Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways

Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 108; číslo 50; s. 20236
Hlavní autoři: Footitt, Steven, Douterelo-Soler, Isabel, Clay, Heather, Finch-Savage, William E
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 13.12.2011
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year.
AbstractList Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year.
Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year.Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year.
Author Clay, Heather
Finch-Savage, William E
Footitt, Steven
Douterelo-Soler, Isabel
Author_xml – sequence: 1
  givenname: Steven
  surname: Footitt
  fullname: Footitt, Steven
  organization: School of Life Sciences, Warwick University, Wellesbourne, Warwick CV35 9EF, United Kingdom
– sequence: 2
  givenname: Isabel
  surname: Douterelo-Soler
  fullname: Douterelo-Soler, Isabel
– sequence: 3
  givenname: Heather
  surname: Clay
  fullname: Clay, Heather
– sequence: 4
  givenname: William E
  surname: Finch-Savage
  fullname: Finch-Savage, William E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22128331$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLAzEQh4NU7EPP3iQ3T1vz6m5yLPUJBS96XpLstI1kk3WzRfa_N2IFYWA-Zn58DDNHkxADIHRNyZKSit91QaclpbTkbEWJPEMzShQtSqHI5B9P0TylD0KIWklygaaMUSY5pzME97FvdbAjtqP1LuyxC3jda-Oa2CWXcAJoEs5gYxj66D002Ix5rFMM2vsRNy4NLtgBH7Iqn1ckt8-bH1enh8OXHtMlOt9pn-Dq1Bfo_fHhbfNcbF-fXjbrbWGFUkNR2ZJzpUAQKgwwLbnQVJBSlwYyVbaSOyO5YSBJJauKc8mASrlbEdLkYgt0--vt-vh5hDTUrUsWvNcB4jHVilIlBOEsJ29OyaNpoam73rW6H-u_z7BvhPZokA
CitedBy_id crossref_primary_10_1007_s00299_023_03013_w
crossref_primary_10_1098_rsif_2018_0042
crossref_primary_10_1017_S0960258514000051
crossref_primary_10_1111_nph_12694
crossref_primary_10_1093_icb_icx065
crossref_primary_10_1038_s41598_018_21469_9
crossref_primary_10_1105_tpc_112_108902
crossref_primary_10_1111_j_1365_3040_2012_02542_x
crossref_primary_10_1093_jxb_erx044
crossref_primary_10_1007_s11032_014_0053_z
crossref_primary_10_1111_nph_16363
crossref_primary_10_1111_pce_12940
crossref_primary_10_1111_tpj_12735
crossref_primary_10_3389_fpls_2019_00706
crossref_primary_10_5194_bg_13_2945_2016
crossref_primary_10_3389_fpls_2016_01071
crossref_primary_10_1007_s11104_017_3420_9
crossref_primary_10_1017_S0960258515000045
crossref_primary_10_1111_jpy_13010
crossref_primary_10_3389_fpls_2018_00838
crossref_primary_10_1017_S0960258522000265
crossref_primary_10_1093_jxb_ery022
crossref_primary_10_1007_s00425_013_1991_0
crossref_primary_10_1093_jxb_ery140
crossref_primary_10_1073_pnas_1403851111
crossref_primary_10_1017_S0960258514000038
crossref_primary_10_1111_nph_18099
crossref_primary_10_1111_nph_17201
crossref_primary_10_1017_S0960258519000059
crossref_primary_10_1073_pnas_1921798117
crossref_primary_10_3390_plants14050767
crossref_primary_10_3390_plants9060703
crossref_primary_10_1016_j_pbi_2016_09_002
crossref_primary_10_1111_wre_12342
crossref_primary_10_1111_wre_12463
crossref_primary_10_1111_tpj_13118
crossref_primary_10_3389_fpls_2018_01279
crossref_primary_10_1111_pce_13561
crossref_primary_10_3389_fpls_2017_01153
crossref_primary_10_1093_aob_mcac010
crossref_primary_10_3390_genes12101635
crossref_primary_10_1093_jxb_erv080
crossref_primary_10_1111_1365_2745_12391
crossref_primary_10_1007_s00425_014_2240_x
crossref_primary_10_1038_s41598_024_64681_6
crossref_primary_10_1111_nph_12782
crossref_primary_10_1104_pp_114_251298
crossref_primary_10_3389_fmicb_2017_02450
crossref_primary_10_1111_wre_12475
crossref_primary_10_1111_pce_12239
crossref_primary_10_1111_mec_70086
crossref_primary_10_1038_s41467_025_62991_5
crossref_primary_10_1017_S096025851500001X
crossref_primary_10_1080_09291016_2015_1034973
crossref_primary_10_1038_s41588_022_01240_7
crossref_primary_10_17221_21_2024_PSE
crossref_primary_10_3389_fpls_2024_1354141
crossref_primary_10_1017_S0960258514000415
crossref_primary_10_1073_pnas_1704745114
crossref_primary_10_1111_jpi_12736
crossref_primary_10_1073_pnas_1912451117
crossref_primary_10_1016_j_molp_2025_05_010
crossref_primary_10_1111_j_1558_5646_2012_01828_x
crossref_primary_10_3389_fpls_2016_01323
crossref_primary_10_1017_S096025852200006X
crossref_primary_10_1093_aob_mcac034
crossref_primary_10_1093_pcp_pcv084
crossref_primary_10_1007_s00299_016_2082_z
crossref_primary_10_1186_s12864_024_10847_5
crossref_primary_10_1093_jxb_eraa340
crossref_primary_10_1093_jxb_ers197
crossref_primary_10_1038_s41438_020_00427_5
crossref_primary_10_1093_jxb_erw436
crossref_primary_10_1017_S0960258514000427
crossref_primary_10_1093_jxb_eru378
crossref_primary_10_1093_jxb_erz146
crossref_primary_10_1111_brv_12095
crossref_primary_10_1126_sciadv_ads7789
crossref_primary_10_1017_S0960258518000296
crossref_primary_10_1111_nph_15192
crossref_primary_10_1017_S0960258513000317
crossref_primary_10_1007_s00425_020_03378_2
crossref_primary_10_3390_ijms23126709
crossref_primary_10_1104_pp_111_192351
crossref_primary_10_1007_s12229_020_09220_4
crossref_primary_10_1111_jpi_12167
crossref_primary_10_1371_journal_pgen_1011447
crossref_primary_10_3390_ijms20194736
crossref_primary_10_3389_fpls_2022_1062722
crossref_primary_10_3390_ijms23137379
crossref_primary_10_1016_j_envexpbot_2020_104164
crossref_primary_10_1186_s12870_025_06707_3
crossref_primary_10_1093_pcp_pcac021
crossref_primary_10_3390_plants9060749
crossref_primary_10_1093_jxb_erv439
crossref_primary_10_1111_j_1399_3054_2012_01710_x
crossref_primary_10_1002_ece3_6758
crossref_primary_10_1016_j_tplants_2016_02_001
crossref_primary_10_1111_1365_2435_14391
crossref_primary_10_7717_peerj_4690
crossref_primary_10_1073_pnas_1608829113
crossref_primary_10_1111_nph_13685
crossref_primary_10_1186_s12284_018_0260_z
crossref_primary_10_1016_j_scienta_2018_10_040
crossref_primary_10_1111_pce_13082
crossref_primary_10_1007_s11103_015_0283_4
crossref_primary_10_1093_treephys_tpaf017
crossref_primary_10_3390_plants9091225
crossref_primary_10_1007_s11101_019_09617_z
crossref_primary_10_1371_journal_pone_0257236
crossref_primary_10_1016_j_plantsci_2015_06_012
crossref_primary_10_1042_BCJ20180632
crossref_primary_10_1111_aab_12045
crossref_primary_10_3390_ijms20112694
crossref_primary_10_1111_ele_12940
crossref_primary_10_3389_fpls_2020_574246
crossref_primary_10_3390_biology11020168
crossref_primary_10_1016_j_jplph_2023_154046
crossref_primary_10_3389_fpls_2017_00357
crossref_primary_10_3390_plants12233963
crossref_primary_10_1002_ece3_2611
crossref_primary_10_1111_tpj_14626
crossref_primary_10_1016_j_molp_2022_12_008
crossref_primary_10_3389_fpls_2017_01697
crossref_primary_10_1007_s11240_025_03006_5
crossref_primary_10_3732_ajb_1600389
crossref_primary_10_1093_aob_mcv171
crossref_primary_10_1093_jxb_erw477
crossref_primary_10_3390_plants13152051
crossref_primary_10_1111_nph_14102
crossref_primary_10_3390_ijms20030709
crossref_primary_10_1111_nph_16081
crossref_primary_10_1017_S0960258514000221
crossref_primary_10_1111_1442_1984_12145
crossref_primary_10_1111_pce_13076
crossref_primary_10_1017_S0960258512000165
crossref_primary_10_1016_j_envexpbot_2023_105578
crossref_primary_10_1016_j_molp_2015_08_010
crossref_primary_10_1111_ppl_12352
crossref_primary_10_1186_s12870_021_02824_x
crossref_primary_10_1017_S0960258522000095
crossref_primary_10_1371_journal_pone_0073330
crossref_primary_10_1073_pnas_1301647110
crossref_primary_10_1002_ece3_11671
crossref_primary_10_1073_pnas_1806460115
crossref_primary_10_1073_pnas_2403646121
crossref_primary_10_3390_plants10050997
crossref_primary_10_1093_aob_mcx132
crossref_primary_10_1016_j_plantsci_2020_110761
crossref_primary_10_1093_jxb_ert062
crossref_primary_10_1038_ncomms13179
crossref_primary_10_1371_journal_pone_0112579
crossref_primary_10_1093_jxb_erac224
crossref_primary_10_1104_pp_112_213298
crossref_primary_10_1093_jxb_erab375
crossref_primary_10_1016_j_cub_2024_05_043
crossref_primary_10_1017_S0960258514000440
crossref_primary_10_1111_nph_12702
crossref_primary_10_1111_j_1469_8137_2012_04097_x
crossref_primary_10_1016_j_tplants_2019_06_011
crossref_primary_10_1111_pce_14264
crossref_primary_10_1093_jxb_erv490
crossref_primary_10_1016_j_plantsci_2013_12_009
crossref_primary_10_1016_j_eja_2025_127826
crossref_primary_10_3390_horticulturae9040462
crossref_primary_10_1371_journal_pone_0216575
crossref_primary_10_1007_s12298_024_01526_6
crossref_primary_10_1093_plcell_koab168
crossref_primary_10_1614_WS_D_15_00136_1
crossref_primary_10_3390_ijms22031357
crossref_primary_10_1093_plphys_kiac265
crossref_primary_10_3389_fpls_2018_00251
crossref_primary_10_1111_mec_15034
crossref_primary_10_1111_pce_12607
crossref_primary_10_1007_s00299_013_1409_2
crossref_primary_10_1007_s10725_012_9774_3
crossref_primary_10_3390_antiox11081594
crossref_primary_10_1186_s12870_019_2090_6
crossref_primary_10_1111_jac_12586
crossref_primary_10_1111_php_12616
crossref_primary_10_1007_s12224_019_09352_5
crossref_primary_10_1371_journal_pgen_1005737
crossref_primary_10_1016_j_envexpbot_2018_07_009
crossref_primary_10_1007_s00122_013_2144_3
crossref_primary_10_1093_jxb_erw397
crossref_primary_10_1016_j_envexpbot_2014_10_007
crossref_primary_10_1111_plb_12590
crossref_primary_10_3390_agronomy14010112
crossref_primary_10_1111_pce_13394
crossref_primary_10_1017_S0960258515000124
crossref_primary_10_1093_jxb_erz431
crossref_primary_10_3390_agronomy9040171
crossref_primary_10_1016_j_plaphy_2021_03_029
crossref_primary_10_3389_fpls_2021_701538
crossref_primary_10_1038_s41467_017_00113_6
crossref_primary_10_1093_jxb_erac038
crossref_primary_10_1093_plcell_koaf189
crossref_primary_10_3389_fpls_2018_00027
crossref_primary_10_1080_15592324_2021_1970447
crossref_primary_10_1111_aec_12813
crossref_primary_10_1111_rec_14235
crossref_primary_10_3390_agronomy10010057
crossref_primary_10_1093_aob_mct256
crossref_primary_10_1111_evo_12284
crossref_primary_10_1111_tpj_12186
crossref_primary_10_1111_nph_15901
crossref_primary_10_3390_agronomy12020404
crossref_primary_10_3390_microorganisms10081662
crossref_primary_10_1017_S096025851500032X
crossref_primary_10_3390_ijms21197008
crossref_primary_10_1371_journal_pone_0289563
crossref_primary_10_3390_agronomy9030117
crossref_primary_10_1093_jxb_eru519
crossref_primary_10_1111_j_1469_8137_2012_04182_x
crossref_primary_10_1016_j_envexpbot_2014_11_013
crossref_primary_10_1186_1471_2229_14_9
crossref_primary_10_3390_ijms22105069
crossref_primary_10_1186_1471_2164_14_358
crossref_primary_10_1146_annurev_arplant_102820_090750
crossref_primary_10_3389_fpls_2021_819247
crossref_primary_10_1007_s00344_014_9464_7
crossref_primary_10_1093_aob_mcaa141
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1116325108
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22128331
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
VXZ
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ADXHL
ID FETCH-LOGICAL-c499t-7c63399e4014be2a834a1406a6be4a17c78fb83b2e8078773382e188f500d00d2
IEDL.DBID 7X8
ISICitedReferencesCount 252
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298034800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Nov 09 14:42:14 EST 2025
Wed Feb 19 01:49:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-7c63399e4014be2a834a1406a6be4a17c78fb83b2e8078773382e188f500d00d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/108/50/20236.full.pdf
PMID 22128331
PQID 911944032
PQPubID 23479
ParticipantIDs proquest_miscellaneous_911944032
pubmed_primary_22128331
PublicationCentury 2000
PublicationDate 2011-12-13
PublicationDateYYYYMMDD 2011-12-13
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
References 16303558 - Curr Biol. 2005 Nov 22;15(22):1998-2006
21803937 - Plant Cell. 2011 Jul;23(7):2568-80
18590820 - Curr Opin Genet Dev. 2008 Aug;18(4):295-303
15060827 - Planta. 2004 Jul;219(3):479-88
20345608 - Plant J. 2010 Jun 1;62(6):936-47
16665951 - Plant Physiol. 1988 Feb;86(2):591-7
20093430 - Mol Biol Evol. 2010 Jun;27(6):1247-56
20551347 - Plant Cell. 2010 Jun;22(6):1733-48
12410810 - Plant J. 2002 Nov;32(3):317-28
18422904 - New Phytol. 2008;179(1):33-54
12068122 - Plant Physiol. 2002 Jun;129(2):823-37
15047896 - Plant Physiol. 2004 Apr;134(4):1598-613
17461781 - Plant J. 2007 Jul;51(1):60-78
19074630 - Plant Physiol. 2009 Feb;149(2):949-60
19244139 - Plant Cell. 2009 Feb;21(2):403-19
18028281 - Plant J. 2008 Jan;53(2):214-24
21896881 - Plant Cell. 2011 Sep;23(9):3215-29
16866955 - New Phytol. 2006;171(3):501-23
16920880 - Plant Physiol. 2006 Oct;142(2):509-25
18257711 - Annu Rev Plant Biol. 2008;59:387-415
16709196 - Plant J. 2006 Jun;46(5):805-22
16844907 - Plant Cell. 2006 Aug;18(8):1887-99
21740475 - Mol Ecol. 2011 Aug;20(16):3336-49
17065317 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17042-7
18410483 - Plant J. 2008 Aug;55(3):372-81
19564609 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11661-6
20023197 - Plant Cell. 2009 Dec;21(12):3803-22
References_xml – reference: 16920880 - Plant Physiol. 2006 Oct;142(2):509-25
– reference: 17065317 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17042-7
– reference: 12410810 - Plant J. 2002 Nov;32(3):317-28
– reference: 20345608 - Plant J. 2010 Jun 1;62(6):936-47
– reference: 12068122 - Plant Physiol. 2002 Jun;129(2):823-37
– reference: 15047896 - Plant Physiol. 2004 Apr;134(4):1598-613
– reference: 15060827 - Planta. 2004 Jul;219(3):479-88
– reference: 16844907 - Plant Cell. 2006 Aug;18(8):1887-99
– reference: 16866955 - New Phytol. 2006;171(3):501-23
– reference: 21803937 - Plant Cell. 2011 Jul;23(7):2568-80
– reference: 20093430 - Mol Biol Evol. 2010 Jun;27(6):1247-56
– reference: 19564609 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11661-6
– reference: 19244139 - Plant Cell. 2009 Feb;21(2):403-19
– reference: 20023197 - Plant Cell. 2009 Dec;21(12):3803-22
– reference: 21740475 - Mol Ecol. 2011 Aug;20(16):3336-49
– reference: 18422904 - New Phytol. 2008;179(1):33-54
– reference: 21896881 - Plant Cell. 2011 Sep;23(9):3215-29
– reference: 20551347 - Plant Cell. 2010 Jun;22(6):1733-48
– reference: 18257711 - Annu Rev Plant Biol. 2008;59:387-415
– reference: 16709196 - Plant J. 2006 Jun;46(5):805-22
– reference: 18590820 - Curr Opin Genet Dev. 2008 Aug;18(4):295-303
– reference: 18028281 - Plant J. 2008 Jan;53(2):214-24
– reference: 17461781 - Plant J. 2007 Jul;51(1):60-78
– reference: 16665951 - Plant Physiol. 1988 Feb;86(2):591-7
– reference: 18410483 - Plant J. 2008 Aug;55(3):372-81
– reference: 16303558 - Curr Biol. 2005 Nov 22;15(22):1998-2006
– reference: 19074630 - Plant Physiol. 2009 Feb;149(2):949-60
SSID ssj0009580
Score 2.515734
Snippet Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 20236
SubjectTerms Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - physiology
Gene Expression Regulation, Plant - drug effects
Nitrates - pharmacology
Plant Dormancy - drug effects
Plant Growth Regulators - pharmacology
Seasons
Seeds - drug effects
Seeds - physiology
Signal Transduction - drug effects
Time Factors
Title Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways
URI https://www.ncbi.nlm.nih.gov/pubmed/22128331
https://www.proquest.com/docview/911944032
Volume 108
WOSCitedRecordID wos000298034800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR27TsMw0ALKwML7UV7ywACDRfxI7EwIARULFQNI3SrbsaESSgouoPw95yRFLIgBKYq8-BKd733nO4ROBLXcplyQlMY0Y64M0R68FCedsZxybU3SDJuQw6EajfL7rjYndGWVc5nYCOqisjFGfg5MmQuRcHYxfSVxaFRMrnYTNBZRD8DmkajlSP3ouavaZgQ5JZnIk3lnH8nPp6UOUVpkHPR7on43Lxs1M1j75w-uo9XOvsSXLUFsoAVXbqKNjoMDPu3aTJ9tIXfdXhiosa3j_cgnPClhnzaTopqGScABFFvAsOjK2V9cgU2NY1Qxmu8vNS6igCjtDD8DqKp0JFaD6AZWnHT8qeuwjR4HNw9Xt6QbukAsOD8zIm3GAZUO_C5hHNOKCw1OWKYz42AlrVTeKG6Yi53qpQQXlzmqlE-TpICH7aClEr64hzCYgkYVlFmhU-Fzpj0owxwoQUrvU-77CM8xOQaijpkKXbrqPYy_cdlHu-1pjKdt840xA12rOKf7f28-QCtNBJgyQvkh6nlgaHeElu3HbBLejhtigffw_u4L3YnKFQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dormancy+cycling+in+Arabidopsis+seeds+is+controlled+by+seasonally+distinct+hormone-signaling+pathways&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Footitt%2C+Steven&rft.au=Douterelo-Soler%2C+Isabel&rft.au=Clay%2C+Heather&rft.au=Finch-Savage%2C+William+E&rft.date=2011-12-13&rft.eissn=1091-6490&rft.volume=108&rft.issue=50&rft.spage=20236&rft_id=info:doi/10.1073%2Fpnas.1116325108&rft_id=info%3Apmid%2F22128331&rft_id=info%3Apmid%2F22128331&rft.externalDocID=22128331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon