The Use of Digital Pathology and Artificial Intelligence in Histopathological Diagnostic Assessment of Prostate Cancer: A Survey of Prostate Cancer UK Supporters
There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitat...
Saved in:
| Published in: | Diagnostics (Basel) Vol. 12; no. 5; p. 1225 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
13.05.2022
MDPI |
| Subjects: | |
| ISSN: | 2075-4418, 2075-4418 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative and qualitative questions exploring views on the use of DP and AI in histopathological assessment. A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct (83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating research, education/training and fostering clinical discussions between clinician and patient. Some respondents raised concerns regarding data security, reliability and the need for human oversight. Among those who were unsure about AI, information was requested regarding its performance and others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some are unsure, and their concerns could be addressed with more information or better communication. A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons which are not easily addressed. |
|---|---|
| AbstractList | There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative and qualitative questions exploring views on the use of DP and AI in histopathological assessment. A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct (83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating research, education/training and fostering clinical discussions between clinician and patient. Some respondents raised concerns regarding data security, reliability and the need for human oversight. Among those who were unsure about AI, information was requested regarding its performance and others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some are unsure, and their concerns could be addressed with more information or better communication. A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons which are not easily addressed. There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative and qualitative questions exploring views on the use of DP and AI in histopathological assessment. A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct (83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating research, education/training and fostering clinical discussions between clinician and patient. Some respondents raised concerns regarding data security, reliability and the need for human oversight. Among those who were unsure about AI, information was requested regarding its performance and others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some are unsure, and their concerns could be addressed with more information or better communication. A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons which are not easily addressed.There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative and qualitative questions exploring views on the use of DP and AI in histopathological assessment. A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct (83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating research, education/training and fostering clinical discussions between clinician and patient. Some respondents raised concerns regarding data security, reliability and the need for human oversight. Among those who were unsure about AI, information was requested regarding its performance and others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some are unsure, and their concerns could be addressed with more information or better communication. A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons which are not easily addressed. |
| Author | Bryant, Richard J. Crofts, James Rakovic, Kai Colling, Richard Protheroe, Andrew Stanislaus, Ewart Browning, Lisa Dolton, Monica Scheffer, Richard Horton, Margaret R. Lamb, Alastair D. Verrill, Clare |
| AuthorAffiliation | 1 Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK 2 Department of Pathology, Queen Elizabeth University Hospital, Govan Road, Glasgow G51 4TF, UK 9 Department of Urology, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford OX3 7LE, UK 3 Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; richard.colling@pmb.ox.ac.uk (R.C.); lisa.browning@ouh.nhs.uk (L.B.); clare.verrill@ouh.nhs.uk (C.V.) 5 NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK 4 Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; monica.dolton@nds.ox.ac.uk (M.D.); alastair.lamb@nds.ox.ac.uk (A.D.L.); richard.bryant@nds.ox.ac.uk (R.J.B.); richard.scheffer@btinternet.com (R.S.); croftsj@hotmail.com (J.C |
| AuthorAffiliation_xml | – name: 1 Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK – name: 3 Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; richard.colling@pmb.ox.ac.uk (R.C.); lisa.browning@ouh.nhs.uk (L.B.); clare.verrill@ouh.nhs.uk (C.V.) – name: 2 Department of Pathology, Queen Elizabeth University Hospital, Govan Road, Glasgow G51 4TF, UK – name: 7 Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; andrew.protheroe@oncology.ox.ac.uk – name: 5 NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK – name: 9 Department of Urology, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford OX3 7LE, UK – name: 4 Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; monica.dolton@nds.ox.ac.uk (M.D.); alastair.lamb@nds.ox.ac.uk (A.D.L.); richard.bryant@nds.ox.ac.uk (R.J.B.); richard.scheffer@btinternet.com (R.S.); croftsj@hotmail.com (J.C.); ewartbs@hotmail.com (E.S.) – name: 6 Paige AI, 11 Times Sq, Fl 37, New York, NY 10036, USA; margaret.horton@paige.ai – name: 8 Oxford Cancer & Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford OX3 7LE, UK |
| Author_xml | – sequence: 1 givenname: Kai orcidid: 0000-0002-0676-1973 surname: Rakovic fullname: Rakovic, Kai – sequence: 2 givenname: Richard orcidid: 0000-0001-6344-9081 surname: Colling fullname: Colling, Richard – sequence: 3 givenname: Lisa orcidid: 0000-0003-4254-333X surname: Browning fullname: Browning, Lisa – sequence: 4 givenname: Monica surname: Dolton fullname: Dolton, Monica – sequence: 5 givenname: Margaret R. surname: Horton fullname: Horton, Margaret R. – sequence: 6 givenname: Andrew orcidid: 0000-0001-9413-0575 surname: Protheroe fullname: Protheroe, Andrew – sequence: 7 givenname: Alastair D. surname: Lamb fullname: Lamb, Alastair D. – sequence: 8 givenname: Richard J. surname: Bryant fullname: Bryant, Richard J. – sequence: 9 givenname: Richard surname: Scheffer fullname: Scheffer, Richard – sequence: 10 givenname: James surname: Crofts fullname: Crofts, James – sequence: 11 givenname: Ewart surname: Stanislaus fullname: Stanislaus, Ewart – sequence: 12 givenname: Clare orcidid: 0000-0002-4905-8233 surname: Verrill fullname: Verrill, Clare |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35626380$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kt9q2zAUxs3oWLuuTzAYgt3sJpv-WLa1i0FItzWssMKaa3Esy46KI2WSUsjj7E13sqSlLWW-kdH5zk-fjr7XxZEP3hbFW0Y_CqHop87B4EPKziTGqWScyxfFCae1nJQla44e_B8XZyndUPwUEw2Xr4pjISteiYaeFH-ul5YskiWhJ-ducBlGcgV5GcYwbAn4jkxjdr0zDgtzn-04usF6Y4nz5MKlHNYHtTOoOL-3RaYp2ZRW1ucd-yriLmRLZoDN8TOZkl-beGu3zxTJ4gcW1-sQs43pTfGyhzHZs8N6Wiy-fb2eXUwuf36fz6aXE1MqlSey5qrqur4BpizjFaeGAeurBlQPpSkBVAuCtapkDNoK11ZIqFuoSltWBsRpMd9zuwA3eh3dCuJWB3D630aIgwYchRmtBtpJWkrW9TUvRYcHN5L2UimEUcEosr7sWetNu7KdwSFEGB9BH1e8W-oh3GrF0F7dIODDARDD741NWa9cMjh88DZskuZVjXdUsi5R-v6J9CZsosdR7VQUk9GwnerdQ0f3Vu6SgAK1Fxh8jBRtrw2GIbuwM-hGzajeBU8_EzzsFU967_D_6_oLqwHhoA |
| CitedBy_id | crossref_primary_10_3390_jimaging11080254 crossref_primary_10_1515_cclm_2022_1151 crossref_primary_10_1007_s40670_024_02257_9 crossref_primary_10_3390_jimaging10100252 crossref_primary_10_3390_diagnostics13050828 crossref_primary_10_1007_s13042_024_02391_1 crossref_primary_10_1109_ACCESS_2022_3227437 crossref_primary_10_2196_59591 |
| Cites_doi | 10.1177/09691413211001405 10.1002/cjp2.127 10.1136/medethics-2020-107024 10.2196/16649 10.1136/jclinpath-2020-206786 10.1111/bju.14226 10.1136/bmj.k3322 10.1002/cncr.23027 10.1179/his.2006.29.2.99 10.1007/s11701-019-00960-z 10.1038/labinvest.2017.131 10.1136/jclinpath-2017-204644 10.1136/jclinpath-2020-206873 10.1007/s00330-019-06486-0 10.1038/s41379-020-0551-y 10.1016/j.urology.2007.12.038 10.1002/cjp2.251 10.1038/s41591-019-0462-y 10.1038/s41379-021-00826-6 10.1111/j.1600-0463.2011.02869.x 10.1111/his.13760 10.1038/s41591-018-0177-5 10.3390/diagnostics11122191 10.1038/s41598-017-03405-5 10.1136/jclinpath-2019-206137 10.1002/path.5310 10.1136/jclinpath-2017-204808 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3390/diagnostics12051225 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Student ProQuest Research Library Research Library (ProQuest) Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_a0d50451df7243d296850f599a640310 PMC9141178 35626380 10_3390_diagnostics12051225 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom--UK Scotland Wales |
| GeographicLocations_xml | – name: Wales – name: United Kingdom--UK – name: Scotland |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 22748 – fundername: Cancer Research UK grantid: 25812 – fundername: National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) Molecular Diagnostics Theme – fundername: NHSX Artificial Intelligence in Health and Care Award grantid: AI_AWARD02269 – fundername: PathLAKE Centre of Excellence for digital pathology and artificial intelligence grantid: 18181 |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c499t-57296ddf8a19e12620c1a1f68a9fa4c4aa9ba31b9411ab6b94b35a7ba64e46ca3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804322800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-4418 |
| IngestDate | Fri Oct 03 12:35:44 EDT 2025 Tue Nov 04 01:57:07 EST 2025 Sun Nov 09 10:09:47 EST 2025 Mon Jun 30 04:52:17 EDT 2025 Mon Jul 21 06:03:44 EDT 2025 Tue Nov 18 20:46:09 EST 2025 Sat Nov 29 07:16:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | digital pathology prostate cancer artificial intelligence |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-57296ddf8a19e12620c1a1f68a9fa4c4aa9ba31b9411ab6b94b35a7ba64e46ca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4905-8233 0000-0001-9413-0575 0000-0003-4254-333X 0000-0002-0676-1973 0000-0001-6344-9081 |
| OpenAccessLink | https://www.proquest.com/docview/2670122814?pq-origsite=%requestingapplication% |
| PMID | 35626380 |
| PQID | 2670122814 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a0d50451df7243d296850f599a640310 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9141178 proquest_miscellaneous_2671269574 proquest_journals_2670122814 pubmed_primary_35626380 crossref_citationtrail_10_3390_diagnostics12051225 crossref_primary_10_3390_diagnostics12051225 |
| PublicationCentury | 2000 |
| PublicationDate | 20220513 |
| PublicationDateYYYYMMDD | 2022-05-13 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220513 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationTitleAlternate | Diagnostics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Titford (ref_2) 2006; 29 Browning (ref_9) 2020; 73 Badani (ref_25) 2007; 110 ref_33 ref_10 ref_32 Reynolds (ref_27) 2018; 121 Saha (ref_12) 2017; 7 ref_19 ref_18 Pell (ref_7) 2019; 5 ref_17 Fischer (ref_1) 2021; 74 Coulter (ref_30) 2022; 8 Coudray (ref_13) 2018; 24 Raciti (ref_15) 2020; 33 Morrissey (ref_22) 2021; 28 McDermott (ref_28) 2020; 14 Berryhill (ref_26) 2008; 72 Gao (ref_21) 2020; 22 ref_23 Hamilton (ref_8) 2012; 120 Chatrian (ref_16) 2021; 34 ref_20 Bankhead (ref_11) 2018; 98 Williams (ref_5) 2018; 71 Williams (ref_6) 2017; 70 Kather (ref_14) 2019; 25 Sorell (ref_31) 2022; 48 Colling (ref_34) 2019; 249 Maxwell (ref_4) 2019; 74 Ongena (ref_29) 2020; 30 Browning (ref_3) 2021; 74 Nickel (ref_24) 2018; 362 |
| References_xml | – volume: 28 start-page: 221 year: 2021 ident: ref_22 article-title: Screening participants’ attitudes to the introduction of artificial intelligence in breast screening publication-title: J. Med. Screen. doi: 10.1177/09691413211001405 – ident: ref_32 – volume: 5 start-page: 81 year: 2019 ident: ref_7 article-title: The use of digital pathology and image analysis in clinical trials publication-title: J. Pathol. Clin. Res. doi: 10.1002/cjp2.127 – volume: 48 start-page: 278 year: 2022 ident: ref_31 article-title: Ethical issues in computational pathology publication-title: J. Med. Ethics doi: 10.1136/medethics-2020-107024 – volume: 22 start-page: e16649 year: 2020 ident: ref_21 article-title: Public Perception of Artificial Intelligence in Medical Care: Content Analysis of Social Media publication-title: J. Med. Internet Res. doi: 10.2196/16649 – volume: 74 start-page: 129 year: 2021 ident: ref_3 article-title: Role of digital pathology in diagnostic histopathology in the response to COVID-19: Results from a survey of experience in a UK tertiary referral hospital publication-title: J. Clin. Pathol. doi: 10.1136/jclinpath-2020-206786 – volume: 121 start-page: 33 year: 2018 ident: ref_27 article-title: Exploring pathways towards improving patient experience of robot-assisted radical prostatectomy (RARP): Assessing patient satisfaction and attitudes publication-title: BJU Int. doi: 10.1111/bju.14226 – volume: 362 start-page: k3322 year: 2018 ident: ref_24 article-title: Renaming low risk conditions labelled as cancer publication-title: BMJ doi: 10.1136/bmj.k3322 – volume: 110 start-page: 1951 year: 2007 ident: ref_25 article-title: Evolution of robotic radical prostatectomy: Assessment after 2766 procedures publication-title: Cancer doi: 10.1002/cncr.23027 – volume: 29 start-page: 99 year: 2006 ident: ref_2 article-title: A short history of histopathology technique publication-title: J. Histotechnol. doi: 10.1179/his.2006.29.2.99 – volume: 14 start-page: 227 year: 2020 ident: ref_28 article-title: Gender differences in understanding and acceptance of robot-assisted surgery publication-title: J. Robot. Surg. doi: 10.1007/s11701-019-00960-z – volume: 98 start-page: 15 year: 2018 ident: ref_11 article-title: Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer publication-title: Lab. Investig. doi: 10.1038/labinvest.2017.131 – ident: ref_18 – ident: ref_23 – volume: 70 start-page: 1010 year: 2017 ident: ref_6 article-title: Future-proofing pathology: The case for clinical adoption of digital pathology publication-title: J. Clin. Pathol. doi: 10.1136/jclinpath-2017-204644 – volume: 74 start-page: 812 year: 2021 ident: ref_1 article-title: Public perceptions on pathology: A fundamental change is required publication-title: J. Clin. Pathol. doi: 10.1136/jclinpath-2020-206873 – volume: 30 start-page: 1033 year: 2020 ident: ref_29 article-title: Patients’ views on the implementation of artificial intelligence in radiology: Development and validation of a standardized questionnaire publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06486-0 – volume: 33 start-page: 2058 year: 2020 ident: ref_15 article-title: Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies publication-title: Mod. Pathol. doi: 10.1038/s41379-020-0551-y – volume: 72 start-page: 15 year: 2008 ident: ref_26 article-title: Robotic prostatectomy: A review of outcomes compared with laparoscopic and open approaches publication-title: Urology doi: 10.1016/j.urology.2007.12.038 – volume: 8 start-page: 101 year: 2022 ident: ref_30 article-title: Understanding the ethical and legal considerations of Digital Pathology publication-title: J. Pathol. Clin. Res. doi: 10.1002/cjp2.251 – volume: 25 start-page: 1054 year: 2019 ident: ref_14 article-title: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer publication-title: Nat. Med. doi: 10.1038/s41591-019-0462-y – volume: 34 start-page: 1780 year: 2021 ident: ref_16 article-title: Artificial intelligence for advance requesting of immunohistochemistry in diagnostically uncertain prostate biopsies publication-title: Mod. Pathol. doi: 10.1038/s41379-021-00826-6 – volume: 120 start-page: 305 year: 2012 ident: ref_8 article-title: Virtual microscopy and digital pathology in training and education publication-title: APMIS doi: 10.1111/j.1600-0463.2011.02869.x – ident: ref_33 – volume: 74 start-page: 372 year: 2019 ident: ref_4 article-title: Artificial intelligence-the third revolution in pathology publication-title: Histopathology doi: 10.1111/his.13760 – volume: 24 start-page: 1559 year: 2018 ident: ref_13 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – ident: ref_10 doi: 10.3390/diagnostics11122191 – volume: 7 start-page: 3213 year: 2017 ident: ref_12 article-title: An Advanced Deep Learning Approach for Ki-67 Stained Hotspot Detection and Proliferation Rate Scoring for Prognostic Evaluation of Breast Cancer publication-title: Sci. Rep. doi: 10.1038/s41598-017-03405-5 – volume: 73 start-page: 223 year: 2020 ident: ref_9 article-title: Implementation of digital pathology into diagnostic practice: Perceptions and opinions of histopathology trainees and implications for training publication-title: J. Clin. Pathol. doi: 10.1136/jclinpath-2019-206137 – ident: ref_17 – ident: ref_19 – volume: 249 start-page: 143 year: 2019 ident: ref_34 article-title: Artificial intelligence in digital pathology: A roadmap to routine use in clinical practice publication-title: J. Pathol. doi: 10.1002/path.5310 – ident: ref_20 – volume: 71 start-page: 463 year: 2018 ident: ref_5 article-title: Digital pathology access and usage in the UK: Results from a national survey on behalf of the National Cancer Research Institute’s CM-Path initiative publication-title: J. Clin. Pathol. doi: 10.1136/jclinpath-2017-204808 |
| SSID | ssj0000913825 |
| Score | 2.248881 |
| Snippet | There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1225 |
| SubjectTerms | Artificial intelligence Biopsy COVID-19 digital pathology Histopathology Mammography Microscopy Morphology Pathology Prostate cancer |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dixMxEMCDHCK-iN9WT4ngo8s1m2_f6umhiEdBC_e2ZJOsFo7tsW0P7s_xP3Um2S5bKfri08JmEpLM5ItJfkPIG95wIWT0hXCuQTejLerS8cIo9EGpwL3KwSb0-bm5uLDzUagvvBOW8cC5407cNEhkoIRGl4KH0iojp4201imBWEucfafajg5TaQ62yNaTGTPE4Vx_EvLNNWQfsxIsscTg2KOlKBH7D20z_7wtOVp-zu6Te_2-kc5yfR-QW7F9SO587T3jj8gv0DddrCNdNfTD8geGAqFzt0lz2w11bUhZMy6Cfh5xOOmypYkVctVLo9agiF076Gxgd2LZc3wlAvtTeorm0r2jM_pt213HmwOJdPGFYtRQvM_brR-TxdnH76efij78QuHhGLQpJOy7VQiNccxGhuB6zxxrlHG2ccKDcm3tOKutYMzVCr41l07XoJgolHf8CTlqV218RigUoq2WUXpRC608UgyN1mbqg7Qshgkpd5qofM8mxxAZlxWcUVB91QH1TcjbIdNVRnP8Xfw9qngQRa52-gHWVvXWVv3L2ibkeGcgVT_Y11WpNDooDRMT8npIhmGKvhfXxtU2yUAXWqlB5mm2p6EmXCISyEDhes_S9qq6n9IufyYUuGXQ-do8_x9te0Hulvi2A9G0_JgcbbptfElu--vNct29SuPrN_hBLPo priority: 102 providerName: Directory of Open Access Journals |
| Title | The Use of Digital Pathology and Artificial Intelligence in Histopathological Diagnostic Assessment of Prostate Cancer: A Survey of Prostate Cancer UK Supporters |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35626380 https://www.proquest.com/docview/2670122814 https://www.proquest.com/docview/2671269574 https://pubmed.ncbi.nlm.nih.gov/PMC9141178 https://doaj.org/article/a0d50451df7243d296850f599a640310 |
| Volume | 12 |
| WOSCitedRecordID | wos000804322800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M2O dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1db9MwFIYttiHEDd8fhVEZiUuizbEdx9ygbmxiQi0RUKlcRY7tjEooLWk7aT-Hf8o5iRtaVO2Gm1aKTyzHfu3YPs5zCHnDSy6E9DYSxpToZtRRERsepQn6oBLHbdIGm1CjUTqZ6CxsuC3Cscr1mNgM1G5mcY_8KE4UeoFSJt7Pf0UYNQq9qyGExh45QFIZ6Pzg5GyUfel2WZB6CWugFjfEYX1_5NoTbMhAZjEoMsYg2RuvpIbcv2u6-e-pyY3X0Pn9_32AB-RemIDSQauYh-SWrx6RO8PgYn9MfoNw6Hjh6aykH6aXGFOEZmbZDJLX1FSuubXlTtCLDaAnnVa0gY7MgzU2P2Sxrgg66CCgmHeGn5vARJeeou7qd3RAv67qK3-9I5GOP1EMP4oHg-vFEzI-P_t2-jEKcRwiC-upZSRhAp84V6aGac-QgG-ZYWWSGl0aYUElujCcFVowZooE_gsujSpMIrxIrOFPyX41q_xzQiETpZX00opCqMQiDjFVKj22TmrmXY_E66bMbYCcY6yNnzksdrD98x3t3yNvu5vmLePjZvMT1EhnioDu5sKsvsxDf8_NsZOI7nGligV3UAGpPC6l1vBQSGPtkcO1SvIwaizyvxLpkdddMvR3dOKYys9WjQ1UoZYKbJ61guxKwiWyhVLIXG1Jdauo2ynV9EfDFNcMKl-lL24u1ktyN8bPP5Beyw_J_rJe-Vfktr1aThd1n-ypSdoPXbDf7G7A7zD-DNeyi2H2_Q_m_kKQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGh4AXvj8KA4wEb0SrYzuOkRAqG9OqrlUkVmk8Bcd2RiWUlLQd6p_DP8DfiC9ftKja2x54ihRfTs7l7nzOnX-H0GuaUsa41R5TKoU0o_QSX1EvDCAHFRiqg6rZhBiPw7MzGe2g381ZGCirbHxi6ahNruEf-b4fCMgChYR9mP3woGsUZFebFhqVWgzt6qfbss3fDw7d933j-0efTg-OvbqrgKdddL_wuAsnA2PSUBFpCeCxa6JIGoRKpoppN2eZKEoSyQhRSeCuCeVKJCpglgVaUcf3GtploOwdtBsNRtGX9q8OoGy6PVcFb0Sp7O2bqmIOMJeJ7yzAh6bca0tg2SlgW3j7b5Xm2rJ3dOd_E9hddLsOsHG_soh7aMdm99GNUV1C8AD9coaBJ3OL8xQfTs-hZwqO1KJcBFZYZaZ8tMLVwIM1wFI8zXAJqjKrqUG9HYtG8LjfgpwC7wiO07hAHh-AXRXvcB9_XhYXdrVlEE-GGNqrQuFzMX-IJlcioEeok-WZfYKwYyKk4JZrljARaIB7DIUIe9pwSazpIr9RnVjXIO7QS-R77DZzoG_xFn3rorftQ7MKw-Ry8o-gky0pAJCXN_LiPK79Wax6hgM0kUmFz6hxAgh5L-VSupcCtNku2mu0Mq694jz-q5Jd9Koddv4MklQqs_mypHEilFw4mseVAbQzoRywk0LHXGyYxsZUN0ey6bcSM10SJ3wRPr18Wi_RzePT0Ul8MhgPn6FbPhx1AaReuoc6i2Jpn6Pr-mIxnRcvasPH6OtVm84fpRmccw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwELdGhyZe-A8rDDASvBG1iZ04RkKorFRUZVUkqDSeMsd2RqUpLWk71I_D1-DTcZd_tKja2x54ihRfTs7l7nzOnX9HyCuWMs59qx2uVIppRukknmJOGGAOKjBMB2WzCTEeh6enMtojv-uzMFhWWfvEwlGbmcZ_5B0vEJgFCl3eSauyiKg_eD__4WAHKcy01u00ShUZ2fVP2L4t3g378K1fe97g49fjT07VYcDREOkvHR9Cy8CYNFSutC5is2tXuWkQKpkqrmH-MlHMTSR3XZUEcE2Yr0SiAm55oBUDvjfIPoTk3GuR_Wh4En1r_vAg4ibsv0qoI8Zkt2PK6jnEX3Y9sAYPG3RvLIdF14Bdoe6_FZsbS-Dgzv8svLvkdhV4015pKffIns3uk4OTqrTgAfkFBkMnC0tnKe1Pz7GXCo3Uslgc1lRlpni0xNugww0gUzrNaAG2Mq-oUe2BRf0RaK8BP0XeER6zgQCfHqO95W9pj35Z5Zd2vWOQTkYU265iQXS-eEgm1yKgR6SVzTJ7SCgwEVL41tc84SLQCAMZChF2tfGla02beLUaxboCd8ceIxcxbPJQ9-Idutcmb5qH5iW2ydXkH1A_G1IEJi9uzPLzuPJzseoaHyGLTCo8zgwIIPS7qS8lvBSi0LbJUa2hceUtF_Ff9WyTl80w-DlMXqnMzlYFDYhQ-gJoHpfG0MyE-YipFAJzsWUmW1PdHsmm3wssdemC8EX45OppvSAHYC_x5-F49JTc8vAEDAL4siPSWuYr-4zc1JfL6SJ_XvkASs6u23L-AJAFpTM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Digital+Pathology+and+Artificial+Intelligence+in+Histopathological+Diagnostic+Assessment+of+Prostate+Cancer%3A+A+Survey+of+Prostate+Cancer+UK+Supporters&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Rakovic%2C+Kai&rft.au=Colling%2C+Richard&rft.au=Browning%2C+Lisa&rft.au=Dolton%2C+Monica&rft.date=2022-05-13&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=12&rft.issue=5&rft.spage=1225&rft_id=info:doi/10.3390%2Fdiagnostics12051225&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |