Exploring novel objective functions for simulating muscle coactivation in the neck
Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through mus...
Uložené v:
| Vydané v: | Journal of biomechanics Ročník 71; s. 127 - 134 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Ltd
11.04.2018
Elsevier Limited |
| Predmet: | |
| ISSN: | 0021-9290, 1873-2380, 1873-2380 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects. |
|---|---|
| AbstractList | Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects. Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects.Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects. |
| Author | Merryweather, A. Trkov, M. Mortensen, J. |
| Author_xml | – sequence: 1 givenname: J. surname: Mortensen fullname: Mortensen, J. email: jon.mortensen@utah.edu – sequence: 2 givenname: M. surname: Trkov fullname: Trkov, M. – sequence: 3 givenname: A. surname: Merryweather fullname: Merryweather, A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29452757$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1q3DAUhUVJSSZpXiEIuunG7pX_JEMpLSFpC4FCaddClq8bObI0leyhefvIncxmNulKF_Gdo6tzzsmJ8w4JuWKQM2DN-zEfO-Mn1Pd5AUzkwHIo4RXZMMHLrCgFnJANQMGytmjhjJzHOAIAr3h7Ss6KtqoLXvMN-XHzd2t9MO43dX6HlvpuRD2bHdJhcWnwLtLBBxrNtFg1r-C0RG2Raq9WUK0MNY7O90gd6oc35PWgbMTL5_OC_Lq9-Xn9Nbv7_uXb9ee7TFdtO2dNI4aeg2LYia5VNbJmKBtepQsUFTDOoGVFr5jQWKJgUOpaDFjpIg26q8sL8m7vuw3-z4JxlpOJGq1VDv0SZQEpkYo3JU_o2yN09EtwabtEsVY0vAaRqKtnaukm7OU2mEmFR3lIKwEf9oAOPsaAg9Rm_vf_OShjJQO5liNHeShntRcSmEyrJHlzJD-88KLw016IKc6dwSCjNug09iaksmTvzcsWH48stDXOaGUf8PF_DJ4AvyHCBg |
| CitedBy_id | crossref_primary_10_3390_mi11100931 crossref_primary_10_1016_j_jbiomech_2020_109754 crossref_primary_10_1097_PHM_0000000000001223 crossref_primary_10_1016_j_jbiomech_2019_109411 crossref_primary_10_1007_s11517_023_02817_y crossref_primary_10_1093_tse_tdab016 crossref_primary_10_1038_s41598_023_49865_w crossref_primary_10_1007_s10439_024_03576_z |
| Cites_doi | 10.1123/jsr.9.4.315 10.1115/1.1531112 10.1371/journal.pcbi.1002465 10.2165/00007256-200838110-00002 10.1177/0363546513517869 10.1016/0025-5564(92)90071-4 10.1371/journal.pone.0169329 10.1016/S0021-9290(02)00432-3 10.7717/peerj.1638 10.1016/j.pmrj.2009.01.002 10.1016/S0021-9290(02)00458-X 10.3233/IES-2007-0268 10.1007/s11044-015-9461-z 10.1007/BF00230049 10.1243/09544119JEIM668 10.1097/00003677-200201000-00007 10.1109/TBME.2007.901024 10.1145/1179352.1142013 10.1115/1.4023390 10.1007/BF00204111 10.1007/BF00247939 10.1080/00222895.1993.9942052 10.1080/15389588.2013.806795 10.1115/SBC2012-80230 10.1080/00401706.1987.10488205 10.1109/TAC.1984.1103644 10.1097/00007632-199802150-00002 10.1016/0021-9290(81)90035-X 10.1007/s11044-006-9019-1 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Apr 11, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Apr 11, 2018 |
| DBID | AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.jbiomech.2018.01.030 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 134 |
| ExternalDocumentID | 29452757 10_1016_j_jbiomech_2018_01_030 S0021929018300629 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR .GJ 29J 53G 9DU AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFFHD AFJKZ AGHFR AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RPZ SAE SEW VH1 WUQ XOL XPP ZGI AGCQF AGRNS ALIPV NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c499t-668fd70a1eb8b9a5e16f3674a1ee8401710912da18ce3e8103c58fe4c23c5cb53 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430765500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Thu Oct 02 12:56:24 EDT 2025 Sat Nov 29 14:30:42 EST 2025 Mon Jul 21 05:57:45 EDT 2025 Tue Nov 18 22:10:52 EST 2025 Sat Nov 29 07:02:45 EST 2025 Fri Feb 23 02:20:32 EST 2024 Tue Oct 14 19:30:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | OpenSim Muscle control Optimization techniques Musculoskeletal modeling Muscle coactivation |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-668fd70a1eb8b9a5e16f3674a1ee8401710912da18ce3e8103c58fe4c23c5cb53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 29452757 |
| PQID | 2019867508 |
| PQPubID | 1226346 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2003047637 proquest_journals_2019867508 pubmed_primary_29452757 crossref_citationtrail_10_1016_j_jbiomech_2018_01_030 crossref_primary_10_1016_j_jbiomech_2018_01_030 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_01_030 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_01_030 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-11 |
| PublicationDateYYYYMMDD | 2018-04-11 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Fanta, Hadraba, Lopot, Kubový, Bouček, Jelen (b0055) 2013; 34 Millard, Uchida, Seth, Delp (b0110) 2013; 135 Joaquim, R.R.A., Martins, A.N., Jason Hicken, Juan Alonso, 2016. Multidisciplinary Design Optimization. Lee, Umberger (b0085) 2016; 4 Shadmehr, Arbib (b0150) 1992; 66 Thelen (b0165) 2003; 125 Pope-Ford, R., Jiang, Z., 2013. Neck and Shoulder Muscle Coactivations Assessment: A Study of Dentists. In: IIE Annual Conference. Proceedings. Hogan (b0065) 1984; 29 Lee, S.-H., Terzopoulos, D., 2006. Heads up!: biomechanical modeling and neuromuscular control of the neck. In: ACM Transactions on Graphics (TOG). Vasavada, Li, Delp (b0175) 1998; 23 Bottasso, Prilutsky, Croce, Imberti, Sartirana (b0015) 2006; 16 Eckner, Oh, Joshi, Richardson, Ashton-Miller (b0050) 2014; 42 Keshner, Campbell, Katz, Peterson (b0075) 1989; 75 McKay, Ting (b0100) 2012; 8 Crowninshield, Brand (b0030) 1981; 14 Borghuis, Hof, Lemmink (b0010) 2008; 38 Siegmund, Sanderson, Myers, Inglis (b0155) 2003; 36 de Bruijn, Van der Helm, Happee (b0035) 2016; 36 Dibb, Cox, Nightingale, Luck, Cutcliffe, Myers, Arbogast, Seacrist, Bass (b0045) 2013; 14 Chancey, Nightingale, Van Ee, Knaub, Myers (b0025) 2003; 47 Monaco, Coscia, Micera (b0120) 2011; 2011 Herzog, Binding (b0060) 1992; 111 Stein (b0160) 1987; 29 Blackburn, Guskiewicz, Petschauer, Prentice (b0005) 2000; 9 Lecompte, Maïsetti, Guillaume, Portero (b0080) 2007; 15 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0040) 2007; 54 Riemann, Lephart (b0140) 2002; 37 Prilutsky, Zatsiorsky (b0130) 2002; 30 Shadmehr (b0145) 1993; 25 Millard, M., Delp, S., 2012. A computationally efficient muscle model. In: ASME 2012 Summer Bioengineering Conference. Rashedi, Khalaf, Nassajian, Nasseroleslami, Parnianpour (b0135) 2010; 224 Cazzola, Holsgrove, Preatoni, Gill, Trewartha (b0020) 2017; 12 Madhavan, Shields (b0095) 2009; 1 Milner, Cloutier, Leger, Franklin (b0115) 1995; 107 Thelen, Anderson, Delp (b0170) 2003; 36 Rashedi (10.1016/j.jbiomech.2018.01.030_b0135) 2010; 224 Delp (10.1016/j.jbiomech.2018.01.030_b0040) 2007; 54 Lee (10.1016/j.jbiomech.2018.01.030_b0085) 2016; 4 Keshner (10.1016/j.jbiomech.2018.01.030_b0075) 1989; 75 Shadmehr (10.1016/j.jbiomech.2018.01.030_b0150) 1992; 66 Crowninshield (10.1016/j.jbiomech.2018.01.030_b0030) 1981; 14 Shadmehr (10.1016/j.jbiomech.2018.01.030_b0145) 1993; 25 Stein (10.1016/j.jbiomech.2018.01.030_b0160) 1987; 29 Borghuis (10.1016/j.jbiomech.2018.01.030_b0010) 2008; 38 McKay (10.1016/j.jbiomech.2018.01.030_b0100) 2012; 8 Riemann (10.1016/j.jbiomech.2018.01.030_b0140) 2002; 37 Dibb (10.1016/j.jbiomech.2018.01.030_b0045) 2013; 14 10.1016/j.jbiomech.2018.01.030_b0070 Prilutsky (10.1016/j.jbiomech.2018.01.030_b0130) 2002; 30 10.1016/j.jbiomech.2018.01.030_b0090 Hogan (10.1016/j.jbiomech.2018.01.030_b0065) 1984; 29 Thelen (10.1016/j.jbiomech.2018.01.030_b0170) 2003; 36 Siegmund (10.1016/j.jbiomech.2018.01.030_b0155) 2003; 36 Blackburn (10.1016/j.jbiomech.2018.01.030_b0005) 2000; 9 de Bruijn (10.1016/j.jbiomech.2018.01.030_b0035) 2016; 36 Fanta (10.1016/j.jbiomech.2018.01.030_b0055) 2013; 34 Monaco (10.1016/j.jbiomech.2018.01.030_b0120) 2011; 2011 Thelen (10.1016/j.jbiomech.2018.01.030_b0165) 2003; 125 Madhavan (10.1016/j.jbiomech.2018.01.030_b0095) 2009; 1 Vasavada (10.1016/j.jbiomech.2018.01.030_b0175) 1998; 23 Lecompte (10.1016/j.jbiomech.2018.01.030_b0080) 2007; 15 Milner (10.1016/j.jbiomech.2018.01.030_b0115) 1995; 107 Herzog (10.1016/j.jbiomech.2018.01.030_b0060) 1992; 111 Millard (10.1016/j.jbiomech.2018.01.030_b0110) 2013; 135 Chancey (10.1016/j.jbiomech.2018.01.030_b0025) 2003; 47 Eckner (10.1016/j.jbiomech.2018.01.030_b0050) 2014; 42 10.1016/j.jbiomech.2018.01.030_b0105 10.1016/j.jbiomech.2018.01.030_b0125 Bottasso (10.1016/j.jbiomech.2018.01.030_b0015) 2006; 16 Cazzola (10.1016/j.jbiomech.2018.01.030_b0020) 2017; 12 |
| References_xml | – volume: 25 start-page: 228 year: 1993 end-page: 241 ident: b0145 article-title: Control of equilibrium position and stiffness through postural modules publication-title: J. Motor Behav. – volume: 12 start-page: e0169329 year: 2017 ident: b0020 article-title: Cervical spine injuries: a whole-body musculoskeletal model for the analysis of spinal loading publication-title: PLOS ONE – reference: Lee, S.-H., Terzopoulos, D., 2006. Heads up!: biomechanical modeling and neuromuscular control of the neck. In: ACM Transactions on Graphics (TOG). – volume: 36 start-page: 473 year: 2003 end-page: 482 ident: b0155 article-title: Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations publication-title: J. Biomech. – reference: Joaquim, R.R.A., Martins, A.N., Jason Hicken, Juan Alonso, 2016. Multidisciplinary Design Optimization. – volume: 14 start-page: 793 year: 1981 end-page: 801 ident: b0030 article-title: A physiologically based criterion of muscle force prediction in locomotion publication-title: J. Biomech. – volume: 23 start-page: 412 year: 1998 end-page: 422 ident: b0175 article-title: Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles publication-title: Spine – volume: 4 start-page: e1638 year: 2016 ident: b0085 article-title: Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB publication-title: PeerJ – volume: 107 start-page: 293 year: 1995 end-page: 305 ident: b0115 article-title: Inability to activate muscles maximally during cocontraction and the effect on joint stiffness publication-title: Exp. Brain Res. – volume: 2011 start-page: 8263 year: 2011 end-page: 8266 ident: b0120 article-title: Cost function tuning improves muscle force estimation computed by static optimization during walking publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc – volume: 38 start-page: 893 year: 2008 end-page: 916 ident: b0010 article-title: The importance of sensory-motor control in providing core stability publication-title: Sports Med. – volume: 75 start-page: 335 year: 1989 end-page: 344 ident: b0075 article-title: Neck muscle activation patterns in humans during isometric head stabilization publication-title: Exp. Brain Res. – reference: Millard, M., Delp, S., 2012. A computationally efficient muscle model. In: ASME 2012 Summer Bioengineering Conference. – reference: Pope-Ford, R., Jiang, Z., 2013. Neck and Shoulder Muscle Coactivations Assessment: A Study of Dentists. In: IIE Annual Conference. Proceedings. – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: b0040 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. – volume: 135 start-page: 021005 year: 2013 ident: b0110 article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics publication-title: J. Biomech. Eng. – volume: 29 start-page: 143 year: 1987 end-page: 151 ident: b0160 article-title: Large sample properties of simulations using Latin hypercube sampling publication-title: Technometrics – volume: 29 start-page: 681 year: 1984 end-page: 690 ident: b0065 article-title: Adaptive control of mechanical impedance by coactivation of antagonist muscles publication-title: IEEE Trans. Autom. Control – volume: 15 start-page: 29 year: 2007 end-page: 36 ident: b0080 article-title: Agonist and antagonist EMG activity of neck muscles during maximal isometric flexion and extension at different positions in young healthy men and women publication-title: Isokinet. Exer. Sci. – volume: 34 year: 2013 ident: b0055 article-title: Pre-activation and muscle activity during frontal impact in relation to whiplash associated disorders publication-title: Neuroendocrinol. Lett. – volume: 224 start-page: 487 year: 2010 end-page: 501 ident: b0135 article-title: How does the central nervous system address the kinetic redundancy in the lumbar spine? Three-dimensional isometric exertions with 18 Hill-model-based muscle fascicles at the L4–L5 level publication-title: Proc. Inst. Mech. Eng. [H] – volume: 66 start-page: 463 year: 1992 end-page: 477 ident: b0150 article-title: A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system publication-title: Biol. Cybernet. – volume: 16 start-page: 123 year: 2006 end-page: 154 ident: b0015 article-title: A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system publication-title: Multibody Sys. Dyn. – volume: 30 start-page: 32 year: 2002 end-page: 38 ident: b0130 article-title: Optimization-based models of muscle coordination publication-title: Exerc. Sport Sci. Rev. – volume: 1 start-page: 319 year: 2009 end-page: 328 ident: b0095 article-title: Movement accuracy changes muscle-activation strategies in female subjects during a novel single-leg weight-bearing task publication-title: Pm&R – volume: 8 year: 2012 ident: b0100 article-title: Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts publication-title: Plos Comput. Biol. – volume: 36 start-page: 321 year: 2003 end-page: 328 ident: b0170 article-title: Generating dynamic simulations of movement using computed muscle control publication-title: J. Biomech. – volume: 111 start-page: 217 year: 1992 end-page: 229 ident: b0060 article-title: Predictions of antagonistic muscular-activity using nonlinear optimization publication-title: Math. Biosci. – volume: 37 start-page: 80 year: 2002 ident: b0140 article-title: The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability publication-title: J. Athletic Train. – volume: 125 start-page: 70 year: 2003 end-page: 77 ident: b0165 article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults publication-title: J. Biomech. Eng. – volume: 14 start-page: S116 year: 2013 end-page: S127 ident: b0045 article-title: Importance of muscle activations for biofidelic pediatric neck response in computational models publication-title: Traffic Inj Prev – volume: 47 start-page: 135 year: 2003 ident: b0025 article-title: Improved estimation of human neck tensile tolerance: reducing the range of reported tolerance using anthropometrically correct muscles and optimized physiologic initial conditions publication-title: Stapp Car Crash J. – volume: 36 start-page: 339 year: 2016 end-page: 362 ident: b0035 article-title: Analysis of isometric cervical strength with a nonlinear musculoskeletal model with 48 degrees of freedom publication-title: Multibody Sys.Dyn. – volume: 42 start-page: 566 year: 2014 end-page: 576 ident: b0050 article-title: Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads publication-title: Am. J. sports Med. – volume: 9 start-page: 315 year: 2000 end-page: 328 ident: b0005 article-title: Balance and joint stability: the relative contributions of proprioception and muscular strength publication-title: J. Sport Rehabil. – volume: 9 start-page: 315 year: 2000 ident: 10.1016/j.jbiomech.2018.01.030_b0005 article-title: Balance and joint stability: the relative contributions of proprioception and muscular strength publication-title: J. Sport Rehabil. doi: 10.1123/jsr.9.4.315 – volume: 34 year: 2013 ident: 10.1016/j.jbiomech.2018.01.030_b0055 article-title: Pre-activation and muscle activity during frontal impact in relation to whiplash associated disorders publication-title: Neuroendocrinol. Lett. – volume: 125 start-page: 70 year: 2003 ident: 10.1016/j.jbiomech.2018.01.030_b0165 article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults publication-title: J. Biomech. Eng. doi: 10.1115/1.1531112 – volume: 8 year: 2012 ident: 10.1016/j.jbiomech.2018.01.030_b0100 article-title: Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts publication-title: Plos Comput. Biol. doi: 10.1371/journal.pcbi.1002465 – volume: 2011 start-page: 8263 year: 2011 ident: 10.1016/j.jbiomech.2018.01.030_b0120 article-title: Cost function tuning improves muscle force estimation computed by static optimization during walking publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc – volume: 38 start-page: 893 year: 2008 ident: 10.1016/j.jbiomech.2018.01.030_b0010 article-title: The importance of sensory-motor control in providing core stability publication-title: Sports Med. doi: 10.2165/00007256-200838110-00002 – volume: 42 start-page: 566 year: 2014 ident: 10.1016/j.jbiomech.2018.01.030_b0050 article-title: Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads publication-title: Am. J. sports Med. doi: 10.1177/0363546513517869 – volume: 111 start-page: 217 year: 1992 ident: 10.1016/j.jbiomech.2018.01.030_b0060 article-title: Predictions of antagonistic muscular-activity using nonlinear optimization publication-title: Math. Biosci. doi: 10.1016/0025-5564(92)90071-4 – volume: 12 start-page: e0169329 year: 2017 ident: 10.1016/j.jbiomech.2018.01.030_b0020 article-title: Cervical spine injuries: a whole-body musculoskeletal model for the analysis of spinal loading publication-title: PLOS ONE doi: 10.1371/journal.pone.0169329 – volume: 36 start-page: 321 year: 2003 ident: 10.1016/j.jbiomech.2018.01.030_b0170 article-title: Generating dynamic simulations of movement using computed muscle control publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00432-3 – volume: 37 start-page: 80 year: 2002 ident: 10.1016/j.jbiomech.2018.01.030_b0140 article-title: The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability publication-title: J. Athletic Train. – volume: 4 start-page: e1638 year: 2016 ident: 10.1016/j.jbiomech.2018.01.030_b0085 article-title: Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB publication-title: PeerJ doi: 10.7717/peerj.1638 – volume: 1 start-page: 319 year: 2009 ident: 10.1016/j.jbiomech.2018.01.030_b0095 article-title: Movement accuracy changes muscle-activation strategies in female subjects during a novel single-leg weight-bearing task publication-title: Pm&R doi: 10.1016/j.pmrj.2009.01.002 – volume: 36 start-page: 473 year: 2003 ident: 10.1016/j.jbiomech.2018.01.030_b0155 article-title: Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00458-X – volume: 15 start-page: 29 year: 2007 ident: 10.1016/j.jbiomech.2018.01.030_b0080 article-title: Agonist and antagonist EMG activity of neck muscles during maximal isometric flexion and extension at different positions in young healthy men and women publication-title: Isokinet. Exer. Sci. doi: 10.3233/IES-2007-0268 – volume: 36 start-page: 339 year: 2016 ident: 10.1016/j.jbiomech.2018.01.030_b0035 article-title: Analysis of isometric cervical strength with a nonlinear musculoskeletal model with 48 degrees of freedom publication-title: Multibody Sys.Dyn. doi: 10.1007/s11044-015-9461-z – volume: 107 start-page: 293 year: 1995 ident: 10.1016/j.jbiomech.2018.01.030_b0115 article-title: Inability to activate muscles maximally during cocontraction and the effect on joint stiffness publication-title: Exp. Brain Res. doi: 10.1007/BF00230049 – volume: 224 start-page: 487 year: 2010 ident: 10.1016/j.jbiomech.2018.01.030_b0135 article-title: How does the central nervous system address the kinetic redundancy in the lumbar spine? Three-dimensional isometric exertions with 18 Hill-model-based muscle fascicles at the L4–L5 level publication-title: Proc. Inst. Mech. Eng. [H] doi: 10.1243/09544119JEIM668 – ident: 10.1016/j.jbiomech.2018.01.030_b0125 – volume: 30 start-page: 32 year: 2002 ident: 10.1016/j.jbiomech.2018.01.030_b0130 article-title: Optimization-based models of muscle coordination publication-title: Exerc. Sport Sci. Rev. doi: 10.1097/00003677-200201000-00007 – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.jbiomech.2018.01.030_b0040 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – ident: 10.1016/j.jbiomech.2018.01.030_b0070 – ident: 10.1016/j.jbiomech.2018.01.030_b0090 doi: 10.1145/1179352.1142013 – volume: 135 start-page: 021005 year: 2013 ident: 10.1016/j.jbiomech.2018.01.030_b0110 article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics publication-title: J. Biomech. Eng. doi: 10.1115/1.4023390 – volume: 66 start-page: 463 year: 1992 ident: 10.1016/j.jbiomech.2018.01.030_b0150 article-title: A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system publication-title: Biol. Cybernet. doi: 10.1007/BF00204111 – volume: 75 start-page: 335 year: 1989 ident: 10.1016/j.jbiomech.2018.01.030_b0075 article-title: Neck muscle activation patterns in humans during isometric head stabilization publication-title: Exp. Brain Res. doi: 10.1007/BF00247939 – volume: 25 start-page: 228 year: 1993 ident: 10.1016/j.jbiomech.2018.01.030_b0145 article-title: Control of equilibrium position and stiffness through postural modules publication-title: J. Motor Behav. doi: 10.1080/00222895.1993.9942052 – volume: 14 start-page: S116 year: 2013 ident: 10.1016/j.jbiomech.2018.01.030_b0045 article-title: Importance of muscle activations for biofidelic pediatric neck response in computational models publication-title: Traffic Inj Prev doi: 10.1080/15389588.2013.806795 – ident: 10.1016/j.jbiomech.2018.01.030_b0105 doi: 10.1115/SBC2012-80230 – volume: 29 start-page: 143 year: 1987 ident: 10.1016/j.jbiomech.2018.01.030_b0160 article-title: Large sample properties of simulations using Latin hypercube sampling publication-title: Technometrics doi: 10.1080/00401706.1987.10488205 – volume: 47 start-page: 135 year: 2003 ident: 10.1016/j.jbiomech.2018.01.030_b0025 article-title: Improved estimation of human neck tensile tolerance: reducing the range of reported tolerance using anthropometrically correct muscles and optimized physiologic initial conditions publication-title: Stapp Car Crash J. – volume: 29 start-page: 681 year: 1984 ident: 10.1016/j.jbiomech.2018.01.030_b0065 article-title: Adaptive control of mechanical impedance by coactivation of antagonist muscles publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1984.1103644 – volume: 23 start-page: 412 year: 1998 ident: 10.1016/j.jbiomech.2018.01.030_b0175 article-title: Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles publication-title: Spine doi: 10.1097/00007632-199802150-00002 – volume: 14 start-page: 793 year: 1981 ident: 10.1016/j.jbiomech.2018.01.030_b0030 article-title: A physiologically based criterion of muscle force prediction in locomotion publication-title: J. Biomech. doi: 10.1016/0021-9290(81)90035-X – volume: 16 start-page: 123 year: 2006 ident: 10.1016/j.jbiomech.2018.01.030_b0015 article-title: A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system publication-title: Multibody Sys. Dyn. doi: 10.1007/s11044-006-9019-1 |
| SSID | ssj0007479 |
| Score | 2.3113172 |
| Snippet | Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 127 |
| SubjectTerms | Computer simulation Feature extraction Human behavior Human response Kinematics Mathematical models Maximization Metabolism Modelling Muscle coactivation Muscle contraction Muscle control Muscles Musculoskeletal modeling Neck OpenSim Optimization Optimization techniques Spine Stiffening Stiffness Studies |
| Title | Exploring novel objective functions for simulating muscle coactivation in the neck |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018300629 https://dx.doi.org/10.1016/j.jbiomech.2018.01.030 https://www.ncbi.nlm.nih.gov/pubmed/29452757 https://www.proquest.com/docview/2019867508 https://www.proquest.com/docview/2003047637 |
| Volume | 71 |
| WOSCitedRecordID | wos000430765500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1873-2380 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1873-2380 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (ProQuest) customDbUrl: eissn: 1873-2380 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-ND6HtYWNlY91YZaRpb4Y4iWPnCbGJai8tFRpS36zEcaUWmjDSIvHfc3acjIcxJu0lSpxcPnSXu9_5zncAXwq0AjlLNJVaGmoL3lG0M5qif8ujjOeGR4VrNiHGYzmdphM_4Vb7tMpWJzpFXVTazpGjk47kiG4DeXLzi9quUTa66ltobMCWrZIQutS9SaeJESr7FA9GEQYEj1YIL44Wbn27C0gw6Up32kzoPxunp8CnM0LDN__7-rvw2sNPctrIy1t4Ycoe7J2W6Hov78lX4hJC3Ux7D149qlXYg52Rj8LvwUWXuEfK6s5ckypfNHqTWDPpJJkgGCb1fOm6g-GFy3WNDyS6sgspmmlgMi8Jwk9SGn31Di6HZz-__6C-NwPV6COtaJLIWSGCjJlc5mnGDUtmUSJiHDDoMzKb4snCImNSm8hIFkSay5mJdYg7OufRe9gsq9J8AJJmCCJkjONFHBsuMxNJgYKF2kag9Zz1gbdMUdoXLrf9M65Vm6G2UC0zlWWmCphCZvbhuKO7aUp3PEshWp6rdmEqqlKF1uVZyrSj9NClgST_RHvQiozyCqRWv-WlD4fdafz1bTwnK021ttfYuDYaCNGH_UYsuw8N05iHgouPf7_5J3hp38SGxxg7gM3V7dp8hm19t5rXtwPYEFPhtnIAW9_OxpMLPBqF5wP3nz0AdrUrzQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBfE48EgLpBRYJOC21Gt7vesDQhVQtWobECpSb4u93kgJjV3qpFX_FL-RmfWDHoBy6YFb5HgSO5nHN55vZgBeFBgFcpFYrq12nAbecYwzlmN-K6NM5k5GhV82oUYjfXiYflqCH10vDNEqO5_oHXVRWXpGjkk6iiO6DfTb4--ctkZRdbVbodGoxa47P8OUrX6z8x7_35dhuPXh4N02b7cKcIvofs6TRI8LFWTC5TpPM-lEMo4SFeMBh9mOIHKiCItMaOsip0UQWanHLrYhvrA5bYlAl38tpkyIqILhx97zIzRvKSWCI-wILnQkT19PfT-9L4AI7UeFEvP698HwT2DXB72tu__bz3UP7rTwmm029nAfllw5gJXNMptXs3P2innCq68kDOD2hVmMA7ix37IMVuBzT0xkZXXqjliVT5u4wAgGeEtlCPZZPZn57Wd44mxR4xcyW1GjSPOYm01KhvCalc5-W4UvV3LbD2C5rEr3CFiaIUjSMR4v4thJnblIKzQc9KYK0cF4CLJTAmPbwey0H-TIdAy8qemUx5DymEAYVJ4hbPRyx81okkslVKdjpmu8xVBhMHpeKpn2ki00ayDXP8mudypqWgdZm1_6OYTn_dvo2qhelZWuWtA5VLfHAKiG8LAxg_5GwzSWoZJq7e8f_gxubh_s75m9ndHuY7hFV0WlQCHWYXl-snBP4Lo9nU_qk6fekhl8vWpb-AnD5IQN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKargwCPlESiwSMBtqdf2etcHhAptRFWIogqk3hZ7vZYSGrvUSVH_Gr-O2fXa9ACUSw_cIseT2Mk8vvF8MwPwvMAokLNEU6mloXbgHcU4oynmtzzKeG54VLhlE2IykUdH6XQNfnS9MJZW2flE56iLWttn5Jikozii20Bul54WMd0dvzn5Ru0GKVtp7dZptCpyYM6_Y_rWvN7fxf_6RRiO9z69e0_9hgGqEekvaZLIshBBxkwu8zTjhiVllIgYDxjMfJglKrKwyJjUJjKSBZHmsjSxDvGFzu3GCHT_6wJBRjyA9bd7k-lhHwcQqHuCCaMIQoIL_cnzV3PXXe_KIUy6waGWh_370Pgn6OtC4PjW__zj3YabHniTndZS7sCaqYawuVNly3pxTl4SR4V1NYYh3LgwpXEIGx89_2ATDnvKIqnqM3NM6nzeRgxiAYKzYYJpAGlmC7cXDU9crBr8QqJr20LSPgAns4og8CaV0V_vwucrue17MKjqyjwAkmYIn2SMx4s4NlxmJpICTQr9rEDcUI6AdwqhtB_ZbjeHHKuOmzdXnSIpq0gqYAoVaQTbvdxJO7TkUgnR6ZvqWnIxiCiMq5dKpr2kB20tGPsn2a1OXZV3nY36pasjeNa_jU7PVrKyytQre46t6GNoFCO435pEf6NhGvNQcPHw7x_-FDbQBNSH_cnBI7huL8rWCBnbgsHydGUewzV9tpw1p0-8WRP4ctXG8BOTE44q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+novel+objective+functions+for+simulating+muscle+coactivation+in+the+neck&rft.jtitle=Journal+of+biomechanics&rft.au=Mortensen%2C+J.&rft.au=Trkov%2C+M.&rft.au=Merryweather%2C+A.&rft.date=2018-04-11&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=71&rft.spage=127&rft.epage=134&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.01.030&rft.externalDocID=S0021929018300629 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |