020_12_026 crossref_primary_10_1038_s41565_020_0636_2 crossref_primary_10_1016_j_carbpol_2016_12_007 crossref_primary_10_3390_polym14091679 crossref_primary_10_1016_j_biomaterials_2009_10_002 crossref_primary_10_1016_j_matdes_2022_111404 crossref_primary_10_1016_j_actbio_2010_12_029 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_1016_j_msec_2016_04_104 crossref_primary_10_3390_polym12040919 crossref_primary_10_1016_j_carbpol_2021_117791 crossref_primary_10_1016_j_cej_2018_10_065 crossref_primary_10_1002_adhm_202000895 crossref_primary_10_1016_j_carbpol_2010_11_048 crossref_primary_10_1016_j_ijbiomac_2025_145764 crossref_primary_10_3390_pr12050944 crossref_primary_10_1016_j_addr_2015_04_021 crossref_primary_10_1002_adma_200902265 crossref_primary_10_1002_ppsc_201500025 crossref_primary_10_1211_jpp_59_4_0002 crossref_primary_10_1007_s40204_020_00127_2 crossref_primary_10_1002_btpr_260 crossref_primary_10_1016_j_biomaterials_2011_07_013 crossref_primary_10_1016_j_biomaterials_2024_122508 crossref_primary_10_1016_j_jconrel_2016_06_047 crossref_primary_10_1016_j_carbpol_2008_02_017 crossref_primary_10_1186_s40824_017_0110_x crossref_primary_10_3390_gels10090596 crossref_primary_10_1038_natrevmats_2015_6 crossref_primary_10_1016_j_carbpol_2017_08_046 crossref_primary_10_1088_1758_5090_ab98e4 crossref_primary_10_1007_s40883_022_00252_3 crossref_primary_10_1016_j_jconrel_2023_08_016 crossref_primary_10_1039_D4PM00334A crossref_primary_10_1016_j_biomaterials_2012_01_041 crossref_primary_10_1016_j_jdent_2022_104219 crossref_primary_10_1016_j_actbio_2009_04_035 crossref_primary_10_1016_j_polymdegradstab_2009_05_011 crossref_primary_10_1016_j_ijpharm_2008_12_013 crossref_primary_10_1016_j_actbio_2020_03_014 crossref_primary_10_1088_1758_5090_ab98e5 crossref_primary_10_1016_j_carbpol_2021_118746 crossref_primary_10_1002_jbm_a_36403 crossref_primary_10_1002_adhm_202101723 crossref_primary_10_1007_s11483_016_9428_5 crossref_primary_10_1002_adhm_202000905 crossref_primary_10_1902_jop_2012_110684 crossref_primary_10_1007_s12257_010_0099_7 crossref_primary_10_1177_09506608241280419 crossref_primary_10_1002_app_34041 crossref_primary_10_1177_0885328211404265 crossref_primary_10_1016_j_foodchem_2022_132885 crossref_primary_10_1016_j_biomaterials_2018_07_031 crossref_primary_10_3390_gels1020194 crossref_primary_10_1080_03639045_2017_1328434 crossref_primary_10_1002_advs_202307232 crossref_primary_10_1002_mrd_22814 crossref_primary_10_1016_j_biomaterials_2018_06_003 crossref_primary_10_1016_j_carbpol_2022_119161 crossref_primary_10_1007_s41061_021_00360_8 crossref_primary_10_1016_j_biomaterials_2019_01_005 crossref_primary_10_1089_ten_tea_2011_0250 crossref_primary_10_1016_j_biomaterials_2013_06_061 crossref_primary_10_1016_j_jmrt_2025_03_188 crossref_primary_10_1016_j_foodres_2020_109376 crossref_primary_10_1007_s11095_013_1103_7 crossref_primary_10_1080_01496395_2025_2514956 crossref_primary_10_3390_ijms23094486 crossref_primary_10_1038_natrevmats_2016_71 crossref_primary_10_4155_tde_12_16 crossref_primary_10_2174_1381612825666190423155835 crossref_primary_10_1039_C8BM01218K crossref_primary_10_1016_j_cdev_2022_203776 crossref_primary_10_1163_092050610X528561 crossref_primary_10_1016_j_cej_2018_08_115 crossref_primary_10_1021_acsbiomaterials_6b00470 crossref_primary_10_1007_BF03261887 crossref_primary_10_1002_slct_202304419 crossref_primary_10_1080_10426910903031727 crossref_primary_10_57634_RCR5062 crossref_primary_10_1371_journal_pone_0107952 crossref_primary_10_1007_s11243_015_0004_5 crossref_primary_10_3109_07388551_2010_505561 crossref_primary_10_1002_adfm_201500055 crossref_primary_10_1016_j_jiec_2023_03_053 crossref_primary_10_1002_btpr_509 crossref_primary_10_1016_j_chemosphere_2024_141959 crossref_primary_10_1016_j_dental_2008_02_001 crossref_primary_10_1038_mt_2014_78 crossref_primary_10_1016_j_addr_2018_04_018 crossref_primary_10_1177_0883911512473230 crossref_primary_10_1016_j_engmed_2024_100003 crossref_primary_10_1039_D3RA00851G crossref_primary_10_1016_j_carbpol_2020_116465 crossref_primary_10_1088_1758_5082_6_2_025009 crossref_primary_10_1063_1_5059393 crossref_primary_10_1002_term_1879 crossref_primary_10_1007_s43032_020_00445_7 crossref_primary_10_1002_jbm_a_31033 crossref_primary_10_1016_j_biomaterials_2019_119458 crossref_primary_10_1016_j_mtbio_2025_101743 crossref_primary_10_1016_j_ijbiomac_2024_135839 crossref_primary_10_1088_1758_5090_ab0631 crossref_primary_10_1002_mabi_202200113 crossref_primary_10_1016_j_foodhyd_2025_111749 crossref_primary_10_1007_s13577_024_01134_2 crossref_primary_10_1016_j_ymeth_2015_08_005 crossref_primary_10_1089_ten_tec_2009_0582 crossref_primary_10_1016_j_biomaterials_2010_07_111 crossref_primary_10_4155_tde_12_163 crossref_primary_10_1016_j_carbpol_2017_12_013 crossref_primary_10_3390_polym13111852 crossref_primary_10_3390_foods11182829 crossref_primary_10_1016_j_cej_2009_05_014 crossref_primary_10_4028_p_LHxqi1 crossref_primary_10_1016_j_dyepig_2018_11_026 crossref_primary_10_1002_adem_200700222 crossref_primary_10_1002_jbm_b_33070 crossref_primary_10_3390_biomedicines10071621 crossref_primary_10_1002_mame_202500121 crossref_primary_10_1016_j_carbpol_2015_10_076 crossref_primary_10_1002_app_44396 crossref_primary_10_1063_1_4824851 crossref_primary_10_1002_polb_22259 crossref_primary_10_1002_adfm_201401502 crossref_primary_10_1016_j_jconrel_2019_03_006 crossref_primary_10_1002_cctc_201300531 crossref_primary_10_1016_j_heliyon_2020_e04686 crossref_primary_10_1007_s40778_021_00190_w crossref_primary_10_1089_ten_tea_2011_0663 crossref_primary_10_1016_j_carbpol_2006_05_025 crossref_primary_10_1016_j_actbio_2010_03_026 crossref_primary_10_1016_j_prosdent_2016_11_021 crossref_primary_10_1038_s41467_018_04245_1 crossref_primary_10_1002_mabi_200600069 crossref_primary_10_3390_polym10101159 crossref_primary_10_1016_j_biomaterials_2017_06_019 crossref_primary_10_1016_j_biomaterials_2019_119246 crossref_primary_10_1177_0022034511405326 crossref_primary_10_1016_j_ijbiomac_2023_128653 crossref_primary_10_1016_j_actbio_2019_05_055 crossref_primary_10_3390_gels11060439 crossref_primary_10_1088_1758_5090_acb6b7 crossref_primary_10_3390_ma15227945 crossref_primary_10_1007_s13399_024_06329_z crossref_primary_10_3390_ma14040858 crossref_primary_10_3390_bioengineering9120807 crossref_primary_10_1038_srep12374 crossref_primary_10_1016_j_ijbiomac_2022_03_024 crossref_primary_10_1016_j_reactfunctpolym_2018_09_016 crossref_primary_10_1016_j_carbpol_2013_03_021 crossref_primary_10_1002_jbm_a_31472 crossref_primary_10_1002_jbm_a_32441 crossref_primary_10_1007_s13399_022_02706_8 crossref_primary_10_1039_C9BM00992B crossref_primary_10_1016_j_carbpol_2016_11_068 crossref_primary_10_1016_j_actbio_2015_07_038 crossref_primary_10_3109_03639045_2011_653813 crossref_primary_10_1016_j_carbpol_2016_04_051 crossref_primary_10_1016_j_dsx_2024_103002 crossref_primary_10_1089_ten_tea_2018_0046 crossref_primary_10_1016_j_ijbiomac_2023_123525 crossref_primary_10_1016_j_actbio_2013_03_002 crossref_primary_10_3390_ma8095286 crossref_primary_10_1002_advs_202303279 crossref_primary_10_1002_jbm_a_30474 crossref_primary_10_1208_s12249_022_02236_6 crossref_primary_10_1016_j_ijbiomac_2023_126133 crossref_primary_10_1016_j_ejps_2022_106204 crossref_primary_10_1007_s10439_015_1400_x crossref_primary_10_1016_j_actbio_2017_11_024 crossref_primary_10_1038_nmat2203 crossref_primary_10_1002_mabi_200700313 crossref_primary_10_1016_j_lwt_2016_09_005 crossref_primary_10_3389_fbioe_2020_00188 crossref_primary_10_1002_chem_202100204 crossref_primary_10_3390_polym14040694 crossref_primary_10_1038_nbt_3104 crossref_primary_10_1002_adfm_202002448 crossref_primary_10_1002_adhm_201500618 crossref_primary_10_1557_jmr_2010_35 crossref_primary_10_1089_ten_tea_2020_0305 crossref_primary_10_1007_s11095_009_9922_2 crossref_primary_10_1016_j_foodres_2020_110059 crossref_primary_10_1039_D5RA01397F crossref_primary_10_1016_j_actbio_2014_08_019 crossref_primary_10_1038_s41598_024_78044_8 crossref_primary_10_1039_C3CS60040H crossref_primary_10_1002_mabi_202500276 crossref_primary_10_1016_j_jconrel_2020_09_020 crossref_primary_10_1007_s10856_012_4757_5 crossref_primary_10_1021_acsbiomaterials_9b01520 crossref_primary_10_1016_j_biomaterials_2006_12_029 crossref_primary_10_1080_09205063_2017_1318030 crossref_primary_10_1016_j_jhazmat_2024_135818 crossref_primary_10_1021_acsomega_4c06984 crossref_primary_10_1016_j_mtchem_2021_100623 crossref_primary_10_1016_j_ejpb_2022_10_021 crossref_primary_10_1002_polb_23081 crossref_primary_10_1038_nmat3758 crossref_primary_10_3390_ma11101880 crossref_primary_10_3389_fbioe_2021_692648 crossref_primary_10_1016_j_jddst_2025_107272 crossref_primary_10_1515_rams_2023_0180 crossref_primary_10_1016_j_carbpol_2017_06_091 crossref_primary_10_1080_09205063_2019_1613292 crossref_primary_10_1016_j_jconrel_2024_06_003 crossref_primary_10_1002_adhm_201701393 crossref_primary_10_1016_j_joen_2020_06_022 crossref_primary_10_1080_10601325_2017_1294452 crossref_primary_10_1007_s42242_020_00117_0 crossref_primary_10_1016_j_dental_2019_11_005 crossref_primary_10_1038_s41467_021_27529_5 crossref_primary_10_1002_cm_21658 crossref_primary_10_1016_j_carbpol_2014_06_010 crossref_primary_10_3390_polym15030534 crossref_primary_10_3390_ma6041285 crossref_primary_10_1002_chem_201801710 crossref_primary_10_1016_j_mtcomm_2021_102701 crossref_primary_10_1039_D1RA02744A crossref_primary_10_4155_tde_12_53 crossref_primary_10_1016_j_mtcomm_2023_107950 crossref_primary_10_1016_j_biomaterials_2015_01_048 crossref_primary_10_1016_j_jconrel_2015_09_011 crossref_primary_10_1016_j_mtchem_2021_100656 crossref_primary_10_1016_j_pmatsci_2025_101518 crossref_primary_10_1016_j_biomaterials_2012_10_008 crossref_primary_10_1159_000479869 crossref_primary_10_1016_j_ejpb_2017_04_025 crossref_primary_10_1016_j_mseb_2005_08_088 crossref_primary_10_1134_S1068162019060219 crossref_primary_10_1007_s10856_012_4759_3 crossref_primary_10_1557_mrs2006_25 crossref_primary_10_1021_acs_chemrev_5c00069 crossref_primary_10_1016_j_ijbiomac_2023_127041 crossref_primary_10_1002_term_1968 crossref_primary_10_1016_j_carbpol_2019_115665 crossref_primary_10_3109_02652048_2014_985343 crossref_primary_10_1002_adhm_201701069 crossref_primary_10_1016_j_ijbiomac_2018_03_110 crossref_primary_10_1002_adfm_200900865 crossref_primary_10_1002_adhm_202202370 crossref_primary_10_1089_ten_tea_2013_0223 crossref_primary_10_1016_j_carbpol_2020_115858 crossref_primary_10_1073_pnas_2417290122 crossref_primary_10_1089_ten_tea_2011_0279 crossref_primary_10_3390_polym10030335 crossref_primary_10_1016_j_jconrel_2019_06_016 crossref_primary_10_1016_j_addr_2023_115028 crossref_primary_10_1016_j_jiec_2016_01_010 crossref_primary_10_1016_j_memsci_2016_03_040 crossref_primary_10_1007_s10811_025_03560_7 |
| Cites_doi | 10.1021/ma9921347 10.1016/0142-9612(96)87644-7 10.1177/154405910308201111 10.1083/jcb.132.4.657 10.1021/bm025567h 10.1038/scientificamerican0499-60 10.1073/pnas.94.25.13661 10.1016/S0008-6215(00)85029-6 10.1016/S0169-409X(01)00243-5 10.1016/S0012-1606(89)80001-6 10.1021/bp010070p 10.1097/00003086-200110001-00024 10.1081/DDC-120003853 10.1016/S0962-8924(01)02205-X 10.1021/cr000108x 10.1002/(SICI)1097-4636(199824)43:4<422::AID-JBM9>3.0.CO;2-1 10.1016/S0032-3861(99)00776-4 10.1038/83481 10.1016/S0142-9612(98)00107-0 10.1111/j.1749-6632.2002.tb03056.x 10.1016/S0303-7207(03)00209-0 10.1016/S0032-3861(98)00550-3 10.1016/0040-6031(95)02476-X 10.1038/8700 10.1016/0167-7799(90)90139-O 10.1073/pnas.192291499 10.1016/S0032-3861(02)00559-1 |
| ContentType | Journal Article |
| Copyright | 2004 Elsevier Ltd |
| Copyright_xml | – notice: 2004 Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 F28 7X8 |
| DOI | 10.1016/j.biomaterials.2004.06.044 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| EndPage | 2465 |
| ExternalDocumentID | 15585248 10_1016_j_biomaterials_2004_06_044 S0142961204006064 |
| Genre | Research Support, U.S. Gov't, P.H.S Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE13349 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 8FD FR3 P64 F28 7X8 |
| ID | FETCH-LOGICAL-c499t-806b00bbc086929a221d3d2cab0d94548736c9c84b618c07a4de8990aa4c9b563 |
| ISICitedReferencesCount | 560 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226698400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 |
| IngestDate | Thu Oct 02 05:14:48 EDT 2025 Sun Sep 28 07:15:27 EDT 2025 Tue Oct 07 09:26:23 EDT 2025 Wed Feb 19 01:38:53 EST 2025 Tue Nov 18 22:38:58 EST 2025 Sat Nov 29 07:26:26 EST 2025 Fri Feb 23 02:17:11 EST 2024 Tue Oct 14 19:35:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | Chain scission Biocompatibility Tissue engineering Calcium cross-linking Myoblasts |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c499t-806b00bbc086929a221d3d2cab0d94548736c9c84b618c07a4de8990aa4c9b563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Undefined-1 ObjectType-Feature-3 |
| PMID | 15585248 |
| PQID | 19445228 |
| PQPubID | 23462 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_67333627 proquest_miscellaneous_28504330 proquest_miscellaneous_19445228 pubmed_primary_15585248 crossref_primary_10_1016_j_biomaterials_2004_06_044 crossref_citationtrail_10_1016_j_biomaterials_2004_06_044 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2004_06_044 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2004_06_044 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-05-01 |
| PublicationDateYYYYMMDD | 2005-05-01 |
| PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2005 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kikuchi, Okano (bib7) 2002; 54 Persidis (bib1) 1999; 17 Kreeger, Woodruff, Shea (bib18) 2003; 205 Lee, Bouhadir, Mooney (bib29) 2002; 3 Opas (bib31) 1989; 131 Lee, Mooney (bib4) 2001; 101 Tonnesen, Karlsen (bib6) 2002; 28 Alsberg, Kong, Hirano, Smith, Albeiruti, Mooney (bib13) 2003; 82 Drury, Dennis, Mooney (bib20) 2004; 25 Griffith (bib2) 2002; 961 Lee, Rowley, Eiselt, Moy, Bouhadir, Mooney (bib23) 2000; 33 Iza, Woerly, Danumah, Kaliaguine, Bousmina (bib25) 2000; 21 Smidrød, Painter (bib28) 1973; 26 Bouhadir, Hausman, Mooney (bib19) 1999; 40 Alsberg, Anderson, Albeiruti, Rowley, Mooney (bib16) 2002; 99 Chin (bib15) 1991 Theloar (bib22) 1975 Ishikiriyama, Sakamoto, Todoki, Tayama, Tanaka, Kobayashi (bib24) 1995; 267 Bouhadir, Lee, Alsberg, Damm, Anderson, Mooney (bib11) 2001; 17 Chamberlain, Jaynes, Hauschka (bib27) 1985; 5 Joki, Machluf, Atala, Zhu, Seyfried, Dunn, Abe, Carroll, Black (bib8) 2001; 19 Anseth, Bowman, Peppas (bib21) 1996; 17 Pelham, Wang (bib32) 1997; 94 Rowley, Madlambayan, Mooney (bib17) 1999; 20 Peter, Miller, Yasko, Yaszemski, Mikos (bib5) 1998; 43 Beningo, Wang (bib30) 2002; 12 Andres, Walsh (bib26) 1996; 132 Smidsrød, Painter (bib12) 1973; 26 Lu, Zhu, Valenzuela, Currier, Yaszemski (bib10) 2001; 391S Smidrød, Skjåk-Bræk (bib9) 1990; 8 Mooney, Mikos (bib3) 1999; 280 Kong, Lee, Mooney (bib14) 2002; 43 Peter (10.1016/j.biomaterials.2004.06.044_bib5) 1998; 43 Mooney (10.1016/j.biomaterials.2004.06.044_bib3) 1999; 280 Smidrød (10.1016/j.biomaterials.2004.06.044_bib9) 1990; 8 Kong (10.1016/j.biomaterials.2004.06.044_bib14) 2002; 43 Kikuchi (10.1016/j.biomaterials.2004.06.044_bib7) 2002; 54 Griffith (10.1016/j.biomaterials.2004.06.044_bib2) 2002; 961 Lu (10.1016/j.biomaterials.2004.06.044_bib10) 2001; 391S Pelham (10.1016/j.biomaterials.2004.06.044_bib32) 1997; 94 Chamberlain (10.1016/j.biomaterials.2004.06.044_bib27) 1985; 5 Tonnesen (10.1016/j.biomaterials.2004.06.044_bib6) 2002; 28 Ishikiriyama (10.1016/j.biomaterials.2004.06.044_bib24) 1995; 267 Kreeger (10.1016/j.biomaterials.2004.06.044_bib18) 2003; 205 Bouhadir (10.1016/j.biomaterials.2004.06.044_bib11) 2001; 17 Persidis (10.1016/j.biomaterials.2004.06.044_bib1) 1999; 17 Chin (10.1016/j.biomaterials.2004.06.044_bib15) 1991 Drury (10.1016/j.biomaterials.2004.06.044_bib20) 2004; 25 Theloar (10.1016/j.biomaterials.2004.06.044_bib22) 1975 Anseth (10.1016/j.biomaterials.2004.06.044_bib21) 1996; 17 Beningo (10.1016/j.biomaterials.2004.06.044_bib30) 2002; 12 Andres (10.1016/j.biomaterials.2004.06.044_bib26) 1996; 132 Opas (10.1016/j.biomaterials.2004.06.044_bib31) 1989; 131 Alsberg (10.1016/j.biomaterials.2004.06.044_bib13) 2003; 82 Iza (10.1016/j.biomaterials.2004.06.044_bib25) 2000; 21 Lee (10.1016/j.biomaterials.2004.06.044_bib29) 2002; 3 Alsberg (10.1016/j.biomaterials.2004.06.044_bib16) 2002; 99 Lee (10.1016/j.biomaterials.2004.06.044_bib23) 2000; 33 Rowley (10.1016/j.biomaterials.2004.06.044_bib17) 1999; 20 Bouhadir (10.1016/j.biomaterials.2004.06.044_bib19) 1999; 40 Smidrød (10.1016/j.biomaterials.2004.06.044_bib28) 1973; 26 Lee (10.1016/j.biomaterials.2004.06.044_bib4) 2001; 101 Joki (10.1016/j.biomaterials.2004.06.044_bib8) 2001; 19 Smidsrød (10.1016/j.biomaterials.2004.06.044_bib12) 1973; 26 |
| References_xml | – volume: 8 start-page: 71 year: 1990 end-page: 78 ident: bib9 article-title: Alginate as immobilization matrix for cells publication-title: TIBTECH – volume: 17 start-page: 945 year: 2001 end-page: 950 ident: bib11 article-title: Degradation of partially oxidized alginate and its potential application for tissue engineering publication-title: Biotechnol Prog – volume: 25 start-page: 3187 year: 2004 end-page: 3199 ident: bib20 publication-title: The tensile properties of alginate hydrogels, Biomaterials – volume: 54 start-page: 53 year: 2002 end-page: 77 ident: bib7 article-title: Pulsatile drug release control using hydrogels publication-title: Adv Drug Deliv Rev. – volume: 21 start-page: 5885 year: 2000 end-page: 5893 ident: bib25 article-title: Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements publication-title: Polymer – volume: 17 start-page: 508 year: 1999 end-page: 510 ident: bib1 article-title: Tissue engineering publication-title: Nat Biotech – volume: 33 start-page: 4291 year: 2000 end-page: 4294 ident: bib23 article-title: Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density publication-title: Macromolecules – volume: 94 start-page: 13661 year: 1997 end-page: 13665 ident: bib32 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc Natl Acad Sci (USA) – volume: 99 start-page: 12025 year: 2002 end-page: 12030 ident: bib16 article-title: Engineering growing tissues publication-title: Proc Natl Acad Sci (USA) – volume: 40 start-page: 3575 year: 1999 end-page: 3584 ident: bib19 article-title: Synthesis of cross-linked poly(aldehyde guluronate) hydrogels publication-title: Polymer – year: 1975 ident: bib22 article-title: Physics of rubber elasticity – volume: 280 start-page: 60 year: 1999 end-page: 65 ident: bib3 article-title: Growing new organs publication-title: Sci Am – volume: 5 start-page: 484 year: 1985 end-page: 492 ident: bib27 article-title: Regulation of creatine kinase induction in differentiating mouse myoblasts publication-title: Mol Cell Biol – volume: 43 start-page: 422 year: 1998 end-page: 427 ident: bib5 article-title: Polymer concepts in tissue engineering publication-title: J. Biomed Mater Res (Appl Biomater) – volume: 205 start-page: 1 year: 2003 end-page: 10 ident: bib18 article-title: Murine granulosa cell morphology and function are regulated by a synthetic Arg-Gly-Asp matrix publication-title: Mol Cell Endocrinol – volume: 101 start-page: 1869 year: 2001 end-page: 1879 ident: bib4 article-title: Hydrogels for tissue engineering publication-title: Chem Rev – volume: 391S start-page: S251 year: 2001 end-page: 70 ident: bib10 article-title: Biodegradable polymer scaffolds for cartilage tissue engineering publication-title: Clin Orthop – volume: 28 start-page: 621 year: 2002 end-page: 630 ident: bib6 article-title: Alginate in drug delivery systems publication-title: Drug Dev Ind Pharm – volume: 26 start-page: 125 year: 1973 end-page: 132 ident: bib12 article-title: Effect of periodate oxidation upon the stiffness of the alginate molecule in solution publication-title: Carbohydr Res – volume: 131 start-page: 281 year: 1989 end-page: 293 ident: bib31 article-title: Expression of the differentiated phenotype by epithelial cells in vitro is regulated by both biochemistry and mechanics of the substratum publication-title: Dev Biol – volume: 20 start-page: 45 year: 1999 end-page: 53 ident: bib17 article-title: Alginate hydrogels as synthetic extracelllar matrix materials publication-title: Biomaterials – start-page: 1597 year: 1991 end-page: 1608 ident: bib15 article-title: Biomaterials publication-title: The biomedical engineering handbook – volume: 961 start-page: 83 year: 2002 end-page: 95 ident: bib2 article-title: Emerging design principles in biomaterials and scaffolds for tissue engineering publication-title: Ann NY Acad Sci – volume: 19 start-page: 35 year: 2001 end-page: 39 ident: bib8 article-title: Continuous release of endostatin from microencapsulated engineered cells for tumor therapy publication-title: Nat Biotech – volume: 43 start-page: 6239 year: 2002 end-page: 6246 ident: bib14 article-title: Decoupling the dependence of rheological/mechanical properties of hydrogels from solid concentration publication-title: Polymer – volume: 82 start-page: 903 year: 2003 end-page: 908 ident: bib13 article-title: Regulating bone formation via controlled scaffold degradation publication-title: J Dent Res – volume: 3 start-page: 1129 year: 2002 end-page: 1134 ident: bib29 article-title: Evaluation of chain stiffness of partially oxidized polyguluronate publication-title: Biomacromolecules – volume: 17 start-page: 1647 year: 1996 end-page: 1657 ident: bib21 article-title: Mechanical properties of hydrogels and their experimental determination publication-title: Biomaterials – volume: 132 start-page: 657 year: 1996 end-page: 666 ident: bib26 article-title: Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis publication-title: J Cell Biol – volume: 12 start-page: 79 year: 2002 end-page: 84 ident: bib30 article-title: Flexible substrata for the detection of cellular traction forces publication-title: Trends Cell Biol – volume: 267 start-page: 169 year: 1995 end-page: 180 ident: bib24 article-title: Pore size distribution measurements of polymer hydrogel membranes for artificial kidneys using differential scanning calorimetry publication-title: Thermochimica Acta – volume: 26 start-page: 125 year: 1973 end-page: 132 ident: bib28 article-title: Effect of periodate oxidation upon the stiffness of the alginate molecule in solution publication-title: Carbo Res – volume: 33 start-page: 4291 year: 2000 ident: 10.1016/j.biomaterials.2004.06.044_bib23 article-title: Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density publication-title: Macromolecules doi: 10.1021/ma9921347 – volume: 17 start-page: 1647 year: 1996 ident: 10.1016/j.biomaterials.2004.06.044_bib21 article-title: Mechanical properties of hydrogels and their experimental determination publication-title: Biomaterials doi: 10.1016/0142-9612(96)87644-7 – volume: 82 start-page: 903 year: 2003 ident: 10.1016/j.biomaterials.2004.06.044_bib13 article-title: Regulating bone formation via controlled scaffold degradation publication-title: J Dent Res doi: 10.1177/154405910308201111 – volume: 132 start-page: 657 year: 1996 ident: 10.1016/j.biomaterials.2004.06.044_bib26 article-title: Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis publication-title: J Cell Biol doi: 10.1083/jcb.132.4.657 – volume: 3 start-page: 1129 year: 2002 ident: 10.1016/j.biomaterials.2004.06.044_bib29 article-title: Evaluation of chain stiffness of partially oxidized polyguluronate publication-title: Biomacromolecules doi: 10.1021/bm025567h – volume: 280 start-page: 60 year: 1999 ident: 10.1016/j.biomaterials.2004.06.044_bib3 article-title: Growing new organs publication-title: Sci Am doi: 10.1038/scientificamerican0499-60 – volume: 94 start-page: 13661 year: 1997 ident: 10.1016/j.biomaterials.2004.06.044_bib32 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc Natl Acad Sci (USA) doi: 10.1073/pnas.94.25.13661 – volume: 26 start-page: 125 year: 1973 ident: 10.1016/j.biomaterials.2004.06.044_bib12 article-title: Effect of periodate oxidation upon the stiffness of the alginate molecule in solution publication-title: Carbohydr Res doi: 10.1016/S0008-6215(00)85029-6 – volume: 54 start-page: 53 year: 2002 ident: 10.1016/j.biomaterials.2004.06.044_bib7 article-title: Pulsatile drug release control using hydrogels publication-title: Adv Drug Deliv Rev. doi: 10.1016/S0169-409X(01)00243-5 – start-page: 1597 year: 1991 ident: 10.1016/j.biomaterials.2004.06.044_bib15 article-title: Biomaterials – volume: 131 start-page: 281 year: 1989 ident: 10.1016/j.biomaterials.2004.06.044_bib31 article-title: Expression of the differentiated phenotype by epithelial cells in vitro is regulated by both biochemistry and mechanics of the substratum publication-title: Dev Biol doi: 10.1016/S0012-1606(89)80001-6 – volume: 17 start-page: 945 year: 2001 ident: 10.1016/j.biomaterials.2004.06.044_bib11 article-title: Degradation of partially oxidized alginate and its potential application for tissue engineering publication-title: Biotechnol Prog doi: 10.1021/bp010070p – volume: 391S start-page: S251 year: 2001 ident: 10.1016/j.biomaterials.2004.06.044_bib10 article-title: Biodegradable polymer scaffolds for cartilage tissue engineering publication-title: Clin Orthop doi: 10.1097/00003086-200110001-00024 – year: 1975 ident: 10.1016/j.biomaterials.2004.06.044_bib22 – volume: 28 start-page: 621 year: 2002 ident: 10.1016/j.biomaterials.2004.06.044_bib6 article-title: Alginate in drug delivery systems publication-title: Drug Dev Ind Pharm doi: 10.1081/DDC-120003853 – volume: 12 start-page: 79 year: 2002 ident: 10.1016/j.biomaterials.2004.06.044_bib30 article-title: Flexible substrata for the detection of cellular traction forces publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(01)02205-X – volume: 101 start-page: 1869 year: 2001 ident: 10.1016/j.biomaterials.2004.06.044_bib4 article-title: Hydrogels for tissue engineering publication-title: Chem Rev doi: 10.1021/cr000108x – volume: 43 start-page: 422 year: 1998 ident: 10.1016/j.biomaterials.2004.06.044_bib5 article-title: Polymer concepts in tissue engineering publication-title: J. Biomed Mater Res (Appl Biomater) doi: 10.1002/(SICI)1097-4636(199824)43:4<422::AID-JBM9>3.0.CO;2-1 – volume: 25 start-page: 3187 year: 2004 ident: 10.1016/j.biomaterials.2004.06.044_bib20 publication-title: The tensile properties of alginate hydrogels, Biomaterials – volume: 21 start-page: 5885 year: 2000 ident: 10.1016/j.biomaterials.2004.06.044_bib25 article-title: Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements publication-title: Polymer doi: 10.1016/S0032-3861(99)00776-4 – volume: 26 start-page: 125 year: 1973 ident: 10.1016/j.biomaterials.2004.06.044_bib28 article-title: Effect of periodate oxidation upon the stiffness of the alginate molecule in solution publication-title: Carbo Res doi: 10.1016/S0008-6215(00)85029-6 – volume: 19 start-page: 35 year: 2001 ident: 10.1016/j.biomaterials.2004.06.044_bib8 article-title: Continuous release of endostatin from microencapsulated engineered cells for tumor therapy publication-title: Nat Biotech doi: 10.1038/83481 – volume: 20 start-page: 45 year: 1999 ident: 10.1016/j.biomaterials.2004.06.044_bib17 article-title: Alginate hydrogels as synthetic extracelllar matrix materials publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00107-0 – volume: 5 start-page: 484 year: 1985 ident: 10.1016/j.biomaterials.2004.06.044_bib27 article-title: Regulation of creatine kinase induction in differentiating mouse myoblasts publication-title: Mol Cell Biol – volume: 961 start-page: 83 year: 2002 ident: 10.1016/j.biomaterials.2004.06.044_bib2 article-title: Emerging design principles in biomaterials and scaffolds for tissue engineering publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.2002.tb03056.x – volume: 205 start-page: 1 year: 2003 ident: 10.1016/j.biomaterials.2004.06.044_bib18 article-title: Murine granulosa cell morphology and function are regulated by a synthetic Arg-Gly-Asp matrix publication-title: Mol Cell Endocrinol doi: 10.1016/S0303-7207(03)00209-0 – volume: 40 start-page: 3575 year: 1999 ident: 10.1016/j.biomaterials.2004.06.044_bib19 article-title: Synthesis of cross-linked poly(aldehyde guluronate) hydrogels publication-title: Polymer doi: 10.1016/S0032-3861(98)00550-3 – volume: 267 start-page: 169 year: 1995 ident: 10.1016/j.biomaterials.2004.06.044_bib24 article-title: Pore size distribution measurements of polymer hydrogel membranes for artificial kidneys using differential scanning calorimetry publication-title: Thermochimica Acta doi: 10.1016/0040-6031(95)02476-X – volume: 17 start-page: 508 year: 1999 ident: 10.1016/j.biomaterials.2004.06.044_bib1 article-title: Tissue engineering publication-title: Nat Biotech doi: 10.1038/8700 – volume: 8 start-page: 71 year: 1990 ident: 10.1016/j.biomaterials.2004.06.044_bib9 article-title: Alginate as immobilization matrix for cells publication-title: TIBTECH doi: 10.1016/0167-7799(90)90139-O – volume: 99 start-page: 12025 year: 2002 ident: 10.1016/j.biomaterials.2004.06.044_bib16 article-title: Engineering growing tissues publication-title: Proc Natl Acad Sci (USA) doi: 10.1073/pnas.192291499 – volume: 43 start-page: 6239 year: 2002 ident: 10.1016/j.biomaterials.2004.06.044_bib14 article-title: Decoupling the dependence of rheological/mechanical properties of hydrogels from solid concentration publication-title: Polymer doi: 10.1016/S0032-3861(02)00559-1 |
| SSID | ssj0014042 |
| Score | 2.401404 |
| Snippet | Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2455 |
| SubjectTerms | Alginates - analysis Alginates - chemistry Animals Biocompatibility Biocompatible Materials - analysis Biocompatible Materials - chemistry Calcium - chemistry Calcium cross-linking Cell Adhesion - physiology Cell Culture Techniques - methods Cell Differentiation - physiology Cell Line Chain scission Compressive Strength Elasticity Glucuronic Acid - analysis Glucuronic Acid - chemistry Hexuronic Acids - analysis Hexuronic Acids - chemistry Hydrogels - analysis Hydrogels - chemistry Materials Testing Mice Molecular Weight Myoblasts Myoblasts - cytology Myoblasts - physiology Oxidation-Reduction Porosity Tensile Strength Tissue engineering Tissue Engineering - methods |
| Title | Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961204006064 https://dx.doi.org/10.1016/j.biomaterials.2004.06.044 https://www.ncbi.nlm.nih.gov/pubmed/15585248 https://www.proquest.com/docview/19445228 https://www.proquest.com/docview/28504330 https://www.proquest.com/docview/67333627 |
| Volume | 26 |
| WOSCitedRecordID | wos000226698400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB7RFiF6QFAohKXMAXGJjBx7xuMR4lBVqUpJAwcX5WZ5xg4kRE6aBQK_njeLJ46QRThwsSzb4-19fn7bvA-hV4TmqlMV9Rj8PT1CKPG4P2ReIDi4Q2ARUE0G87nH-v14MOCfbMZ0oekEWFnG6zWf_VdRwzYQtpo6-w_idieFDbAOQocliB2WOwn-zBSf62nm2UTRLiyL9pdi0s5VXwhDodSG609Gv_RMdHUKZZGuR3afCqULEGGuJpZU7LntHzqGqhI6jiNrKyE8moLta57PufhTuJWvRfFtpePMCeidbL5ydTYfbDXwxc9V6V1ON_UAV7BuIum64t5mrqrQBN0UArpoZeDxqLOlbs0E-QpWtK48ienY-4dWNwGG8RtRexTt2uvWq6Z_5HYr7f7H9Py610uT7iB5PbvxFMuYysZbypU9dBAwykELHpy-7w4uXd6J-Jpuyd141aZWVwQ2Xb7JpGlyWbTpktxH96zPgU8NVh6gW0V5hA5rnSiP0J0rW2PxEI1rAMIVgDAACNcAhB2AsAUQdgDCACBsAYQdgLABEK4D6BG6Pu8mZxeeZeTwJHjGSzBnIlDTQkhwhMGuzoKgk4d5IDPh55wo5zeMJJcxEVEnlj7LSF6AQ-9nGZFc0Cg8RvslQOgJwiQLieBDIQMpwCSXWTEEbUE7ksWCMV-2EK9eaiptu3rFmjJJq7rEcVoXiOJTJakq0iSkhUI3dmaatuw06m0lu7Salgw_0hRQuNPod260NV6NUbrz-JcVXFLQ8Cptl5XFdLVIO5wo2oO4-Ygg1n0I_eYjIhaGYKqyFnpskLh5L5SCPibx07-OfYbubj7y52h_OV8VL9Bt-X05WsxP0B4bxCf2e_oNjA3viQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+alginate+gel+degradation+utilizing+partial+oxidation+and+bimodal+molecular+weight+distribution&rft.jtitle=Biomaterials&rft.au=Boontheekul%2C+Tanyarut&rft.au=Kong%2C+Hyun-Joon&rft.au=Mooney%2C+David+J&rft.date=2005-05-01&rft.issn=0142-9612&rft.volume=26&rft.issue=15&rft.spage=2455&rft_id=info:doi/10.1016%2Fj.biomaterials.2004.06.044&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |