Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells

Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment that can encourage these transformations. We report that glycogen metabolism is upregulated in tumors in vivo and in cancer cells in vitro i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cell metabolism Ročník 16; číslo 6; s. 751
Hlavní autori: Favaro, Elena, Bensaad, Karim, Chong, Mei G, Tennant, Daniel A, Ferguson, David J P, Snell, Cameron, Steers, Graham, Turley, Helen, Li, Ji-Liang, Günther, Ulrich L, Buffa, Francesca M, McIntyre, Alan, Harris, Adrian L
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 05.12.2012
Predmet:
ISSN:1932-7420, 1932-7420
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment that can encourage these transformations. We report that glycogen metabolism is upregulated in tumors in vivo and in cancer cells in vitro in response to hypoxia. In vitro, hypoxia induced an early accumulation of glycogen, followed by a gradual decline. Concordantly, glycogen synthase (GYS1) showed a rapid induction, followed by a later increase of glycogen phosphorylase (PYGL). PYGL depletion and the consequent glycogen accumulation led to increased reactive oxygen species (ROS) levels that contributed to a p53-dependent induction of senescence and markedly impaired tumorigenesis in vivo. Metabolic analyses indicated that glycogen degradation by PYGL is important for the optimal function of the pentose phosphate pathway. Thus, glycogen metabolism is a key pathway induced by hypoxia, necessary for optimal glucose utilization, which represents a targetable mechanism of metabolic adaptation.
AbstractList Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment that can encourage these transformations. We report that glycogen metabolism is upregulated in tumors in vivo and in cancer cells in vitro in response to hypoxia. In vitro, hypoxia induced an early accumulation of glycogen, followed by a gradual decline. Concordantly, glycogen synthase (GYS1) showed a rapid induction, followed by a later increase of glycogen phosphorylase (PYGL). PYGL depletion and the consequent glycogen accumulation led to increased reactive oxygen species (ROS) levels that contributed to a p53-dependent induction of senescence and markedly impaired tumorigenesis in vivo. Metabolic analyses indicated that glycogen degradation by PYGL is important for the optimal function of the pentose phosphate pathway. Thus, glycogen metabolism is a key pathway induced by hypoxia, necessary for optimal glucose utilization, which represents a targetable mechanism of metabolic adaptation.
Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment that can encourage these transformations. We report that glycogen metabolism is upregulated in tumors in vivo and in cancer cells in vitro in response to hypoxia. In vitro, hypoxia induced an early accumulation of glycogen, followed by a gradual decline. Concordantly, glycogen synthase (GYS1) showed a rapid induction, followed by a later increase of glycogen phosphorylase (PYGL). PYGL depletion and the consequent glycogen accumulation led to increased reactive oxygen species (ROS) levels that contributed to a p53-dependent induction of senescence and markedly impaired tumorigenesis in vivo. Metabolic analyses indicated that glycogen degradation by PYGL is important for the optimal function of the pentose phosphate pathway. Thus, glycogen metabolism is a key pathway induced by hypoxia, necessary for optimal glucose utilization, which represents a targetable mechanism of metabolic adaptation.Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment that can encourage these transformations. We report that glycogen metabolism is upregulated in tumors in vivo and in cancer cells in vitro in response to hypoxia. In vitro, hypoxia induced an early accumulation of glycogen, followed by a gradual decline. Concordantly, glycogen synthase (GYS1) showed a rapid induction, followed by a later increase of glycogen phosphorylase (PYGL). PYGL depletion and the consequent glycogen accumulation led to increased reactive oxygen species (ROS) levels that contributed to a p53-dependent induction of senescence and markedly impaired tumorigenesis in vivo. Metabolic analyses indicated that glycogen degradation by PYGL is important for the optimal function of the pentose phosphate pathway. Thus, glycogen metabolism is a key pathway induced by hypoxia, necessary for optimal glucose utilization, which represents a targetable mechanism of metabolic adaptation.
Author Li, Ji-Liang
Ferguson, David J P
Harris, Adrian L
Favaro, Elena
Bensaad, Karim
Tennant, Daniel A
Steers, Graham
Turley, Helen
Chong, Mei G
Günther, Ulrich L
Snell, Cameron
Buffa, Francesca M
McIntyre, Alan
Author_xml – sequence: 1
  givenname: Elena
  surname: Favaro
  fullname: Favaro, Elena
  organization: Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
– sequence: 2
  givenname: Karim
  surname: Bensaad
  fullname: Bensaad, Karim
– sequence: 3
  givenname: Mei G
  surname: Chong
  fullname: Chong, Mei G
– sequence: 4
  givenname: Daniel A
  surname: Tennant
  fullname: Tennant, Daniel A
– sequence: 5
  givenname: David J P
  surname: Ferguson
  fullname: Ferguson, David J P
– sequence: 6
  givenname: Cameron
  surname: Snell
  fullname: Snell, Cameron
– sequence: 7
  givenname: Graham
  surname: Steers
  fullname: Steers, Graham
– sequence: 8
  givenname: Helen
  surname: Turley
  fullname: Turley, Helen
– sequence: 9
  givenname: Ji-Liang
  surname: Li
  fullname: Li, Ji-Liang
– sequence: 10
  givenname: Ulrich L
  surname: Günther
  fullname: Günther, Ulrich L
– sequence: 11
  givenname: Francesca M
  surname: Buffa
  fullname: Buffa, Francesca M
– sequence: 12
  givenname: Alan
  surname: McIntyre
  fullname: McIntyre, Alan
– sequence: 13
  givenname: Adrian L
  surname: Harris
  fullname: Harris, Adrian L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23177934$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LAzEQhoNU7If-AQ-So5dd87HdNEcpWoWCFz0vaXZSU7LZuslW1l9vSit4GOblnWeGl5mikW89IHRLSU4JLR92uW4g5oxQloycUHGBJlRylomCkdE_PUbTEHaE8JJLfoXGjFMhJC8m6Hvlet0GwH20zv6oaFuPD1bhrRt0uwWP959tSNUNTiUs9CEq6wPed62zBrrThvJ1cuAAPh5H0KjYd4kGD0GD14Ctx1ol0WENzoVrdGmUC3Bz7jP08fz0vnzJ1m-r1-XjOtOFlDETjM_noBdmw6hWgmpWcymMpkRSIwtSMgaEgQBd6kKXykjDF4WR9aKm0mw4m6H7092U96uHEKvGhmMC5aHtQ0UZF0SSsiwSendG-00DdbXvbKO6ofp7FvsFPmlyUw
CitedBy_id crossref_primary_10_1016_j_tcb_2017_10_006
crossref_primary_10_1089_cell_2019_0056
crossref_primary_10_1016_j_pt_2021_06_005
crossref_primary_10_3389_fonc_2020_592455
crossref_primary_10_1186_s12929_024_01013_w
crossref_primary_10_1016_j_cmet_2018_08_007
crossref_primary_10_1186_s13059_016_0999_8
crossref_primary_10_3389_fonc_2022_841398
crossref_primary_10_1016_j_medj_2021_12_008
crossref_primary_10_1210_endocr_bqac169
crossref_primary_10_3390_ijms23158200
crossref_primary_10_1016_j_bmcl_2023_129484
crossref_primary_10_1016_j_canlet_2015_04_025
crossref_primary_10_1158_0008_5472_CAN_18_2994
crossref_primary_10_1158_1541_7786_MCR_14_0106_T
crossref_primary_10_3389_fphys_2021_791588
crossref_primary_10_1016_j_jbc_2021_101499
crossref_primary_10_1186_s13046_023_02715_z
crossref_primary_10_1007_s00439_019_01989_8
crossref_primary_10_1016_j_nano_2014_09_007
crossref_primary_10_1073_pnas_1909921117
crossref_primary_10_1371_journal_pone_0129834
crossref_primary_10_1371_journal_pgen_1005520
crossref_primary_10_3390_cancers12040869
crossref_primary_10_1016_j_bcp_2022_115201
crossref_primary_10_2217_fon_2021_0759
crossref_primary_10_1016_j_jprot_2014_09_019
crossref_primary_10_1093_glycob_cwab114
crossref_primary_10_1016_j_bcp_2014_09_001
crossref_primary_10_1007_s10616_018_0200_1
crossref_primary_10_1039_C5AN02112J
crossref_primary_10_1016_j_canlet_2020_03_007
crossref_primary_10_1007_s10549_016_3718_y
crossref_primary_10_1093_bib_bbz084
crossref_primary_10_1155_2021_6648093
crossref_primary_10_1038_s41598_021_99652_8
crossref_primary_10_1038_onc_2014_444
crossref_primary_10_1016_j_bbcan_2018_07_002
crossref_primary_10_15252_emmm_201404271
crossref_primary_10_1038_s41467_023_43520_8
crossref_primary_10_1016_j_pestbp_2023_105716
crossref_primary_10_1111_bph_13819
crossref_primary_10_1038_s41419_025_07561_9
crossref_primary_10_1016_j_aquaculture_2022_738954
crossref_primary_10_1016_j_bbabio_2016_12_003
crossref_primary_10_1053_j_gastro_2020_08_062
crossref_primary_10_1016_j_ecoenv_2020_110954
crossref_primary_10_1016_j_bbrep_2025_102227
crossref_primary_10_3390_cancers16244222
crossref_primary_10_1002_jcb_26394
crossref_primary_10_3390_molecules22101760
crossref_primary_10_1038_cddis_2014_567
crossref_primary_10_1002_1873_3468_12460
crossref_primary_10_1517_13543776_2016_1131268
crossref_primary_10_3390_metabo12080760
crossref_primary_10_1016_j_cmet_2016_01_002
crossref_primary_10_3390_foods12061235
crossref_primary_10_1073_pnas_2103592118
crossref_primary_10_1103_PhysRevLett_134_093804
crossref_primary_10_1111_bph_16409
crossref_primary_10_3892_ol_2022_13364
crossref_primary_10_1016_j_yexcr_2019_05_017
crossref_primary_10_1007_s12272_015_0550_6
crossref_primary_10_17352_2455_3476_000027
crossref_primary_10_1002_path_5402
crossref_primary_10_3389_fonc_2022_1060372
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_1186_s13046_020_01698_5
crossref_primary_10_1016_j_tem_2023_07_008
crossref_primary_10_1080_10428194_2019_1702185
crossref_primary_10_3109_09553002_2014_905724
crossref_primary_10_3389_fonc_2023_1081253
crossref_primary_10_1111_febs_15648
crossref_primary_10_1016_j_carres_2015_04_016
crossref_primary_10_1016_j_neo_2021_06_004
crossref_primary_10_1038_cdd_2014_173
crossref_primary_10_1371_journal_pone_0268329
crossref_primary_10_1186_s12943_017_0673_0
crossref_primary_10_3389_fgene_2022_856671
crossref_primary_10_1016_j_semcancer_2022_03_023
crossref_primary_10_1002_cac2_12591
crossref_primary_10_1016_j_cmet_2020_11_016
crossref_primary_10_1371_journal_pone_0135356
crossref_primary_10_3390_cancers13174254
crossref_primary_10_3390_cancers12082101
crossref_primary_10_1016_j_molcel_2025_05_019
crossref_primary_10_32604_biocell_2022_016612
crossref_primary_10_1016_j_bbadis_2020_165886
crossref_primary_10_1038_oncsis_2015_50
crossref_primary_10_1158_1541_7786_MCR_18_0315
crossref_primary_10_1055_a_1816_8903
crossref_primary_10_3389_fimmu_2025_1536248
crossref_primary_10_1016_j_ctrv_2016_03_005
crossref_primary_10_1007_s12011_018_1360_8
crossref_primary_10_3390_jcm8020246
crossref_primary_10_1016_j_cell_2015_08_016
crossref_primary_10_1371_journal_pone_0075154
crossref_primary_10_1097_HC9_0000000000000387
crossref_primary_10_1177_1758835919839543
crossref_primary_10_1016_j_biopha_2023_115251
crossref_primary_10_1016_j_pep_2014_12_007
crossref_primary_10_1371_journal_pone_0142554
crossref_primary_10_1038_cddis_2017_153
crossref_primary_10_1002_lary_26489
crossref_primary_10_1016_j_cbi_2023_110568
crossref_primary_10_1111_jnc_14264
crossref_primary_10_3389_fphar_2016_00521
crossref_primary_10_1371_journal_pbio_2006483
crossref_primary_10_1186_s40364_017_0092_9
crossref_primary_10_1371_journal_pone_0070017
crossref_primary_10_1016_j_cell_2021_10_001
crossref_primary_10_1016_j_mod_2016_01_002
crossref_primary_10_1038_s41419_022_05177_x
crossref_primary_10_1007_s00259_019_04654_4
crossref_primary_10_1016_j_gene_2021_145445
crossref_primary_10_1002_wsbm_1334
crossref_primary_10_1016_j_tem_2013_08_006
crossref_primary_10_3389_fimmu_2021_709986
crossref_primary_10_3390_molecules23030666
crossref_primary_10_1371_journal_pone_0134285
crossref_primary_10_3389_fmicb_2021_726465
crossref_primary_10_1016_j_jrras_2022_01_017
crossref_primary_10_1038_s41419_022_05005_2
crossref_primary_10_1002_hep_28411
crossref_primary_10_1038_cddis_2016_117
crossref_primary_10_3389_fimmu_2018_01714
crossref_primary_10_1002_jmri_29623
crossref_primary_10_3389_fcell_2021_647106
crossref_primary_10_1016_j_cmet_2012_11_010
crossref_primary_10_3390_ijms22115703
crossref_primary_10_4161_cc_24489
crossref_primary_10_1016_j_ijbiomac_2024_137431
crossref_primary_10_1016_j_bbamcr_2023_119585
crossref_primary_10_1007_s12011_019_01730_6
crossref_primary_10_1073_pnas_1510730112
crossref_primary_10_1371_journal_pone_0116740
crossref_primary_10_3389_fphar_2023_1108915
crossref_primary_10_1016_j_ajhg_2017_09_023
crossref_primary_10_1016_j_cell_2017_03_023
crossref_primary_10_1038_s41392_020_0152_8
crossref_primary_10_1016_j_jid_2020_01_010
crossref_primary_10_1007_s12035_024_04345_8
crossref_primary_10_1096_fj_202300783RR
crossref_primary_10_1158_0008_5472_CAN_21_2352
crossref_primary_10_1002_EXP_20230089
crossref_primary_10_1097_DAD_0000000000001852
crossref_primary_10_1172_JCI159839
crossref_primary_10_3389_fcell_2020_566494
crossref_primary_10_1186_2049_3002_2_19
crossref_primary_10_1007_s00280_013_2358_8
crossref_primary_10_1016_j_lfs_2024_122890
crossref_primary_10_1002_cbic_202400719
crossref_primary_10_3390_ijms21176422
crossref_primary_10_1016_j_ejmech_2014_02_041
crossref_primary_10_3389_fonc_2024_1476459
crossref_primary_10_3389_fonc_2025_1545086
crossref_primary_10_1158_0008_5472_CAN_18_2357
crossref_primary_10_1038_nrurol_2015_111
crossref_primary_10_1042_BSR20150090
crossref_primary_10_3389_fneur_2021_652931
crossref_primary_10_1016_j_cmet_2017_08_012
crossref_primary_10_1016_j_bcp_2024_116254
crossref_primary_10_1016_j_kint_2019_10_020
crossref_primary_10_1172_JCI67230
crossref_primary_10_3389_fendo_2022_762589
crossref_primary_10_3390_cells8101225
crossref_primary_10_1016_j_cmet_2019_08_014
crossref_primary_10_1038_s41418_025_01500_z
crossref_primary_10_1016_j_biopha_2019_109449
crossref_primary_10_1016_j_bbagen_2020_129687
crossref_primary_10_3892_ijo_2018_4426
crossref_primary_10_1016_j_fsi_2019_05_043
crossref_primary_10_1007_s11033_023_08458_6
crossref_primary_10_7554_eLife_82597
crossref_primary_10_3390_molecules25225463
crossref_primary_10_3724_abbs_2025086
crossref_primary_10_1039_C7AN01883E
crossref_primary_10_1007_s10637_021_01090_w
crossref_primary_10_1186_2049_3002_2_3
crossref_primary_10_1016_j_ejmech_2024_117184
crossref_primary_10_1038_nrc_2016_84
crossref_primary_10_1002_pmic_201800148
crossref_primary_10_1016_j_jbc_2024_107569
crossref_primary_10_1038_onc_2015_415
crossref_primary_10_1515_pac_2019_0208
crossref_primary_10_2147_JHC_S492516
crossref_primary_10_1007_s10142_020_00753_w
crossref_primary_10_1016_j_bmc_2014_05_076
crossref_primary_10_1186_s40364_016_0065_4
crossref_primary_10_1074_jbc_R117_799973
crossref_primary_10_3390_nu17172762
crossref_primary_10_1016_j_beha_2017_07_007
crossref_primary_10_3389_fonc_2022_947479
crossref_primary_10_1002_1873_3468_14489
crossref_primary_10_1002_mc_23920
crossref_primary_10_1016_j_phrs_2024_107519
crossref_primary_10_1002_pmic_201800157
crossref_primary_10_1016_j_ebiom_2016_07_017
crossref_primary_10_3390_cancers14010003
crossref_primary_10_3390_jcm9010138
crossref_primary_10_1002_ijc_30259
crossref_primary_10_1007_s00109_015_1377_9
crossref_primary_10_1016_j_carres_2015_12_005
crossref_primary_10_1007_s13402_020_00548_y
crossref_primary_10_1534_genetics_115_179416
crossref_primary_10_3389_fphar_2023_1259051
crossref_primary_10_1038_ncomms6953
crossref_primary_10_1038_s42255_021_00367_x
crossref_primary_10_1016_j_jnutbio_2025_109894
crossref_primary_10_1007_s10812_019_00800_w
crossref_primary_10_1136_gutjnl_2020_321534
crossref_primary_10_1371_journal_pone_0150232
crossref_primary_10_1038_s41598_018_25971_y
crossref_primary_10_1186_s13046_018_0789_0
crossref_primary_10_1038_s41467_024_55768_9
crossref_primary_10_1016_j_bbadis_2018_08_022
crossref_primary_10_1186_s13046_017_0570_9
crossref_primary_10_3390_antiox13121513
crossref_primary_10_3389_fgene_2023_1282824
crossref_primary_10_3390_diagnostics12020315
crossref_primary_10_1002_ijc_32207
crossref_primary_10_1016_j_yexcr_2016_03_017
crossref_primary_10_3389_fgene_2021_613890
crossref_primary_10_1016_j_jare_2024_05_001
crossref_primary_10_2217_fon_15_45
crossref_primary_10_1134_S1068162016020138
crossref_primary_10_1088_1478_3975_ac7372
crossref_primary_10_1038_s41420_022_00987_6
crossref_primary_10_1038_bjc_2016_412
crossref_primary_10_1177_10732748211051554
crossref_primary_10_3390_cancers12113443
crossref_primary_10_1016_j_bbrc_2019_11_061
crossref_primary_10_3390_molecules28073005
crossref_primary_10_1016_j_tjnut_2024_02_025
crossref_primary_10_1038_s41388_025_03430_z
crossref_primary_10_1517_13543776_2013_794790
crossref_primary_10_1016_S1872_2040_19_61215_6
crossref_primary_10_1101_gad_319475_118
crossref_primary_10_1016_j_febslet_2014_06_034
crossref_primary_10_15252_embr_202255643
crossref_primary_10_3390_nu14173636
crossref_primary_10_1016_j_job_2025_100667
crossref_primary_10_1016_j_bmcl_2021_128361
crossref_primary_10_1038_s42255_023_00879_8
crossref_primary_10_1038_s41598_024_64255_6
crossref_primary_10_1111_febs_12879
crossref_primary_10_3389_fphar_2025_1600349
crossref_primary_10_3390_cells11162486
crossref_primary_10_3390_molecules25184141
crossref_primary_10_1097_MCO_0000000000000121
crossref_primary_10_1073_pnas_1508573112
crossref_primary_10_1111_febs_15587
crossref_primary_10_1126_science_adi3332
crossref_primary_10_1016_j_cmet_2016_05_010
crossref_primary_10_1186_s12885_025_13982_8
crossref_primary_10_1158_0008_5472_CAN_13_2768
crossref_primary_10_1371_journal_pgen_1007698
crossref_primary_10_1038_s42255_025_01314_w
crossref_primary_10_3389_fncel_2020_00272
crossref_primary_10_3389_fonc_2023_1230934
crossref_primary_10_1038_leu_2015_46
crossref_primary_10_3390_ijms18040726
crossref_primary_10_1111_jcmm_16759
crossref_primary_10_1371_journal_pone_0069420
crossref_primary_10_1016_j_carres_2014_05_020
crossref_primary_10_1007_s12672_025_02826_3
crossref_primary_10_1016_j_neulet_2020_135565
crossref_primary_10_1002_jhbp_1386
crossref_primary_10_1016_j_critrevonc_2017_03_026
crossref_primary_10_1016_j_ejmech_2016_06_049
crossref_primary_10_1007_s00432_024_05644_2
crossref_primary_10_1080_21655979_2021_1973775
crossref_primary_10_3892_ol_2024_14801
crossref_primary_10_1186_s40880_019_0420_6
ContentType Journal Article
Copyright Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2012.10.017
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
ExternalDocumentID 23177934
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Health
  grantid: NF-SI-0611-10163
– fundername: Cancer Research UK
  grantid: 11359
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IHE
IXB
J1W
JIG
M3Z
M41
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
7X8
ID FETCH-LOGICAL-c499t-72355ec8fb21ca71c2d397fc1091f940622e02e7ec6c4c6af9f384f9d8d19fb32
IEDL.DBID 7X8
ISICitedReferencesCount 337
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312420600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-7420
IngestDate Sun Sep 28 00:58:53 EDT 2025
Mon Jul 21 05:29:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-72355ec8fb21ca71c2d397fc1091f940622e02e7ec6c4c6af9f384f9d8d19fb32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10026.1/10292
PMID 23177934
PQID 1237090664
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1237090664
pubmed_primary_23177934
PublicationCentury 2000
PublicationDate 2012-12-05
PublicationDateYYYYMMDD 2012-12-05
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2012
References 23217251 - Cell Metab. 2012 Dec 5;16(6):687-8. doi: 10.1016/j.cmet.2012.11.010.
References_xml – reference: 23217251 - Cell Metab. 2012 Dec 5;16(6):687-8. doi: 10.1016/j.cmet.2012.11.010.
SSID ssj0036393
Score 2.5565226
Snippet Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 751
SubjectTerms Angiogenesis Inhibitors - pharmacology
Animals
Antibodies, Monoclonal, Humanized - pharmacology
Bevacizumab
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell Hypoxia - drug effects
Cell Line, Tumor
Cell Proliferation - drug effects
Cellular Senescence - drug effects
Female
Glucose - pharmacology
Glycogen - metabolism
Glycogen Phosphorylase - antagonists & inhibitors
Glycogen Phosphorylase - genetics
Glycogen Phosphorylase - metabolism
Glycogen Synthase - metabolism
HCT116 Cells
Humans
MCF-7 Cells
Mice
Mice, Nude
Reactive Oxygen Species - metabolism
RNA Interference
RNA, Small Interfering - metabolism
Transplantation, Heterologous
Tumor Suppressor Protein p53 - metabolism
Title Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells
URI https://www.ncbi.nlm.nih.gov/pubmed/23177934
https://www.proquest.com/docview/1237090664
Volume 16
WOSCitedRecordID wos000312420600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgsTC-1FeMhJrIHGc2J4QQhQWqg4gdasSP6BSSULSFvXfc44NLAxIDMmQh2T5vtx98Z3vQ-iCRSaHOBsHoVEsoEaEgYhNEohUSaGMkVHOW7EJ1u_z4VAM_IJb48sqv3xi66hVKe0a-RV4WBYKCJD0unoPrGqUza56CY1l1ImBylhUs-F3FiGG6Bu7rDKwSEpCv2nG1XfJN21rKSNyaau7vGDZrxSzDTW9zf8OcgtteJKJbxwqttGSLnbQmpOdXOyij3tXp44BdBO_DxPPxxl-mSxkCYjC1WvZwFEvgFtr3LhNVg2urMSP0Q40OCsUXGk7QNlbtvnrrIanrfeU1mHgcYGlRVWNbX6g2UPPvbun24fACzAEEn6EpgEjwEa05GDOSGYskkQBfQH7AckwAqgAITokmmmZSirTzAgTc7C34ioSJo_JPlopykIfIqxoklGShblKGE2VbRLD8pTnPOFchUZ00fnXjI4A4HZUWaHLWTP6mdMuOnBmGVWuE8cIyCkDB0OP_vD2MVq31m5LUZIT1DHweetTtCrn03FTn7XIgXN_8PgJ237RFA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glucose+utilization+via+glycogen+phosphorylase+sustains+proliferation+and+prevents+premature+senescence+in+cancer+cells&rft.jtitle=Cell+metabolism&rft.au=Favaro%2C+Elena&rft.au=Bensaad%2C+Karim&rft.au=Chong%2C+Mei+G&rft.au=Tennant%2C+Daniel+A&rft.date=2012-12-05&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=16&rft.issue=6&rft.spage=751&rft_id=info:doi/10.1016%2Fj.cmet.2012.10.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7420&client=summon