Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways
Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 50; p. 20236 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
13.12.2011
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year. |
|---|---|
| AbstractList | Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year. Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year.Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year. |
| Author | Clay, Heather Finch-Savage, William E Footitt, Steven Douterelo-Soler, Isabel |
| Author_xml | – sequence: 1 givenname: Steven surname: Footitt fullname: Footitt, Steven organization: School of Life Sciences, Warwick University, Wellesbourne, Warwick CV35 9EF, United Kingdom – sequence: 2 givenname: Isabel surname: Douterelo-Soler fullname: Douterelo-Soler, Isabel – sequence: 3 givenname: Heather surname: Clay fullname: Clay, Heather – sequence: 4 givenname: William E surname: Finch-Savage fullname: Finch-Savage, William E |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22128331$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLAzEQh4NU7EPP3iQ3T1vz6m5yLPUJBS96XpLstI1kk3WzRfa_N2IFYWA-Zn58DDNHkxADIHRNyZKSit91QaclpbTkbEWJPEMzShQtSqHI5B9P0TylD0KIWklygaaMUSY5pzME97FvdbAjtqP1LuyxC3jda-Oa2CWXcAJoEs5gYxj66D002Ix5rFMM2vsRNy4NLtgBH7Iqn1ckt8-bH1enh8OXHtMlOt9pn-Dq1Bfo_fHhbfNcbF-fXjbrbWGFUkNR2ZJzpUAQKgwwLbnQVJBSlwYyVbaSOyO5YSBJJauKc8mASrlbEdLkYgt0--vt-vh5hDTUrUsWvNcB4jHVilIlBOEsJ29OyaNpoam73rW6H-u_z7BvhPZokA |
| CitedBy_id | crossref_primary_10_1007_s00299_023_03013_w crossref_primary_10_1098_rsif_2018_0042 crossref_primary_10_1017_S0960258514000051 crossref_primary_10_1111_nph_12694 crossref_primary_10_1093_icb_icx065 crossref_primary_10_1038_s41598_018_21469_9 crossref_primary_10_1105_tpc_112_108902 crossref_primary_10_1111_j_1365_3040_2012_02542_x crossref_primary_10_1093_jxb_erx044 crossref_primary_10_1007_s11032_014_0053_z crossref_primary_10_1111_nph_16363 crossref_primary_10_1111_pce_12940 crossref_primary_10_1111_tpj_12735 crossref_primary_10_3389_fpls_2019_00706 crossref_primary_10_5194_bg_13_2945_2016 crossref_primary_10_3389_fpls_2016_01071 crossref_primary_10_1007_s11104_017_3420_9 crossref_primary_10_1017_S0960258515000045 crossref_primary_10_1111_jpy_13010 crossref_primary_10_3389_fpls_2018_00838 crossref_primary_10_1017_S0960258522000265 crossref_primary_10_1093_jxb_ery022 crossref_primary_10_1007_s00425_013_1991_0 crossref_primary_10_1093_jxb_ery140 crossref_primary_10_1073_pnas_1403851111 crossref_primary_10_1017_S0960258514000038 crossref_primary_10_1111_nph_18099 crossref_primary_10_1111_nph_17201 crossref_primary_10_1017_S0960258519000059 crossref_primary_10_1073_pnas_1921798117 crossref_primary_10_3390_plants14050767 crossref_primary_10_3390_plants9060703 crossref_primary_10_1016_j_pbi_2016_09_002 crossref_primary_10_1111_wre_12342 crossref_primary_10_1111_wre_12463 crossref_primary_10_1111_tpj_13118 crossref_primary_10_3389_fpls_2018_01279 crossref_primary_10_1111_pce_13561 crossref_primary_10_3389_fpls_2017_01153 crossref_primary_10_1093_aob_mcac010 crossref_primary_10_3390_genes12101635 crossref_primary_10_1093_jxb_erv080 crossref_primary_10_1111_1365_2745_12391 crossref_primary_10_1007_s00425_014_2240_x crossref_primary_10_1038_s41598_024_64681_6 crossref_primary_10_1111_nph_12782 crossref_primary_10_1104_pp_114_251298 crossref_primary_10_3389_fmicb_2017_02450 crossref_primary_10_1111_wre_12475 crossref_primary_10_1111_pce_12239 crossref_primary_10_1111_mec_70086 crossref_primary_10_1038_s41467_025_62991_5 crossref_primary_10_1017_S096025851500001X crossref_primary_10_1080_09291016_2015_1034973 crossref_primary_10_1038_s41588_022_01240_7 crossref_primary_10_17221_21_2024_PSE crossref_primary_10_3389_fpls_2024_1354141 crossref_primary_10_1017_S0960258514000415 crossref_primary_10_1073_pnas_1704745114 crossref_primary_10_1111_jpi_12736 crossref_primary_10_1073_pnas_1912451117 crossref_primary_10_1016_j_molp_2025_05_010 crossref_primary_10_1111_j_1558_5646_2012_01828_x crossref_primary_10_3389_fpls_2016_01323 crossref_primary_10_1017_S096025852200006X crossref_primary_10_1093_aob_mcac034 crossref_primary_10_1093_pcp_pcv084 crossref_primary_10_1007_s00299_016_2082_z crossref_primary_10_1186_s12864_024_10847_5 crossref_primary_10_1093_jxb_eraa340 crossref_primary_10_1093_jxb_ers197 crossref_primary_10_1038_s41438_020_00427_5 crossref_primary_10_1093_jxb_erw436 crossref_primary_10_1017_S0960258514000427 crossref_primary_10_1093_jxb_eru378 crossref_primary_10_1093_jxb_erz146 crossref_primary_10_1111_brv_12095 crossref_primary_10_1126_sciadv_ads7789 crossref_primary_10_1017_S0960258518000296 crossref_primary_10_1111_nph_15192 crossref_primary_10_1017_S0960258513000317 crossref_primary_10_1007_s00425_020_03378_2 crossref_primary_10_3390_ijms23126709 crossref_primary_10_1104_pp_111_192351 crossref_primary_10_1007_s12229_020_09220_4 crossref_primary_10_1111_jpi_12167 crossref_primary_10_1371_journal_pgen_1011447 crossref_primary_10_3390_ijms20194736 crossref_primary_10_3389_fpls_2022_1062722 crossref_primary_10_3390_ijms23137379 crossref_primary_10_1016_j_envexpbot_2020_104164 crossref_primary_10_1186_s12870_025_06707_3 crossref_primary_10_1093_pcp_pcac021 crossref_primary_10_3390_plants9060749 crossref_primary_10_1093_jxb_erv439 crossref_primary_10_1111_j_1399_3054_2012_01710_x crossref_primary_10_1002_ece3_6758 crossref_primary_10_1016_j_tplants_2016_02_001 crossref_primary_10_1111_1365_2435_14391 crossref_primary_10_7717_peerj_4690 crossref_primary_10_1073_pnas_1608829113 crossref_primary_10_1111_nph_13685 crossref_primary_10_1186_s12284_018_0260_z crossref_primary_10_1016_j_scienta_2018_10_040 crossref_primary_10_1111_pce_13082 crossref_primary_10_1007_s11103_015_0283_4 crossref_primary_10_1093_treephys_tpaf017 crossref_primary_10_3390_plants9091225 crossref_primary_10_1007_s11101_019_09617_z crossref_primary_10_1371_journal_pone_0257236 crossref_primary_10_1016_j_plantsci_2015_06_012 crossref_primary_10_1042_BCJ20180632 crossref_primary_10_1111_aab_12045 crossref_primary_10_3390_ijms20112694 crossref_primary_10_1111_ele_12940 crossref_primary_10_3389_fpls_2020_574246 crossref_primary_10_3390_biology11020168 crossref_primary_10_1016_j_jplph_2023_154046 crossref_primary_10_3389_fpls_2017_00357 crossref_primary_10_3390_plants12233963 crossref_primary_10_1002_ece3_2611 crossref_primary_10_1111_tpj_14626 crossref_primary_10_1016_j_molp_2022_12_008 crossref_primary_10_3389_fpls_2017_01697 crossref_primary_10_1007_s11240_025_03006_5 crossref_primary_10_3732_ajb_1600389 crossref_primary_10_1093_aob_mcv171 crossref_primary_10_1093_jxb_erw477 crossref_primary_10_3390_plants13152051 crossref_primary_10_1111_nph_14102 crossref_primary_10_3390_ijms20030709 crossref_primary_10_1111_nph_16081 crossref_primary_10_1017_S0960258514000221 crossref_primary_10_1111_1442_1984_12145 crossref_primary_10_1111_pce_13076 crossref_primary_10_1017_S0960258512000165 crossref_primary_10_1016_j_envexpbot_2023_105578 crossref_primary_10_1016_j_molp_2015_08_010 crossref_primary_10_1111_ppl_12352 crossref_primary_10_1186_s12870_021_02824_x crossref_primary_10_1017_S0960258522000095 crossref_primary_10_1371_journal_pone_0073330 crossref_primary_10_1073_pnas_1301647110 crossref_primary_10_1002_ece3_11671 crossref_primary_10_1073_pnas_1806460115 crossref_primary_10_1073_pnas_2403646121 crossref_primary_10_3390_plants10050997 crossref_primary_10_1093_aob_mcx132 crossref_primary_10_1016_j_plantsci_2020_110761 crossref_primary_10_1093_jxb_ert062 crossref_primary_10_1038_ncomms13179 crossref_primary_10_1371_journal_pone_0112579 crossref_primary_10_1093_jxb_erac224 crossref_primary_10_1104_pp_112_213298 crossref_primary_10_1093_jxb_erab375 crossref_primary_10_1016_j_cub_2024_05_043 crossref_primary_10_1017_S0960258514000440 crossref_primary_10_1111_nph_12702 crossref_primary_10_1111_j_1469_8137_2012_04097_x crossref_primary_10_1016_j_tplants_2019_06_011 crossref_primary_10_1111_pce_14264 crossref_primary_10_1093_jxb_erv490 crossref_primary_10_1016_j_plantsci_2013_12_009 crossref_primary_10_1016_j_eja_2025_127826 crossref_primary_10_3390_horticulturae9040462 crossref_primary_10_1371_journal_pone_0216575 crossref_primary_10_1007_s12298_024_01526_6 crossref_primary_10_1093_plcell_koab168 crossref_primary_10_1614_WS_D_15_00136_1 crossref_primary_10_3390_ijms22031357 crossref_primary_10_1093_plphys_kiac265 crossref_primary_10_3389_fpls_2018_00251 crossref_primary_10_1111_mec_15034 crossref_primary_10_1111_pce_12607 crossref_primary_10_1007_s00299_013_1409_2 crossref_primary_10_1007_s10725_012_9774_3 crossref_primary_10_3390_antiox11081594 crossref_primary_10_1186_s12870_019_2090_6 crossref_primary_10_1111_jac_12586 crossref_primary_10_1111_php_12616 crossref_primary_10_1007_s12224_019_09352_5 crossref_primary_10_1371_journal_pgen_1005737 crossref_primary_10_1016_j_envexpbot_2018_07_009 crossref_primary_10_1007_s00122_013_2144_3 crossref_primary_10_1093_jxb_erw397 crossref_primary_10_1016_j_envexpbot_2014_10_007 crossref_primary_10_1111_plb_12590 crossref_primary_10_3390_agronomy14010112 crossref_primary_10_1111_pce_13394 crossref_primary_10_1017_S0960258515000124 crossref_primary_10_1093_jxb_erz431 crossref_primary_10_3390_agronomy9040171 crossref_primary_10_1016_j_plaphy_2021_03_029 crossref_primary_10_3389_fpls_2021_701538 crossref_primary_10_1038_s41467_017_00113_6 crossref_primary_10_1093_jxb_erac038 crossref_primary_10_1093_plcell_koaf189 crossref_primary_10_3389_fpls_2018_00027 crossref_primary_10_1080_15592324_2021_1970447 crossref_primary_10_1111_aec_12813 crossref_primary_10_1111_rec_14235 crossref_primary_10_3390_agronomy10010057 crossref_primary_10_1093_aob_mct256 crossref_primary_10_1111_evo_12284 crossref_primary_10_1111_tpj_12186 crossref_primary_10_1111_nph_15901 crossref_primary_10_3390_agronomy12020404 crossref_primary_10_3390_microorganisms10081662 crossref_primary_10_1017_S096025851500032X crossref_primary_10_3390_ijms21197008 crossref_primary_10_1371_journal_pone_0289563 crossref_primary_10_3390_agronomy9030117 crossref_primary_10_1093_jxb_eru519 crossref_primary_10_1111_j_1469_8137_2012_04182_x crossref_primary_10_1016_j_envexpbot_2014_11_013 crossref_primary_10_1186_1471_2229_14_9 crossref_primary_10_3390_ijms22105069 crossref_primary_10_1186_1471_2164_14_358 crossref_primary_10_1146_annurev_arplant_102820_090750 crossref_primary_10_3389_fpls_2021_819247 crossref_primary_10_1007_s00344_014_9464_7 crossref_primary_10_1093_aob_mcaa141 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1116325108 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22128331 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA VXZ W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ ADXHL |
| ID | FETCH-LOGICAL-c499t-7c63399e4014be2a834a1406a6be4a17c78fb83b2e8078773382e188f500d00d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 252 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298034800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Sun Nov 09 14:42:14 EST 2025 Wed Feb 19 01:49:11 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 50 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-7c63399e4014be2a834a1406a6be4a17c78fb83b2e8078773382e188f500d00d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/108/50/20236.full.pdf |
| PMID | 22128331 |
| PQID | 911944032 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_911944032 pubmed_primary_22128331 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-12-13 |
| PublicationDateYYYYMMDD | 2011-12-13 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2011 |
| References | 16303558 - Curr Biol. 2005 Nov 22;15(22):1998-2006 21803937 - Plant Cell. 2011 Jul;23(7):2568-80 18590820 - Curr Opin Genet Dev. 2008 Aug;18(4):295-303 15060827 - Planta. 2004 Jul;219(3):479-88 20345608 - Plant J. 2010 Jun 1;62(6):936-47 16665951 - Plant Physiol. 1988 Feb;86(2):591-7 20093430 - Mol Biol Evol. 2010 Jun;27(6):1247-56 20551347 - Plant Cell. 2010 Jun;22(6):1733-48 12410810 - Plant J. 2002 Nov;32(3):317-28 18422904 - New Phytol. 2008;179(1):33-54 12068122 - Plant Physiol. 2002 Jun;129(2):823-37 15047896 - Plant Physiol. 2004 Apr;134(4):1598-613 17461781 - Plant J. 2007 Jul;51(1):60-78 19074630 - Plant Physiol. 2009 Feb;149(2):949-60 19244139 - Plant Cell. 2009 Feb;21(2):403-19 18028281 - Plant J. 2008 Jan;53(2):214-24 21896881 - Plant Cell. 2011 Sep;23(9):3215-29 16866955 - New Phytol. 2006;171(3):501-23 16920880 - Plant Physiol. 2006 Oct;142(2):509-25 18257711 - Annu Rev Plant Biol. 2008;59:387-415 16709196 - Plant J. 2006 Jun;46(5):805-22 16844907 - Plant Cell. 2006 Aug;18(8):1887-99 21740475 - Mol Ecol. 2011 Aug;20(16):3336-49 17065317 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17042-7 18410483 - Plant J. 2008 Aug;55(3):372-81 19564609 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11661-6 20023197 - Plant Cell. 2009 Dec;21(12):3803-22 |
| References_xml | – reference: 16920880 - Plant Physiol. 2006 Oct;142(2):509-25 – reference: 17065317 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17042-7 – reference: 12410810 - Plant J. 2002 Nov;32(3):317-28 – reference: 20345608 - Plant J. 2010 Jun 1;62(6):936-47 – reference: 12068122 - Plant Physiol. 2002 Jun;129(2):823-37 – reference: 15047896 - Plant Physiol. 2004 Apr;134(4):1598-613 – reference: 15060827 - Planta. 2004 Jul;219(3):479-88 – reference: 16844907 - Plant Cell. 2006 Aug;18(8):1887-99 – reference: 16866955 - New Phytol. 2006;171(3):501-23 – reference: 21803937 - Plant Cell. 2011 Jul;23(7):2568-80 – reference: 20093430 - Mol Biol Evol. 2010 Jun;27(6):1247-56 – reference: 19564609 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11661-6 – reference: 19244139 - Plant Cell. 2009 Feb;21(2):403-19 – reference: 20023197 - Plant Cell. 2009 Dec;21(12):3803-22 – reference: 21740475 - Mol Ecol. 2011 Aug;20(16):3336-49 – reference: 18422904 - New Phytol. 2008;179(1):33-54 – reference: 21896881 - Plant Cell. 2011 Sep;23(9):3215-29 – reference: 20551347 - Plant Cell. 2010 Jun;22(6):1733-48 – reference: 18257711 - Annu Rev Plant Biol. 2008;59:387-415 – reference: 16709196 - Plant J. 2006 Jun;46(5):805-22 – reference: 18590820 - Curr Opin Genet Dev. 2008 Aug;18(4):295-303 – reference: 18028281 - Plant J. 2008 Jan;53(2):214-24 – reference: 17461781 - Plant J. 2007 Jul;51(1):60-78 – reference: 16665951 - Plant Physiol. 1988 Feb;86(2):591-7 – reference: 18410483 - Plant J. 2008 Aug;55(3):372-81 – reference: 16303558 - Curr Biol. 2005 Nov 22;15(22):1998-2006 – reference: 19074630 - Plant Physiol. 2009 Feb;149(2):949-60 |
| SSID | ssj0009580 |
| Score | 2.515734 |
| Snippet | Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 20236 |
| SubjectTerms | Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - physiology Gene Expression Regulation, Plant - drug effects Nitrates - pharmacology Plant Dormancy - drug effects Plant Growth Regulators - pharmacology Seasons Seeds - drug effects Seeds - physiology Signal Transduction - drug effects Time Factors |
| Title | Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22128331 https://www.proquest.com/docview/911944032 |
| Volume | 108 |
| WOSCitedRecordID | wos000298034800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5Vle8sAAg0Viu7EzIQRUDFB1AKlb5NgORKqSgAso_55zkiIWxIAURV7sROd7fHc-3yF0Gmum9dAIEug4IjwFNo5FwElGtcmMzIxWTdeSezEey-k0nnS5Oa5Lq1zoxEZRm1L7GPkFCGXMecDoZfVKfNMof7jaddBYRj0GSMYztZjKHzV3ZVuMIA5JxONgUdlHsIuqUM5ri4iBfQ_k7_CyMTOjjX_-4CZa7_AlvmoZoo-WbLGF-p0EO3zWlZk-30b2pr0wUGNd-_uRzzgvYJ5Kc1NWLnfYgWFzGAZdOvvMGpzW2EcVPXyf1dh4BVHoOX6BpcrCEp8Nopq1fKfjT1W7HfQ0un28viNd0wWiwfmZE6EjBqS04Hfx1FIlGVfghEUqSi2MhBYySyVLqfWV6oUAF5faUMpsGAQGHrqLVgr44j7CJgBvTCmgMeBCDX4eF8KHiEMFsI6aeIDwgpIJMLU_qVCFLd9d8k3LAdprdyOp2uIbCQVbKxkLD_6efIjWmghwSEnIjlAvA4G2x2hVf8xz93bSMAu8x5OHL2alyjo |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dormancy+cycling+in+Arabidopsis+seeds+is+controlled+by+seasonally+distinct+hormone-signaling+pathways&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Footitt%2C+Steven&rft.au=Douterelo-Soler%2C+Isabel&rft.au=Clay%2C+Heather&rft.au=Finch-Savage%2C+William+E&rft.date=2011-12-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=50&rft.spage=20236&rft_id=info:doi/10.1073%2Fpnas.1116325108&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |