Exploring novel objective functions for simulating muscle coactivation in the neck

Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through mus...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of biomechanics Ročník 71; s. 127 - 134
Hlavní autori: Mortensen, J., Trkov, M., Merryweather, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 11.04.2018
Elsevier Limited
Predmet:
ISSN:0021-9290, 1873-2380, 1873-2380
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects.
AbstractList Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects.
Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects.Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects.
Author Merryweather, A.
Trkov, M.
Mortensen, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Mortensen
  fullname: Mortensen, J.
  email: jon.mortensen@utah.edu
– sequence: 2
  givenname: M.
  surname: Trkov
  fullname: Trkov, M.
– sequence: 3
  givenname: A.
  surname: Merryweather
  fullname: Merryweather, A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29452757$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1q3DAUhUVJSSZpXiEIuunG7pX_JEMpLSFpC4FCaddClq8bObI0leyhefvIncxmNulKF_Gdo6tzzsmJ8w4JuWKQM2DN-zEfO-Mn1Pd5AUzkwHIo4RXZMMHLrCgFnJANQMGytmjhjJzHOAIAr3h7Ss6KtqoLXvMN-XHzd2t9MO43dX6HlvpuRD2bHdJhcWnwLtLBBxrNtFg1r-C0RG2Raq9WUK0MNY7O90gd6oc35PWgbMTL5_OC_Lq9-Xn9Nbv7_uXb9ee7TFdtO2dNI4aeg2LYia5VNbJmKBtepQsUFTDOoGVFr5jQWKJgUOpaDFjpIg26q8sL8m7vuw3-z4JxlpOJGq1VDv0SZQEpkYo3JU_o2yN09EtwabtEsVY0vAaRqKtnaukm7OU2mEmFR3lIKwEf9oAOPsaAg9Rm_vf_OShjJQO5liNHeShntRcSmEyrJHlzJD-88KLw016IKc6dwSCjNug09iaksmTvzcsWH48stDXOaGUf8PF_DJ4AvyHCBg
CitedBy_id crossref_primary_10_3390_mi11100931
crossref_primary_10_1016_j_jbiomech_2020_109754
crossref_primary_10_1097_PHM_0000000000001223
crossref_primary_10_1016_j_jbiomech_2019_109411
crossref_primary_10_1007_s11517_023_02817_y
crossref_primary_10_1093_tse_tdab016
crossref_primary_10_1038_s41598_023_49865_w
crossref_primary_10_1007_s10439_024_03576_z
Cites_doi 10.1123/jsr.9.4.315
10.1115/1.1531112
10.1371/journal.pcbi.1002465
10.2165/00007256-200838110-00002
10.1177/0363546513517869
10.1016/0025-5564(92)90071-4
10.1371/journal.pone.0169329
10.1016/S0021-9290(02)00432-3
10.7717/peerj.1638
10.1016/j.pmrj.2009.01.002
10.1016/S0021-9290(02)00458-X
10.3233/IES-2007-0268
10.1007/s11044-015-9461-z
10.1007/BF00230049
10.1243/09544119JEIM668
10.1097/00003677-200201000-00007
10.1109/TBME.2007.901024
10.1145/1179352.1142013
10.1115/1.4023390
10.1007/BF00204111
10.1007/BF00247939
10.1080/00222895.1993.9942052
10.1080/15389588.2013.806795
10.1115/SBC2012-80230
10.1080/00401706.1987.10488205
10.1109/TAC.1984.1103644
10.1097/00007632-199802150-00002
10.1016/0021-9290(81)90035-X
10.1007/s11044-006-9019-1
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Apr 11, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Apr 11, 2018
DBID AAYXX
CITATION
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2018.01.030
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 134
ExternalDocumentID 29452757
10_1016_j_jbiomech_2018_01_030
S0021929018300629
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
.GJ
29J
53G
9DU
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFHD
AFJKZ
AGHFR
AGQPQ
AI.
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
AGCQF
AGRNS
ALIPV
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c499t-668fd70a1eb8b9a5e16f3674a1ee8401710912da18ce3e8103c58fe4c23c5cb53
IEDL.DBID M7P
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430765500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9290
1873-2380
IngestDate Thu Oct 02 12:56:24 EDT 2025
Sat Nov 29 14:30:42 EST 2025
Mon Jul 21 05:57:45 EDT 2025
Tue Nov 18 22:10:52 EST 2025
Sat Nov 29 07:02:45 EST 2025
Fri Feb 23 02:20:32 EST 2024
Tue Oct 14 19:30:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords OpenSim
Muscle control
Optimization techniques
Musculoskeletal modeling
Muscle coactivation
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-668fd70a1eb8b9a5e16f3674a1ee8401710912da18ce3e8103c58fe4c23c5cb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29452757
PQID 2019867508
PQPubID 1226346
PageCount 8
ParticipantIDs proquest_miscellaneous_2003047637
proquest_journals_2019867508
pubmed_primary_29452757
crossref_citationtrail_10_1016_j_jbiomech_2018_01_030
crossref_primary_10_1016_j_jbiomech_2018_01_030
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_01_030
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_01_030
PublicationCentury 2000
PublicationDate 2018-04-11
PublicationDateYYYYMMDD 2018-04-11
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Fanta, Hadraba, Lopot, Kubový, Bouček, Jelen (b0055) 2013; 34
Millard, Uchida, Seth, Delp (b0110) 2013; 135
Joaquim, R.R.A., Martins, A.N., Jason Hicken, Juan Alonso, 2016. Multidisciplinary Design Optimization.
Lee, Umberger (b0085) 2016; 4
Shadmehr, Arbib (b0150) 1992; 66
Thelen (b0165) 2003; 125
Pope-Ford, R., Jiang, Z., 2013. Neck and Shoulder Muscle Coactivations Assessment: A Study of Dentists. In: IIE Annual Conference. Proceedings.
Hogan (b0065) 1984; 29
Lee, S.-H., Terzopoulos, D., 2006. Heads up!: biomechanical modeling and neuromuscular control of the neck. In: ACM Transactions on Graphics (TOG).
Vasavada, Li, Delp (b0175) 1998; 23
Bottasso, Prilutsky, Croce, Imberti, Sartirana (b0015) 2006; 16
Eckner, Oh, Joshi, Richardson, Ashton-Miller (b0050) 2014; 42
Keshner, Campbell, Katz, Peterson (b0075) 1989; 75
McKay, Ting (b0100) 2012; 8
Crowninshield, Brand (b0030) 1981; 14
Borghuis, Hof, Lemmink (b0010) 2008; 38
Siegmund, Sanderson, Myers, Inglis (b0155) 2003; 36
de Bruijn, Van der Helm, Happee (b0035) 2016; 36
Dibb, Cox, Nightingale, Luck, Cutcliffe, Myers, Arbogast, Seacrist, Bass (b0045) 2013; 14
Chancey, Nightingale, Van Ee, Knaub, Myers (b0025) 2003; 47
Monaco, Coscia, Micera (b0120) 2011; 2011
Herzog, Binding (b0060) 1992; 111
Stein (b0160) 1987; 29
Blackburn, Guskiewicz, Petschauer, Prentice (b0005) 2000; 9
Lecompte, Maïsetti, Guillaume, Portero (b0080) 2007; 15
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0040) 2007; 54
Riemann, Lephart (b0140) 2002; 37
Prilutsky, Zatsiorsky (b0130) 2002; 30
Shadmehr (b0145) 1993; 25
Millard, M., Delp, S., 2012. A computationally efficient muscle model. In: ASME 2012 Summer Bioengineering Conference.
Rashedi, Khalaf, Nassajian, Nasseroleslami, Parnianpour (b0135) 2010; 224
Cazzola, Holsgrove, Preatoni, Gill, Trewartha (b0020) 2017; 12
Madhavan, Shields (b0095) 2009; 1
Milner, Cloutier, Leger, Franklin (b0115) 1995; 107
Thelen, Anderson, Delp (b0170) 2003; 36
Rashedi (10.1016/j.jbiomech.2018.01.030_b0135) 2010; 224
Delp (10.1016/j.jbiomech.2018.01.030_b0040) 2007; 54
Lee (10.1016/j.jbiomech.2018.01.030_b0085) 2016; 4
Keshner (10.1016/j.jbiomech.2018.01.030_b0075) 1989; 75
Shadmehr (10.1016/j.jbiomech.2018.01.030_b0150) 1992; 66
Crowninshield (10.1016/j.jbiomech.2018.01.030_b0030) 1981; 14
Shadmehr (10.1016/j.jbiomech.2018.01.030_b0145) 1993; 25
Stein (10.1016/j.jbiomech.2018.01.030_b0160) 1987; 29
Borghuis (10.1016/j.jbiomech.2018.01.030_b0010) 2008; 38
McKay (10.1016/j.jbiomech.2018.01.030_b0100) 2012; 8
Riemann (10.1016/j.jbiomech.2018.01.030_b0140) 2002; 37
Dibb (10.1016/j.jbiomech.2018.01.030_b0045) 2013; 14
10.1016/j.jbiomech.2018.01.030_b0070
Prilutsky (10.1016/j.jbiomech.2018.01.030_b0130) 2002; 30
10.1016/j.jbiomech.2018.01.030_b0090
Hogan (10.1016/j.jbiomech.2018.01.030_b0065) 1984; 29
Thelen (10.1016/j.jbiomech.2018.01.030_b0170) 2003; 36
Siegmund (10.1016/j.jbiomech.2018.01.030_b0155) 2003; 36
Blackburn (10.1016/j.jbiomech.2018.01.030_b0005) 2000; 9
de Bruijn (10.1016/j.jbiomech.2018.01.030_b0035) 2016; 36
Fanta (10.1016/j.jbiomech.2018.01.030_b0055) 2013; 34
Monaco (10.1016/j.jbiomech.2018.01.030_b0120) 2011; 2011
Thelen (10.1016/j.jbiomech.2018.01.030_b0165) 2003; 125
Madhavan (10.1016/j.jbiomech.2018.01.030_b0095) 2009; 1
Vasavada (10.1016/j.jbiomech.2018.01.030_b0175) 1998; 23
Lecompte (10.1016/j.jbiomech.2018.01.030_b0080) 2007; 15
Milner (10.1016/j.jbiomech.2018.01.030_b0115) 1995; 107
Herzog (10.1016/j.jbiomech.2018.01.030_b0060) 1992; 111
Millard (10.1016/j.jbiomech.2018.01.030_b0110) 2013; 135
Chancey (10.1016/j.jbiomech.2018.01.030_b0025) 2003; 47
Eckner (10.1016/j.jbiomech.2018.01.030_b0050) 2014; 42
10.1016/j.jbiomech.2018.01.030_b0105
10.1016/j.jbiomech.2018.01.030_b0125
Bottasso (10.1016/j.jbiomech.2018.01.030_b0015) 2006; 16
Cazzola (10.1016/j.jbiomech.2018.01.030_b0020) 2017; 12
References_xml – volume: 25
  start-page: 228
  year: 1993
  end-page: 241
  ident: b0145
  article-title: Control of equilibrium position and stiffness through postural modules
  publication-title: J. Motor Behav.
– volume: 12
  start-page: e0169329
  year: 2017
  ident: b0020
  article-title: Cervical spine injuries: a whole-body musculoskeletal model for the analysis of spinal loading
  publication-title: PLOS ONE
– reference: Lee, S.-H., Terzopoulos, D., 2006. Heads up!: biomechanical modeling and neuromuscular control of the neck. In: ACM Transactions on Graphics (TOG).
– volume: 36
  start-page: 473
  year: 2003
  end-page: 482
  ident: b0155
  article-title: Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations
  publication-title: J. Biomech.
– reference: Joaquim, R.R.A., Martins, A.N., Jason Hicken, Juan Alonso, 2016. Multidisciplinary Design Optimization.
– volume: 14
  start-page: 793
  year: 1981
  end-page: 801
  ident: b0030
  article-title: A physiologically based criterion of muscle force prediction in locomotion
  publication-title: J. Biomech.
– volume: 23
  start-page: 412
  year: 1998
  end-page: 422
  ident: b0175
  article-title: Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles
  publication-title: Spine
– volume: 4
  start-page: e1638
  year: 2016
  ident: b0085
  article-title: Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
  publication-title: PeerJ
– volume: 107
  start-page: 293
  year: 1995
  end-page: 305
  ident: b0115
  article-title: Inability to activate muscles maximally during cocontraction and the effect on joint stiffness
  publication-title: Exp. Brain Res.
– volume: 2011
  start-page: 8263
  year: 2011
  end-page: 8266
  ident: b0120
  article-title: Cost function tuning improves muscle force estimation computed by static optimization during walking
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc
– volume: 38
  start-page: 893
  year: 2008
  end-page: 916
  ident: b0010
  article-title: The importance of sensory-motor control in providing core stability
  publication-title: Sports Med.
– volume: 75
  start-page: 335
  year: 1989
  end-page: 344
  ident: b0075
  article-title: Neck muscle activation patterns in humans during isometric head stabilization
  publication-title: Exp. Brain Res.
– reference: Millard, M., Delp, S., 2012. A computationally efficient muscle model. In: ASME 2012 Summer Bioengineering Conference.
– reference: Pope-Ford, R., Jiang, Z., 2013. Neck and Shoulder Muscle Coactivations Assessment: A Study of Dentists. In: IIE Annual Conference. Proceedings.
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: b0040
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 135
  start-page: 021005
  year: 2013
  ident: b0110
  article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics
  publication-title: J. Biomech. Eng.
– volume: 29
  start-page: 143
  year: 1987
  end-page: 151
  ident: b0160
  article-title: Large sample properties of simulations using Latin hypercube sampling
  publication-title: Technometrics
– volume: 29
  start-page: 681
  year: 1984
  end-page: 690
  ident: b0065
  article-title: Adaptive control of mechanical impedance by coactivation of antagonist muscles
  publication-title: IEEE Trans. Autom. Control
– volume: 15
  start-page: 29
  year: 2007
  end-page: 36
  ident: b0080
  article-title: Agonist and antagonist EMG activity of neck muscles during maximal isometric flexion and extension at different positions in young healthy men and women
  publication-title: Isokinet. Exer. Sci.
– volume: 34
  year: 2013
  ident: b0055
  article-title: Pre-activation and muscle activity during frontal impact in relation to whiplash associated disorders
  publication-title: Neuroendocrinol. Lett.
– volume: 224
  start-page: 487
  year: 2010
  end-page: 501
  ident: b0135
  article-title: How does the central nervous system address the kinetic redundancy in the lumbar spine? Three-dimensional isometric exertions with 18 Hill-model-based muscle fascicles at the L4–L5 level
  publication-title: Proc. Inst. Mech. Eng. [H]
– volume: 66
  start-page: 463
  year: 1992
  end-page: 477
  ident: b0150
  article-title: A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system
  publication-title: Biol. Cybernet.
– volume: 16
  start-page: 123
  year: 2006
  end-page: 154
  ident: b0015
  article-title: A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system
  publication-title: Multibody Sys. Dyn.
– volume: 30
  start-page: 32
  year: 2002
  end-page: 38
  ident: b0130
  article-title: Optimization-based models of muscle coordination
  publication-title: Exerc. Sport Sci. Rev.
– volume: 1
  start-page: 319
  year: 2009
  end-page: 328
  ident: b0095
  article-title: Movement accuracy changes muscle-activation strategies in female subjects during a novel single-leg weight-bearing task
  publication-title: Pm&R
– volume: 8
  year: 2012
  ident: b0100
  article-title: Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts
  publication-title: Plos Comput. Biol.
– volume: 36
  start-page: 321
  year: 2003
  end-page: 328
  ident: b0170
  article-title: Generating dynamic simulations of movement using computed muscle control
  publication-title: J. Biomech.
– volume: 111
  start-page: 217
  year: 1992
  end-page: 229
  ident: b0060
  article-title: Predictions of antagonistic muscular-activity using nonlinear optimization
  publication-title: Math. Biosci.
– volume: 37
  start-page: 80
  year: 2002
  ident: b0140
  article-title: The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability
  publication-title: J. Athletic Train.
– volume: 125
  start-page: 70
  year: 2003
  end-page: 77
  ident: b0165
  article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults
  publication-title: J. Biomech. Eng.
– volume: 14
  start-page: S116
  year: 2013
  end-page: S127
  ident: b0045
  article-title: Importance of muscle activations for biofidelic pediatric neck response in computational models
  publication-title: Traffic Inj Prev
– volume: 47
  start-page: 135
  year: 2003
  ident: b0025
  article-title: Improved estimation of human neck tensile tolerance: reducing the range of reported tolerance using anthropometrically correct muscles and optimized physiologic initial conditions
  publication-title: Stapp Car Crash J.
– volume: 36
  start-page: 339
  year: 2016
  end-page: 362
  ident: b0035
  article-title: Analysis of isometric cervical strength with a nonlinear musculoskeletal model with 48 degrees of freedom
  publication-title: Multibody Sys.Dyn.
– volume: 42
  start-page: 566
  year: 2014
  end-page: 576
  ident: b0050
  article-title: Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads
  publication-title: Am. J. sports Med.
– volume: 9
  start-page: 315
  year: 2000
  end-page: 328
  ident: b0005
  article-title: Balance and joint stability: the relative contributions of proprioception and muscular strength
  publication-title: J. Sport Rehabil.
– volume: 9
  start-page: 315
  year: 2000
  ident: 10.1016/j.jbiomech.2018.01.030_b0005
  article-title: Balance and joint stability: the relative contributions of proprioception and muscular strength
  publication-title: J. Sport Rehabil.
  doi: 10.1123/jsr.9.4.315
– volume: 34
  year: 2013
  ident: 10.1016/j.jbiomech.2018.01.030_b0055
  article-title: Pre-activation and muscle activity during frontal impact in relation to whiplash associated disorders
  publication-title: Neuroendocrinol. Lett.
– volume: 125
  start-page: 70
  year: 2003
  ident: 10.1016/j.jbiomech.2018.01.030_b0165
  article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1531112
– volume: 8
  year: 2012
  ident: 10.1016/j.jbiomech.2018.01.030_b0100
  article-title: Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts
  publication-title: Plos Comput. Biol.
  doi: 10.1371/journal.pcbi.1002465
– volume: 2011
  start-page: 8263
  year: 2011
  ident: 10.1016/j.jbiomech.2018.01.030_b0120
  article-title: Cost function tuning improves muscle force estimation computed by static optimization during walking
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc
– volume: 38
  start-page: 893
  year: 2008
  ident: 10.1016/j.jbiomech.2018.01.030_b0010
  article-title: The importance of sensory-motor control in providing core stability
  publication-title: Sports Med.
  doi: 10.2165/00007256-200838110-00002
– volume: 42
  start-page: 566
  year: 2014
  ident: 10.1016/j.jbiomech.2018.01.030_b0050
  article-title: Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads
  publication-title: Am. J. sports Med.
  doi: 10.1177/0363546513517869
– volume: 111
  start-page: 217
  year: 1992
  ident: 10.1016/j.jbiomech.2018.01.030_b0060
  article-title: Predictions of antagonistic muscular-activity using nonlinear optimization
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(92)90071-4
– volume: 12
  start-page: e0169329
  year: 2017
  ident: 10.1016/j.jbiomech.2018.01.030_b0020
  article-title: Cervical spine injuries: a whole-body musculoskeletal model for the analysis of spinal loading
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0169329
– volume: 36
  start-page: 321
  year: 2003
  ident: 10.1016/j.jbiomech.2018.01.030_b0170
  article-title: Generating dynamic simulations of movement using computed muscle control
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00432-3
– volume: 37
  start-page: 80
  year: 2002
  ident: 10.1016/j.jbiomech.2018.01.030_b0140
  article-title: The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability
  publication-title: J. Athletic Train.
– volume: 4
  start-page: e1638
  year: 2016
  ident: 10.1016/j.jbiomech.2018.01.030_b0085
  article-title: Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
  publication-title: PeerJ
  doi: 10.7717/peerj.1638
– volume: 1
  start-page: 319
  year: 2009
  ident: 10.1016/j.jbiomech.2018.01.030_b0095
  article-title: Movement accuracy changes muscle-activation strategies in female subjects during a novel single-leg weight-bearing task
  publication-title: Pm&R
  doi: 10.1016/j.pmrj.2009.01.002
– volume: 36
  start-page: 473
  year: 2003
  ident: 10.1016/j.jbiomech.2018.01.030_b0155
  article-title: Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00458-X
– volume: 15
  start-page: 29
  year: 2007
  ident: 10.1016/j.jbiomech.2018.01.030_b0080
  article-title: Agonist and antagonist EMG activity of neck muscles during maximal isometric flexion and extension at different positions in young healthy men and women
  publication-title: Isokinet. Exer. Sci.
  doi: 10.3233/IES-2007-0268
– volume: 36
  start-page: 339
  year: 2016
  ident: 10.1016/j.jbiomech.2018.01.030_b0035
  article-title: Analysis of isometric cervical strength with a nonlinear musculoskeletal model with 48 degrees of freedom
  publication-title: Multibody Sys.Dyn.
  doi: 10.1007/s11044-015-9461-z
– volume: 107
  start-page: 293
  year: 1995
  ident: 10.1016/j.jbiomech.2018.01.030_b0115
  article-title: Inability to activate muscles maximally during cocontraction and the effect on joint stiffness
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00230049
– volume: 224
  start-page: 487
  year: 2010
  ident: 10.1016/j.jbiomech.2018.01.030_b0135
  article-title: How does the central nervous system address the kinetic redundancy in the lumbar spine? Three-dimensional isometric exertions with 18 Hill-model-based muscle fascicles at the L4–L5 level
  publication-title: Proc. Inst. Mech. Eng. [H]
  doi: 10.1243/09544119JEIM668
– ident: 10.1016/j.jbiomech.2018.01.030_b0125
– volume: 30
  start-page: 32
  year: 2002
  ident: 10.1016/j.jbiomech.2018.01.030_b0130
  article-title: Optimization-based models of muscle coordination
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1097/00003677-200201000-00007
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2018.01.030_b0040
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– ident: 10.1016/j.jbiomech.2018.01.030_b0070
– ident: 10.1016/j.jbiomech.2018.01.030_b0090
  doi: 10.1145/1179352.1142013
– volume: 135
  start-page: 021005
  year: 2013
  ident: 10.1016/j.jbiomech.2018.01.030_b0110
  article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023390
– volume: 66
  start-page: 463
  year: 1992
  ident: 10.1016/j.jbiomech.2018.01.030_b0150
  article-title: A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00204111
– volume: 75
  start-page: 335
  year: 1989
  ident: 10.1016/j.jbiomech.2018.01.030_b0075
  article-title: Neck muscle activation patterns in humans during isometric head stabilization
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00247939
– volume: 25
  start-page: 228
  year: 1993
  ident: 10.1016/j.jbiomech.2018.01.030_b0145
  article-title: Control of equilibrium position and stiffness through postural modules
  publication-title: J. Motor Behav.
  doi: 10.1080/00222895.1993.9942052
– volume: 14
  start-page: S116
  year: 2013
  ident: 10.1016/j.jbiomech.2018.01.030_b0045
  article-title: Importance of muscle activations for biofidelic pediatric neck response in computational models
  publication-title: Traffic Inj Prev
  doi: 10.1080/15389588.2013.806795
– ident: 10.1016/j.jbiomech.2018.01.030_b0105
  doi: 10.1115/SBC2012-80230
– volume: 29
  start-page: 143
  year: 1987
  ident: 10.1016/j.jbiomech.2018.01.030_b0160
  article-title: Large sample properties of simulations using Latin hypercube sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– volume: 47
  start-page: 135
  year: 2003
  ident: 10.1016/j.jbiomech.2018.01.030_b0025
  article-title: Improved estimation of human neck tensile tolerance: reducing the range of reported tolerance using anthropometrically correct muscles and optimized physiologic initial conditions
  publication-title: Stapp Car Crash J.
– volume: 29
  start-page: 681
  year: 1984
  ident: 10.1016/j.jbiomech.2018.01.030_b0065
  article-title: Adaptive control of mechanical impedance by coactivation of antagonist muscles
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1984.1103644
– volume: 23
  start-page: 412
  year: 1998
  ident: 10.1016/j.jbiomech.2018.01.030_b0175
  article-title: Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles
  publication-title: Spine
  doi: 10.1097/00007632-199802150-00002
– volume: 14
  start-page: 793
  year: 1981
  ident: 10.1016/j.jbiomech.2018.01.030_b0030
  article-title: A physiologically based criterion of muscle force prediction in locomotion
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(81)90035-X
– volume: 16
  start-page: 123
  year: 2006
  ident: 10.1016/j.jbiomech.2018.01.030_b0015
  article-title: A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system
  publication-title: Multibody Sys. Dyn.
  doi: 10.1007/s11044-006-9019-1
SSID ssj0007479
Score 2.3113172
Snippet Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127
SubjectTerms Computer simulation
Feature extraction
Human behavior
Human response
Kinematics
Mathematical models
Maximization
Metabolism
Modelling
Muscle coactivation
Muscle contraction
Muscle control
Muscles
Musculoskeletal modeling
Neck
OpenSim
Optimization
Optimization techniques
Spine
Stiffening
Stiffness
Studies
Title Exploring novel objective functions for simulating muscle coactivation in the neck
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018300629
https://dx.doi.org/10.1016/j.jbiomech.2018.01.030
https://www.ncbi.nlm.nih.gov/pubmed/29452757
https://www.proquest.com/docview/2019867508
https://www.proquest.com/docview/2003047637
Volume 71
WOSCitedRecordID wos000430765500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (ProQuest)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-ND6HtYWNlY91YZaRpb4Y4iWPnCbGJai8tFRpS36zEcaUWmjDSIvHfc3acjIcxJu0lSpxcPnSXu9_5zncAXwq0AjlLNJVaGmoL3lG0M5qif8ujjOeGR4VrNiHGYzmdphM_4Vb7tMpWJzpFXVTazpGjk47kiG4DeXLzi9quUTa66ltobMCWrZIQutS9SaeJESr7FA9GEQYEj1YIL44Wbn27C0gw6Up32kzoPxunp8CnM0LDN__7-rvw2sNPctrIy1t4Ycoe7J2W6Hov78lX4hJC3Ux7D149qlXYg52Rj8LvwUWXuEfK6s5ckypfNHqTWDPpJJkgGCb1fOm6g-GFy3WNDyS6sgspmmlgMi8Jwk9SGn31Di6HZz-__6C-NwPV6COtaJLIWSGCjJlc5mnGDUtmUSJiHDDoMzKb4snCImNSm8hIFkSay5mJdYg7OufRe9gsq9J8AJJmCCJkjONFHBsuMxNJgYKF2kag9Zz1gbdMUdoXLrf9M65Vm6G2UC0zlWWmCphCZvbhuKO7aUp3PEshWp6rdmEqqlKF1uVZyrSj9NClgST_RHvQiozyCqRWv-WlD4fdafz1bTwnK021ttfYuDYaCNGH_UYsuw8N05iHgouPf7_5J3hp38SGxxg7gM3V7dp8hm19t5rXtwPYEFPhtnIAW9_OxpMLPBqF5wP3nz0AdrUrzQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBfE48EgLpBRYJOC21Gt7vesDQhVQtWobECpSb4u93kgJjV3qpFX_FL-RmfWDHoBy6YFb5HgSO5nHN55vZgBeFBgFcpFYrq12nAbecYwzlmN-K6NM5k5GhV82oUYjfXiYflqCH10vDNEqO5_oHXVRWXpGjkk6iiO6DfTb4--ctkZRdbVbodGoxa47P8OUrX6z8x7_35dhuPXh4N02b7cKcIvofs6TRI8LFWTC5TpPM-lEMo4SFeMBh9mOIHKiCItMaOsip0UQWanHLrYhvrA5bYlAl38tpkyIqILhx97zIzRvKSWCI-wILnQkT19PfT-9L4AI7UeFEvP698HwT2DXB72tu__bz3UP7rTwmm029nAfllw5gJXNMptXs3P2innCq68kDOD2hVmMA7ix37IMVuBzT0xkZXXqjliVT5u4wAgGeEtlCPZZPZn57Wd44mxR4xcyW1GjSPOYm01KhvCalc5-W4UvV3LbD2C5rEr3CFiaIUjSMR4v4thJnblIKzQc9KYK0cF4CLJTAmPbwey0H-TIdAy8qemUx5DymEAYVJ4hbPRyx81okkslVKdjpmu8xVBhMHpeKpn2ki00ayDXP8mudypqWgdZm1_6OYTn_dvo2qhelZWuWtA5VLfHAKiG8LAxg_5GwzSWoZJq7e8f_gxubh_s75m9ndHuY7hFV0WlQCHWYXl-snBP4Lo9nU_qk6fekhl8vWpb-AnD5IQN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKargwCPlESiwSMBtqdf2etcHhAptRFWIogqk3hZ7vZYSGrvUSVH_Gr-O2fXa9ACUSw_cIseT2Mk8vvF8MwPwvMAokLNEU6mloXbgHcU4oynmtzzKeG54VLhlE2IykUdH6XQNfnS9MJZW2flE56iLWttn5Jikozii20Bul54WMd0dvzn5Ru0GKVtp7dZptCpyYM6_Y_rWvN7fxf_6RRiO9z69e0_9hgGqEekvaZLIshBBxkwu8zTjhiVllIgYDxjMfJglKrKwyJjUJjKSBZHmsjSxDvGFzu3GCHT_6wJBRjyA9bd7k-lhHwcQqHuCCaMIQoIL_cnzV3PXXe_KIUy6waGWh_370Pgn6OtC4PjW__zj3YabHniTndZS7sCaqYawuVNly3pxTl4SR4V1NYYh3LgwpXEIGx89_2ATDnvKIqnqM3NM6nzeRgxiAYKzYYJpAGlmC7cXDU9crBr8QqJr20LSPgAns4og8CaV0V_vwucrue17MKjqyjwAkmYIn2SMx4s4NlxmJpICTQr9rEDcUI6AdwqhtB_ZbjeHHKuOmzdXnSIpq0gqYAoVaQTbvdxJO7TkUgnR6ZvqWnIxiCiMq5dKpr2kB20tGPsn2a1OXZV3nY36pasjeNa_jU7PVrKyytQre46t6GNoFCO435pEf6NhGvNQcPHw7x_-FDbQBNSH_cnBI7huL8rWCBnbgsHydGUewzV9tpw1p0-8WRP4ctXG8BOTE44q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+novel+objective+functions+for+simulating+muscle+coactivation+in+the+neck&rft.jtitle=Journal+of+biomechanics&rft.au=Mortensen%2C+J.&rft.au=Trkov%2C+M.&rft.au=Merryweather%2C+A.&rft.date=2018-04-11&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=71&rft.spage=127&rft.epage=134&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.01.030&rft.externalDocID=S0021929018300629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon