A model-based method for the computation of fingerprints' orientation field

As a global feature of fingerprints, the orientation field is very important for automatic fingerprint recognition. Many algorithms have been proposed for orientation field estimation, but their results are unsatisfactory, especially for poor quality fingerprint images. In this paper, a model-based...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 13; číslo 6; s. 821 - 835
Hlavní autori: Zhou, J., Gu, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.06.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1057-7149, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As a global feature of fingerprints, the orientation field is very important for automatic fingerprint recognition. Many algorithms have been proposed for orientation field estimation, but their results are unsatisfactory, especially for poor quality fingerprint images. In this paper, a model-based method for the computation of orientation field is proposed. First a combination model is established for the representation of the orientation field by considering its smoothness except for several singular points, in which a polynomial model is used to describe the orientation field globally and a point-charge model is taken to improve the accuracy locally at each singular point. When the coarse field is computed by using the gradient-based algorithm, a further result can be gained by using the model for a weighted approximation. Due to the global approximation, this model-based orientation field estimation algorithm has a robust performance on different fingerprint images. A further experiment shows that the performance of a whole fingerprint recognition system can be improved by applying this algorithm instead of previous orientation estimation methods.
AbstractList As a global feature of fingerprints, the orientation field is very important for automatic fingerprint recognition. Many algorithms have been proposed for orientation field estimation, but their results are unsatisfactory, especially for poor quality fingerprint images. In this paper, a model-based method for the computation of orientation field is proposed. First a combination model is established for the representation of the orientation field by conidering its smoothness except for several singular points, in which a polynomial model is used to describe the orientation field globally and a point-charge model is taken to improve the accuracy locally at each singular point. When the coarse field is computed by using the gradient-based algorithm, a further result can be gained by using the model for a weighted approximation. Due to the global approximation, this model-based orientation field estimation algorithm has a robust performance on different fingerprint images. A further experiment shows that the performance of a whole fingerprint recognition system can be improved by applying this algorithm instead of previous orientation estimation methods.
As a global feature of fingerprints, the orientation field is very important for automatic fingerprint recognition. Many algorithms have been proposed for orientation field estimation, but their results are unsatisfactory, especially for poor quality fingerprint images. In this paper, a model-based method for the computation of orientation field is proposed. First a combination model is established for the representation of the orientation field by considering its smoothness except for several singular points, in which a polynomial model is used to describe the orientation field globally and a point-charge model is taken to improve the accuracy locally at each singular point. When the coarse field is computed by using the gradient-based algorithm, a further result can be gained by using the model for a weighted approximation. Due to the global approximation, this model-based orientation field estimation algorithm has a robust performance on different fingerprint images. A further experiment shows that the performance of a whole fingerprint recognition system can be improved by applying this algorithm instead of previous orientation estimation methods.
As a global feature of fingerprints, the orientation field is very important for automatic fingerprint recognition. Many algorithms have been proposed for orientation field estimation, but their results are unsatisfactory, especially for poor quality fingerprint images. In this paper, a model-based method for the computation of orientation field is proposed. First a combination model is established for the representation of the orientation field by conidering its smoothness except for several singular points, in which a polynomial model is used to describe the orientation field globally and a point-charge model is taken to improve the accuracy locally at each singular point. When the coarse field is computed by using the gradient-based algorithm, a further result can be gained by using the model for a weighted approximation. Due to the global approximation, this model-based orientation field estimation algorithm has a robust performance on different fingerprint images. A further experiment shows that the performance of a whole fingerprint recognition system can be improved by applying this algorithm instead of previous orientation estimation methods.As a global feature of fingerprints, the orientation field is very important for automatic fingerprint recognition. Many algorithms have been proposed for orientation field estimation, but their results are unsatisfactory, especially for poor quality fingerprint images. In this paper, a model-based method for the computation of orientation field is proposed. First a combination model is established for the representation of the orientation field by conidering its smoothness except for several singular points, in which a polynomial model is used to describe the orientation field globally and a point-charge model is taken to improve the accuracy locally at each singular point. When the coarse field is computed by using the gradient-based algorithm, a further result can be gained by using the model for a weighted approximation. Due to the global approximation, this model-based orientation field estimation algorithm has a robust performance on different fingerprint images. A further experiment shows that the performance of a whole fingerprint recognition system can be improved by applying this algorithm instead of previous orientation estimation methods.
First a combination model is established for the representation of the orientation field by considering its smoothness except for several singular points, in which a polynomial model is used to describe the orientation field globally and a point-charge model is taken to improve the accuracy locally at each singular point.
Author Jie Zhou
Jinwei Gu
Author_xml – sequence: 1
  givenname: J.
  surname: Zhou
  fullname: Zhou, J.
– sequence: 2
  givenname: J.
  surname: Gu
  fullname: Gu, J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15747987$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15648872$$D View this record in MEDLINE/PubMed
BookMark eNqFkktrFUEQhRuJmIeuXQgyCJrV3PT7sQwhmmBAF3Hd9PRUmw4z09fumYX_Pn2Z64NAdFUF9Z2i6nCO0cGUJkDoNcEbQrA5u73-uqEYs42mVGL9DB0Rw0mLMacHtcdCtYpwc4iOS7nHmHBB5At0SITkWit6hD6fN2PqYWg7V6BvRpjvUt-ElJv5Dhqfxu0yuzmmqUmhCXH6Dnmb4zSX0yblCNN-GCIM_Uv0PLihwKt9PUHfPl7eXly1N18-XV-c37SeGzO3UndC6a4PHoOE2qqOBKE9Y6TjRnY0aE47KYTUstc6yN4E1UlGpFS494adoNN17zanHwuU2Y6xeBgGN0FaijWYKKKNUJX88E9SKkopk_K_INVMMsF4Bd89Au_Tkqf6rtWaCUWk0BV6u4eWboTeVsdGl3_aX7ZX4P0ecMW7IWQ3-Vj-4hRXRu_uFyvncyolQ7A-ro7P2cXBEmx3MbA1BnYXA7vGoOrOHul-r35S8WZVRAD4Q1NTv9LsAW7Hubk
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_anucene_2020_107786
crossref_primary_10_1016_j_amc_2006_06_082
crossref_primary_10_1109_TPAMI_2008_188
crossref_primary_10_1016_j_patcog_2011_11_003
crossref_primary_10_1109_TPAMI_2011_161
crossref_primary_10_1016_j_cmpb_2024_108202
crossref_primary_10_12677_AIRR_2016_52004
crossref_primary_10_4467_29567610PIB_25_010_21868
crossref_primary_10_1109_TIFS_2011_2150216
crossref_primary_10_1631_jzus_C0910749
crossref_primary_10_1007_s11432_011_4516_0
crossref_primary_10_1109_TIFS_2012_2187281
crossref_primary_10_1109_TDSC_2018_2812192
crossref_primary_10_1109_TIFS_2011_2114345
crossref_primary_10_1007_s11042_016_3908_y
crossref_primary_10_1109_ACCESS_2024_3389701
crossref_primary_10_1587_transinf_E94_D_1792
crossref_primary_10_1016_j_jnca_2009_12_002
crossref_primary_10_1049_iet_ipr_2018_5736
crossref_primary_10_1109_TIFS_2014_2340573
crossref_primary_10_1016_j_optcom_2006_12_026
crossref_primary_10_1109_TIP_2006_873442
crossref_primary_10_1109_TPAMI_2010_164
crossref_primary_10_1109_TPAMI_2012_155
crossref_primary_10_1109_TIP_2006_873443
crossref_primary_10_1109_TPAMI_2010_73
crossref_primary_10_1016_j_ins_2017_02_043
crossref_primary_10_1109_TPAMI_2008_242
crossref_primary_10_1109_TPAMI_2008_243
crossref_primary_10_1109_TIFS_2009_2033219
crossref_primary_10_1002_sec_209
crossref_primary_10_1016_j_patrec_2007_10_004
crossref_primary_10_1109_TPAMI_2008_31
crossref_primary_10_1109_TPAMI_2007_1003
crossref_primary_10_1016_S1005_8885_10_60034_9
crossref_primary_10_1049_iet_ipr_2012_0399
crossref_primary_10_1109_TPAMI_2013_184
crossref_primary_10_1007_s10851_020_00990_5
crossref_primary_10_1016_j_ins_2013_08_021
crossref_primary_10_1049_iet_bmt_2017_0128
crossref_primary_10_1007_s11042_020_08750_8
crossref_primary_10_1016_j_apm_2016_03_009
crossref_primary_10_1109_ACCESS_2019_2903601
crossref_primary_10_1016_j_patcog_2010_05_023
crossref_primary_10_1016_j_patcog_2010_09_017
crossref_primary_10_1016_j_patcog_2014_03_033
crossref_primary_10_1016_j_patcog_2007_09_003
crossref_primary_10_1016_j_patcog_2006_10_012
crossref_primary_10_1016_j_jpdc_2020_03_007
crossref_primary_10_1016_j_patcog_2006_05_008
crossref_primary_10_1016_j_apm_2017_10_004
crossref_primary_10_1016_j_neucom_2011_07_018
crossref_primary_10_1109_ACCESS_2020_3038707
crossref_primary_10_1016_j_neucom_2011_05_023
crossref_primary_10_1016_j_sna_2019_111740
crossref_primary_10_1016_j_patcog_2010_08_019
crossref_primary_10_1109_TCYB_2019_2957188
crossref_primary_10_1109_TIP_2009_2017995
Cites_doi 10.1109/34.587996
10.1007/978-1-4615-4519-4
10.1016/0031-3203(84)90079-7
10.1016/0031-3203(93)90006-I
10.1016/0031-3203(90)90134-7
10.1109/TPAMI.1982.4767240
10.1016/0031-3203(95)00154-9
10.1109/TPAMI.2002.1017618
10.1017/CBO9780511564345
10.1109/5.628674
10.1016/S0031-3203(02)00264-9
10.1109/83.841531
10.1109/TPAMI.2002.1023799
10.1016/0734-189X(87)90043-0
10.1007/978-1-4613-9777-9
10.1007/978-1-4757-2377-9
10.1109/34.990140
10.1016/0031-3203(89)90035-6
10.1109/83.661195
10.1016/S0262-8856(02)00018-5
10.1016/0031-3203(95)00106-9
10.1109/34.761265
10.1109/99.641608
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2003.822608
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE
Computer and Information Systems Abstracts
MEDLINE - Academic
Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 835
ExternalDocumentID 2426396741
15648872
15747987
10_1109_TIP_2003_822608
1298838
Genre orig-research
Validation Studies
Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c499t-68b578bdfc0e6e5787b1f58c331b496b2f842b655686d88f6d9f7b6316670dc93
IEDL.DBID RIE
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221466400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
IngestDate Sat Sep 27 22:15:53 EDT 2025
Wed Oct 01 10:05:21 EDT 2025
Sun Nov 09 11:01:35 EST 2025
Fri Jul 25 03:03:38 EDT 2025
Wed Feb 19 01:38:00 EST 2025
Mon Nov 03 04:55:46 EST 2025
Sat Nov 29 08:01:19 EST 2025
Tue Nov 18 21:39:51 EST 2025
Tue Aug 26 16:39:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords global approximation
Fingerprint
Image recognition
Approximation
Singular point
orientation field
Orientation
Automatic recognition
Automatic fingerprint recognition
combination model
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-68b578bdfc0e6e5787b1f58c331b496b2f842b655686d88f6d9f7b6316670dc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 15648872
PQID 883571658
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_901718957
proquest_miscellaneous_28363534
proquest_miscellaneous_67222366
pubmed_primary_15648872
pascalfrancis_primary_15747987
ieee_primary_1298838
proquest_journals_883571658
crossref_citationtrail_10_1109_TIP_2003_822608
crossref_primary_10_1109_TIP_2003_822608
PublicationCentury 2000
PublicationDate 2004-06-01
PublicationDateYYYYMMDD 2004-06-01
PublicationDate_xml – month: 06
  year: 2004
  text: 2004-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2004
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
Whittle (ref25) 1963
ref11
ref10
ref2
ref17
ref16
ref19
ref24
ref23
ref20
Zhang (ref28)
ref22
ref21
ref27
Wilson (ref13) 1994; 1
ref29
ref8
Jain (ref1) 1999
ref7
ref9
ref4
ref3
ref6
ref5
Henry (ref18) 1900
References_xml – ident: ref6
  doi: 10.1109/34.587996
– ident: ref2
  doi: 10.1007/978-1-4615-4519-4
– ident: ref14
  doi: 10.1016/0031-3203(84)90079-7
– ident: ref16
  doi: 10.1016/0031-3203(93)90006-I
– ident: ref3
  doi: 10.1016/0031-3203(90)90134-7
– ident: ref29
  doi: 10.1109/TPAMI.1982.4767240
– volume-title: Kluwer
  year: 1999
  ident: ref1
– ident: ref17
  doi: 10.1016/0031-3203(95)00154-9
– ident: ref8
  doi: 10.1109/TPAMI.2002.1017618
– ident: ref19
  doi: 10.1017/CBO9780511564345
– ident: ref7
  doi: 10.1109/5.628674
– ident: ref24
  doi: 10.1016/S0031-3203(02)00264-9
– start-page: 879
  volume-title: Proc. Int. Conf. Computers and Applications
  ident: ref28
  article-title: A thinning algorithm for discrete binary image
– ident: ref9
  doi: 10.1109/83.841531
– ident: ref5
  doi: 10.1109/TPAMI.2002.1023799
– volume: 1
  start-page: 203
  issue: 2
  year: 1994
  ident: ref13
  article-title: Neural network fingerprint classification
  publication-title: J. Artif. Neural Network
– ident: ref21
  doi: 10.1016/0734-189X(87)90043-0
– ident: ref22
  doi: 10.1007/978-1-4613-9777-9
– ident: ref20
  doi: 10.1007/978-1-4757-2377-9
– ident: ref27
  doi: 10.1109/34.990140
– ident: ref12
  doi: 10.1016/0031-3203(89)90035-6
– ident: ref15
  doi: 10.1109/83.661195
– volume-title: Prediction and Regulation by Linear Least-Square Methods
  year: 1963
  ident: ref25
– volume-title: Classification and Uses of Finger Prints
  year: 1900
  ident: ref18
– ident: ref23
  doi: 10.1016/S0262-8856(02)00018-5
– ident: ref11
  doi: 10.1016/0031-3203(95)00106-9
– ident: ref10
  doi: 10.1109/34.761265
– ident: ref4
  doi: 10.1109/99.641608
SSID ssj0014516
Score 2.1890953
Snippet As a global feature of fingerprints, the orientation field is very important for automatic fingerprint recognition. Many algorithms have been proposed for...
First a combination model is established for the representation of the orientation field by considering its smoothness except for several singular points, in...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 821
SubjectTerms Algorithms
Applied sciences
Approximation
Approximation algorithms
Artificial Intelligence
Automation
Bifurcation
Biometrics
Cluster Analysis
Computation
Computer Graphics
Computer Simulation
Dermatoglyphics
Exact sciences and technology
Fingerprint recognition
Fingerprints
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image matching
Image processing
Information Storage and Retrieval - methods
Information, signal and communications theory
Large-scale systems
Mathematical analysis
Mathematical models
Models, Biological
Models, Statistical
Numerical Analysis, Computer-Assisted
Orientation
Pattern Recognition, Automated - methods
Polynomials
Reproducibility of Results
Robustness
Sensitivity and Specificity
Signal processing
Signal Processing, Computer-Assisted
Studies
Subtraction Technique
Telecommunications and information theory
Title A model-based method for the computation of fingerprints' orientation field
URI https://ieeexplore.ieee.org/document/1298838
https://www.ncbi.nlm.nih.gov/pubmed/15648872
https://www.proquest.com/docview/883571658
https://www.proquest.com/docview/28363534
https://www.proquest.com/docview/67222366
https://www.proquest.com/docview/901718957
Volume 13
WOSCitedRecordID wos000221466400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6S0EN7SNqkbdw0rg6F9tB1Vrur1zGUhJZCyCEF3xbrBYGyW7x2fn9mpI2TQH3ozaARjDUzO5800nwAn6PRlcNMVnjPF0UT6TvIpSicF5ELraL1TSKbUFdXej431zvwbfMWJoSQLp-FGf1MtXzfuzUdlZ1hbtK61ruwq5TMb7U2FQMinE2VTaEKhbB_bOPDS3N28_M6Nf6cYTKUZWLoExIdV1XPklFiV6G7kYsBlydmXovtwDMloMuD_1P9NeyPQJOdZ894AzuhO4SDEXSyMaSHQ3j1pCPhEfw6Z4kbp6Ds5lnml2YIbBkCReYSBUSyJesji-lIkE4GV8MX1i9vx3dMHUv34t7C78uLm-8_ipFvoXC471kVUluMX-ujK4MMFMqWR6FdXXPbGGmrqJvKSupZJr3WUXoTlZU1l1KV3pn6Hex1fReOgTkq96mSuwanLqywNFxVSmkeLe5gJjB7WPjWjc3IiRPjT5s2JaVp0WhEkVm32WgT-LqZ8Df34dguekTr_yiWl34C02eWfRwXqJDRqNPJg6nbMZCHFmcK3FIKnP5pM4oRSGWVRRf69dAiQEPUVjfbJaQiFCblBNgWCUNti7QRqMT77GRP1Mu--uHff-sEXubLRHQw9BH2Vst1OIUX7m51OyynGClzPU2Rcg9hhAyn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC6MCUQPMdEYNybah0ByyKzz6tdRQkTRLB424G3YfoEQZmRn19-fqu5xVcgeclvoaqjtqpr6uqu7PoAvQavSYibLnCtmWR3oO1gInlnHQ8GVDMbVkWxCTibq5kZfb8D31VsY7328fObH9DPW8l1nl3RUdoK5SalKvYCXvK7LPL3WWtUMiHI21ja5zCQC_6GRT5Hrk-nFdWz9OcZ0KPLI0ccFuq4sn6WjyK9CtyNnPS5QSMwW66FnTEFnO_-n_Ft4M0BNdpp84x1s-HYXdgbYyYag7ndh-0lPwj24PGWRHSej_OZYYphmCG0ZQkVmIwlEtCbrAgvxUJDOBhf9V9bNb4eXTC2LN-Pew--zn9Mf59nAuJBZ3PksMqEMRrBxweZeeApmUwSubFUVptbClEHVpRHUtUw4pYJwOkgjqkIImTurq33YbLvWHwCzVPCTeWFrnDoz3NBwWUqpimBwDzOC8cPCN3ZoR06sGH-auC3JdYNGI5LMqklGG8G31YS71Iljvegerf-jWFr6ERw9s-zjOEeFtEKdDh9M3Qyh3Dc4k-OmkuP049UoxiAVVmat75Z9gxANcVtVr5cQknCYECNgayQ0NS5SmqMSH5KTPVEv-erHf_-tY3h9Pv111VxdTC4PYStdLaJjok-wuZgv_Wd4Ze8Xt_38KMbLXyTpDwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model-based+method+for+the+computation+of+fingerprints%27+orientation+field&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhou%2C+Jie&rft.au=Gu%2C+Jinwei&rft.date=2004-06-01&rft.issn=1057-7149&rft.volume=13&rft.issue=6&rft.spage=821&rft_id=info:doi/10.1109%2Ftip.2003.822608&rft_id=info%3Apmid%2F15648872&rft.externalDocID=15648872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon