The Use of Digital Pathology and Artificial Intelligence in Histopathological Diagnostic Assessment of Prostate Cancer: A Survey of Prostate Cancer UK Supporters

There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitat...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) Vol. 12; no. 5; p. 1225
Main Authors: Rakovic, Kai, Colling, Richard, Browning, Lisa, Dolton, Monica, Horton, Margaret R., Protheroe, Andrew, Lamb, Alastair D., Bryant, Richard J., Scheffer, Richard, Crofts, James, Stanislaus, Ewart, Verrill, Clare
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 13.05.2022
MDPI
Subjects:
ISSN:2075-4418, 2075-4418
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative and qualitative questions exploring views on the use of DP and AI in histopathological assessment. A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct (83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating research, education/training and fostering clinical discussions between clinician and patient. Some respondents raised concerns regarding data security, reliability and the need for human oversight. Among those who were unsure about AI, information was requested regarding its performance and others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some are unsure, and their concerns could be addressed with more information or better communication. A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons which are not easily addressed.
AbstractList There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative and qualitative questions exploring views on the use of DP and AI in histopathological assessment. A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct (83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating research, education/training and fostering clinical discussions between clinician and patient. Some respondents raised concerns regarding data security, reliability and the need for human oversight. Among those who were unsure about AI, information was requested regarding its performance and others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some are unsure, and their concerns could be addressed with more information or better communication. A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons which are not easily addressed.
There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative and qualitative questions exploring views on the use of DP and AI in histopathological assessment. A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct (83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating research, education/training and fostering clinical discussions between clinician and patient. Some respondents raised concerns regarding data security, reliability and the need for human oversight. Among those who were unsure about AI, information was requested regarding its performance and others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some are unsure, and their concerns could be addressed with more information or better communication. A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons which are not easily addressed.There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative and qualitative questions exploring views on the use of DP and AI in histopathological assessment. A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct (83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating research, education/training and fostering clinical discussions between clinician and patient. Some respondents raised concerns regarding data security, reliability and the need for human oversight. Among those who were unsure about AI, information was requested regarding its performance and others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some are unsure, and their concerns could be addressed with more information or better communication. A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons which are not easily addressed.
Author Bryant, Richard J.
Crofts, James
Rakovic, Kai
Colling, Richard
Protheroe, Andrew
Stanislaus, Ewart
Browning, Lisa
Dolton, Monica
Scheffer, Richard
Horton, Margaret R.
Lamb, Alastair D.
Verrill, Clare
AuthorAffiliation 1 Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
2 Department of Pathology, Queen Elizabeth University Hospital, Govan Road, Glasgow G51 4TF, UK
9 Department of Urology, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford OX3 7LE, UK
3 Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; richard.colling@pmb.ox.ac.uk (R.C.); lisa.browning@ouh.nhs.uk (L.B.); clare.verrill@ouh.nhs.uk (C.V.)
5 NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
4 Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; monica.dolton@nds.ox.ac.uk (M.D.); alastair.lamb@nds.ox.ac.uk (A.D.L.); richard.bryant@nds.ox.ac.uk (R.J.B.); richard.scheffer@btinternet.com (R.S.); croftsj@hotmail.com (J.C
AuthorAffiliation_xml – name: 1 Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
– name: 3 Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; richard.colling@pmb.ox.ac.uk (R.C.); lisa.browning@ouh.nhs.uk (L.B.); clare.verrill@ouh.nhs.uk (C.V.)
– name: 2 Department of Pathology, Queen Elizabeth University Hospital, Govan Road, Glasgow G51 4TF, UK
– name: 7 Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; andrew.protheroe@oncology.ox.ac.uk
– name: 5 NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
– name: 9 Department of Urology, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford OX3 7LE, UK
– name: 4 Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; monica.dolton@nds.ox.ac.uk (M.D.); alastair.lamb@nds.ox.ac.uk (A.D.L.); richard.bryant@nds.ox.ac.uk (R.J.B.); richard.scheffer@btinternet.com (R.S.); croftsj@hotmail.com (J.C.); ewartbs@hotmail.com (E.S.)
– name: 6 Paige AI, 11 Times Sq, Fl 37, New York, NY 10036, USA; margaret.horton@paige.ai
– name: 8 Oxford Cancer & Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford OX3 7LE, UK
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0002-0676-1973
  surname: Rakovic
  fullname: Rakovic, Kai
– sequence: 2
  givenname: Richard
  orcidid: 0000-0001-6344-9081
  surname: Colling
  fullname: Colling, Richard
– sequence: 3
  givenname: Lisa
  orcidid: 0000-0003-4254-333X
  surname: Browning
  fullname: Browning, Lisa
– sequence: 4
  givenname: Monica
  surname: Dolton
  fullname: Dolton, Monica
– sequence: 5
  givenname: Margaret R.
  surname: Horton
  fullname: Horton, Margaret R.
– sequence: 6
  givenname: Andrew
  orcidid: 0000-0001-9413-0575
  surname: Protheroe
  fullname: Protheroe, Andrew
– sequence: 7
  givenname: Alastair D.
  surname: Lamb
  fullname: Lamb, Alastair D.
– sequence: 8
  givenname: Richard J.
  surname: Bryant
  fullname: Bryant, Richard J.
– sequence: 9
  givenname: Richard
  surname: Scheffer
  fullname: Scheffer, Richard
– sequence: 10
  givenname: James
  surname: Crofts
  fullname: Crofts, James
– sequence: 11
  givenname: Ewart
  surname: Stanislaus
  fullname: Stanislaus, Ewart
– sequence: 12
  givenname: Clare
  orcidid: 0000-0002-4905-8233
  surname: Verrill
  fullname: Verrill, Clare
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35626380$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9q2zAUxs3oWLuuTzAYgt3sJpv-WLa1i0FItzWssMKaa3Esy46KI2WSUsjj7E13sqSlLWW-kdH5zk-fjr7XxZEP3hbFW0Y_CqHop87B4EPKziTGqWScyxfFCae1nJQla44e_B8XZyndUPwUEw2Xr4pjISteiYaeFH-ul5YskiWhJ-ducBlGcgV5GcYwbAn4jkxjdr0zDgtzn-04usF6Y4nz5MKlHNYHtTOoOL-3RaYp2ZRW1ucd-yriLmRLZoDN8TOZkl-beGu3zxTJ4gcW1-sQs43pTfGyhzHZs8N6Wiy-fb2eXUwuf36fz6aXE1MqlSey5qrqur4BpizjFaeGAeurBlQPpSkBVAuCtapkDNoK11ZIqFuoSltWBsRpMd9zuwA3eh3dCuJWB3D630aIgwYchRmtBtpJWkrW9TUvRYcHN5L2UimEUcEosr7sWetNu7KdwSFEGB9BH1e8W-oh3GrF0F7dIODDARDD741NWa9cMjh88DZskuZVjXdUsi5R-v6J9CZsosdR7VQUk9GwnerdQ0f3Vu6SgAK1Fxh8jBRtrw2GIbuwM-hGzajeBU8_EzzsFU967_D_6_oLqwHhoA
CitedBy_id crossref_primary_10_3390_jimaging11080254
crossref_primary_10_1515_cclm_2022_1151
crossref_primary_10_1007_s40670_024_02257_9
crossref_primary_10_3390_jimaging10100252
crossref_primary_10_3390_diagnostics13050828
crossref_primary_10_1007_s13042_024_02391_1
crossref_primary_10_1109_ACCESS_2022_3227437
crossref_primary_10_2196_59591
Cites_doi 10.1177/09691413211001405
10.1002/cjp2.127
10.1136/medethics-2020-107024
10.2196/16649
10.1136/jclinpath-2020-206786
10.1111/bju.14226
10.1136/bmj.k3322
10.1002/cncr.23027
10.1179/his.2006.29.2.99
10.1007/s11701-019-00960-z
10.1038/labinvest.2017.131
10.1136/jclinpath-2017-204644
10.1136/jclinpath-2020-206873
10.1007/s00330-019-06486-0
10.1038/s41379-020-0551-y
10.1016/j.urology.2007.12.038
10.1002/cjp2.251
10.1038/s41591-019-0462-y
10.1038/s41379-021-00826-6
10.1111/j.1600-0463.2011.02869.x
10.1111/his.13760
10.1038/s41591-018-0177-5
10.3390/diagnostics11122191
10.1038/s41598-017-03405-5
10.1136/jclinpath-2019-206137
10.1002/path.5310
10.1136/jclinpath-2017-204808
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics12051225
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library (ProQuest)
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_a0d50451df7243d296850f599a640310
PMC9141178
35626380
10_3390_diagnostics12051225
Genre Journal Article
GeographicLocations United Kingdom--UK
Scotland
Wales
GeographicLocations_xml – name: Wales
– name: United Kingdom--UK
– name: Scotland
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 22748
– fundername: Cancer Research UK
  grantid: 25812
– fundername: National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) Molecular Diagnostics Theme
– fundername: NHSX Artificial Intelligence in Health and Care Award
  grantid: AI_AWARD02269
– fundername: PathLAKE Centre of Excellence for digital pathology and artificial intelligence
  grantid: 18181
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c499t-57296ddf8a19e12620c1a1f68a9fa4c4aa9ba31b9411ab6b94b35a7ba64e46ca3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804322800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-4418
IngestDate Fri Oct 03 12:35:44 EDT 2025
Tue Nov 04 01:57:07 EST 2025
Sun Nov 09 10:09:47 EST 2025
Mon Jun 30 04:52:17 EDT 2025
Mon Jul 21 06:03:44 EDT 2025
Tue Nov 18 20:46:09 EST 2025
Sat Nov 29 07:16:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords digital pathology
prostate cancer
artificial intelligence
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-57296ddf8a19e12620c1a1f68a9fa4c4aa9ba31b9411ab6b94b35a7ba64e46ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4905-8233
0000-0001-9413-0575
0000-0003-4254-333X
0000-0002-0676-1973
0000-0001-6344-9081
OpenAccessLink https://www.proquest.com/docview/2670122814?pq-origsite=%requestingapplication%
PMID 35626380
PQID 2670122814
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_a0d50451df7243d296850f599a640310
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9141178
proquest_miscellaneous_2671269574
proquest_journals_2670122814
pubmed_primary_35626380
crossref_citationtrail_10_3390_diagnostics12051225
crossref_primary_10_3390_diagnostics12051225
PublicationCentury 2000
PublicationDate 20220513
PublicationDateYYYYMMDD 2022-05-13
PublicationDate_xml – month: 5
  year: 2022
  text: 20220513
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Titford (ref_2) 2006; 29
Browning (ref_9) 2020; 73
Badani (ref_25) 2007; 110
ref_33
ref_10
ref_32
Reynolds (ref_27) 2018; 121
Saha (ref_12) 2017; 7
ref_19
ref_18
Pell (ref_7) 2019; 5
ref_17
Fischer (ref_1) 2021; 74
Coulter (ref_30) 2022; 8
Coudray (ref_13) 2018; 24
Raciti (ref_15) 2020; 33
Morrissey (ref_22) 2021; 28
McDermott (ref_28) 2020; 14
Berryhill (ref_26) 2008; 72
Gao (ref_21) 2020; 22
ref_23
Hamilton (ref_8) 2012; 120
Chatrian (ref_16) 2021; 34
ref_20
Bankhead (ref_11) 2018; 98
Williams (ref_5) 2018; 71
Williams (ref_6) 2017; 70
Kather (ref_14) 2019; 25
Sorell (ref_31) 2022; 48
Colling (ref_34) 2019; 249
Maxwell (ref_4) 2019; 74
Ongena (ref_29) 2020; 30
Browning (ref_3) 2021; 74
Nickel (ref_24) 2018; 362
References_xml – volume: 28
  start-page: 221
  year: 2021
  ident: ref_22
  article-title: Screening participants’ attitudes to the introduction of artificial intelligence in breast screening
  publication-title: J. Med. Screen.
  doi: 10.1177/09691413211001405
– ident: ref_32
– volume: 5
  start-page: 81
  year: 2019
  ident: ref_7
  article-title: The use of digital pathology and image analysis in clinical trials
  publication-title: J. Pathol. Clin. Res.
  doi: 10.1002/cjp2.127
– volume: 48
  start-page: 278
  year: 2022
  ident: ref_31
  article-title: Ethical issues in computational pathology
  publication-title: J. Med. Ethics
  doi: 10.1136/medethics-2020-107024
– volume: 22
  start-page: e16649
  year: 2020
  ident: ref_21
  article-title: Public Perception of Artificial Intelligence in Medical Care: Content Analysis of Social Media
  publication-title: J. Med. Internet Res.
  doi: 10.2196/16649
– volume: 74
  start-page: 129
  year: 2021
  ident: ref_3
  article-title: Role of digital pathology in diagnostic histopathology in the response to COVID-19: Results from a survey of experience in a UK tertiary referral hospital
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jclinpath-2020-206786
– volume: 121
  start-page: 33
  year: 2018
  ident: ref_27
  article-title: Exploring pathways towards improving patient experience of robot-assisted radical prostatectomy (RARP): Assessing patient satisfaction and attitudes
  publication-title: BJU Int.
  doi: 10.1111/bju.14226
– volume: 362
  start-page: k3322
  year: 2018
  ident: ref_24
  article-title: Renaming low risk conditions labelled as cancer
  publication-title: BMJ
  doi: 10.1136/bmj.k3322
– volume: 110
  start-page: 1951
  year: 2007
  ident: ref_25
  article-title: Evolution of robotic radical prostatectomy: Assessment after 2766 procedures
  publication-title: Cancer
  doi: 10.1002/cncr.23027
– volume: 29
  start-page: 99
  year: 2006
  ident: ref_2
  article-title: A short history of histopathology technique
  publication-title: J. Histotechnol.
  doi: 10.1179/his.2006.29.2.99
– volume: 14
  start-page: 227
  year: 2020
  ident: ref_28
  article-title: Gender differences in understanding and acceptance of robot-assisted surgery
  publication-title: J. Robot. Surg.
  doi: 10.1007/s11701-019-00960-z
– volume: 98
  start-page: 15
  year: 2018
  ident: ref_11
  article-title: Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer
  publication-title: Lab. Investig.
  doi: 10.1038/labinvest.2017.131
– ident: ref_18
– ident: ref_23
– volume: 70
  start-page: 1010
  year: 2017
  ident: ref_6
  article-title: Future-proofing pathology: The case for clinical adoption of digital pathology
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jclinpath-2017-204644
– volume: 74
  start-page: 812
  year: 2021
  ident: ref_1
  article-title: Public perceptions on pathology: A fundamental change is required
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jclinpath-2020-206873
– volume: 30
  start-page: 1033
  year: 2020
  ident: ref_29
  article-title: Patients’ views on the implementation of artificial intelligence in radiology: Development and validation of a standardized questionnaire
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06486-0
– volume: 33
  start-page: 2058
  year: 2020
  ident: ref_15
  article-title: Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-020-0551-y
– volume: 72
  start-page: 15
  year: 2008
  ident: ref_26
  article-title: Robotic prostatectomy: A review of outcomes compared with laparoscopic and open approaches
  publication-title: Urology
  doi: 10.1016/j.urology.2007.12.038
– volume: 8
  start-page: 101
  year: 2022
  ident: ref_30
  article-title: Understanding the ethical and legal considerations of Digital Pathology
  publication-title: J. Pathol. Clin. Res.
  doi: 10.1002/cjp2.251
– volume: 25
  start-page: 1054
  year: 2019
  ident: ref_14
  article-title: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0462-y
– volume: 34
  start-page: 1780
  year: 2021
  ident: ref_16
  article-title: Artificial intelligence for advance requesting of immunohistochemistry in diagnostically uncertain prostate biopsies
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-021-00826-6
– volume: 120
  start-page: 305
  year: 2012
  ident: ref_8
  article-title: Virtual microscopy and digital pathology in training and education
  publication-title: APMIS
  doi: 10.1111/j.1600-0463.2011.02869.x
– ident: ref_33
– volume: 74
  start-page: 372
  year: 2019
  ident: ref_4
  article-title: Artificial intelligence-the third revolution in pathology
  publication-title: Histopathology
  doi: 10.1111/his.13760
– volume: 24
  start-page: 1559
  year: 2018
  ident: ref_13
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– ident: ref_10
  doi: 10.3390/diagnostics11122191
– volume: 7
  start-page: 3213
  year: 2017
  ident: ref_12
  article-title: An Advanced Deep Learning Approach for Ki-67 Stained Hotspot Detection and Proliferation Rate Scoring for Prognostic Evaluation of Breast Cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03405-5
– volume: 73
  start-page: 223
  year: 2020
  ident: ref_9
  article-title: Implementation of digital pathology into diagnostic practice: Perceptions and opinions of histopathology trainees and implications for training
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jclinpath-2019-206137
– ident: ref_17
– ident: ref_19
– volume: 249
  start-page: 143
  year: 2019
  ident: ref_34
  article-title: Artificial intelligence in digital pathology: A roadmap to routine use in clinical practice
  publication-title: J. Pathol.
  doi: 10.1002/path.5310
– ident: ref_20
– volume: 71
  start-page: 463
  year: 2018
  ident: ref_5
  article-title: Digital pathology access and usage in the UK: Results from a national survey on behalf of the National Cancer Research Institute’s CM-Path initiative
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jclinpath-2017-204808
SSID ssj0000913825
Score 2.248881
Snippet There has been particular interest in the deployment of digital pathology (DP) and artificial intelligence (AI) in the diagnosis of prostate cancer, but little...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1225
SubjectTerms Artificial intelligence
Biopsy
COVID-19
digital pathology
Histopathology
Mammography
Microscopy
Morphology
Pathology
Prostate cancer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dixMxEMCDHCK-iN9WT4ngo8s1m2_f6umhiEdBC_e2ZJOsFo7tsW0P7s_xP3Um2S5bKfri08JmEpLM5ItJfkPIG95wIWT0hXCuQTejLerS8cIo9EGpwL3KwSb0-bm5uLDzUagvvBOW8cC5407cNEhkoIRGl4KH0iojp4201imBWEucfafajg5TaQ62yNaTGTPE4Vx_EvLNNWQfsxIsscTg2KOlKBH7D20z_7wtOVp-zu6Te_2-kc5yfR-QW7F9SO587T3jj8gv0DddrCNdNfTD8geGAqFzt0lz2w11bUhZMy6Cfh5xOOmypYkVctVLo9agiF076Gxgd2LZc3wlAvtTeorm0r2jM_pt213HmwOJdPGFYtRQvM_brR-TxdnH76efij78QuHhGLQpJOy7VQiNccxGhuB6zxxrlHG2ccKDcm3tOKutYMzVCr41l07XoJgolHf8CTlqV218RigUoq2WUXpRC608UgyN1mbqg7Qshgkpd5qofM8mxxAZlxWcUVB91QH1TcjbIdNVRnP8Xfw9qngQRa52-gHWVvXWVv3L2ibkeGcgVT_Y11WpNDooDRMT8npIhmGKvhfXxtU2yUAXWqlB5mm2p6EmXCISyEDhes_S9qq6n9IufyYUuGXQ-do8_x9te0Hulvi2A9G0_JgcbbptfElu--vNct29SuPrN_hBLPo
  priority: 102
  providerName: Directory of Open Access Journals
Title The Use of Digital Pathology and Artificial Intelligence in Histopathological Diagnostic Assessment of Prostate Cancer: A Survey of Prostate Cancer UK Supporters
URI https://www.ncbi.nlm.nih.gov/pubmed/35626380
https://www.proquest.com/docview/2670122814
https://www.proquest.com/docview/2671269574
https://pubmed.ncbi.nlm.nih.gov/PMC9141178
https://doaj.org/article/a0d50451df7243d296850f599a640310
Volume 12
WOSCitedRecordID wos000804322800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1db9MwFIYttiHEDd8fhVEZiUuizbEdx9ygbmxiQi0RUKlcRY7tjEooLWk7aT-Hf8o5iRtaVO2Gm1aKTyzHfu3YPs5zCHnDSy6E9DYSxpToZtRRERsepQn6oBLHbdIGm1CjUTqZ6CxsuC3Cscr1mNgM1G5mcY_8KE4UeoFSJt7Pf0UYNQq9qyGExh45QFIZ6Pzg5GyUfel2WZB6CWugFjfEYX1_5NoTbMhAZjEoMsYg2RuvpIbcv2u6-e-pyY3X0Pn9_32AB-RemIDSQauYh-SWrx6RO8PgYn9MfoNw6Hjh6aykH6aXGFOEZmbZDJLX1FSuubXlTtCLDaAnnVa0gY7MgzU2P2Sxrgg66CCgmHeGn5vARJeeou7qd3RAv67qK3-9I5GOP1EMP4oHg-vFEzI-P_t2-jEKcRwiC-upZSRhAp84V6aGac-QgG-ZYWWSGl0aYUElujCcFVowZooE_gsujSpMIrxIrOFPyX41q_xzQiETpZX00opCqMQiDjFVKj22TmrmXY_E66bMbYCcY6yNnzksdrD98x3t3yNvu5vmLePjZvMT1EhnioDu5sKsvsxDf8_NsZOI7nGligV3UAGpPC6l1vBQSGPtkcO1SvIwaizyvxLpkdddMvR3dOKYys9WjQ1UoZYKbJ61guxKwiWyhVLIXG1Jdauo2ynV9EfDFNcMKl-lL24u1ktyN8bPP5Beyw_J_rJe-Vfktr1aThd1n-ypSdoPXbDf7G7A7zD-DNeyi2H2_Q_m_kKQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGh4AXvj8KA4wEb0SrYzuOkRAqG9OqrlUkVmk8Bcd2RiWUlLQd6p_DP8DfiC9ftKja2x54ihRfTs7l7nzOnX-H0GuaUsa41R5TKoU0o_QSX1EvDCAHFRiqg6rZhBiPw7MzGe2g381ZGCirbHxi6ahNruEf-b4fCMgChYR9mP3woGsUZFebFhqVWgzt6qfbss3fDw7d933j-0efTg-OvbqrgKdddL_wuAsnA2PSUBFpCeCxa6JIGoRKpoppN2eZKEoSyQhRSeCuCeVKJCpglgVaUcf3GtploOwdtBsNRtGX9q8OoGy6PVcFb0Sp7O2bqmIOMJeJ7yzAh6bca0tg2SlgW3j7b5Xm2rJ3dOd_E9hddLsOsHG_soh7aMdm99GNUV1C8AD9coaBJ3OL8xQfTs-hZwqO1KJcBFZYZaZ8tMLVwIM1wFI8zXAJqjKrqUG9HYtG8LjfgpwC7wiO07hAHh-AXRXvcB9_XhYXdrVlEE-GGNqrQuFzMX-IJlcioEeok-WZfYKwYyKk4JZrljARaIB7DIUIe9pwSazpIr9RnVjXIO7QS-R77DZzoG_xFn3rorftQ7MKw-Ry8o-gky0pAJCXN_LiPK79Wax6hgM0kUmFz6hxAgh5L-VSupcCtNku2mu0Mq694jz-q5Jd9Koddv4MklQqs_mypHEilFw4mseVAbQzoRywk0LHXGyYxsZUN0ey6bcSM10SJ3wRPr18Wi_RzePT0Ul8MhgPn6FbPhx1AaReuoc6i2Jpn6Pr-mIxnRcvasPH6OtVm84fpRmccw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwELdGhyZe-A8rDDASvBG1iZ04RkKorFRUZVUkqDSeMsd2RqUpLWk71I_D1-DTcZd_tKja2x54ihRfTs7l7nzOnX9HyCuWMs59qx2uVIppRukknmJOGGAOKjBMB2WzCTEeh6enMtojv-uzMFhWWfvEwlGbmcZ_5B0vEJgFCl3eSauyiKg_eD__4WAHKcy01u00ShUZ2fVP2L4t3g378K1fe97g49fjT07VYcDREOkvHR9Cy8CYNFSutC5is2tXuWkQKpkqrmH-MlHMTSR3XZUEcE2Yr0SiAm55oBUDvjfIPoTk3GuR_Wh4En1r_vAg4ibsv0qoI8Zkt2PK6jnEX3Y9sAYPG3RvLIdF14Bdoe6_FZsbS-Dgzv8svLvkdhV4015pKffIns3uk4OTqrTgAfkFBkMnC0tnKe1Pz7GXCo3Uslgc1lRlpni0xNugww0gUzrNaAG2Mq-oUe2BRf0RaK8BP0XeER6zgQCfHqO95W9pj35Z5Zd2vWOQTkYU265iQXS-eEgm1yKgR6SVzTJ7SCgwEVL41tc84SLQCAMZChF2tfGla02beLUaxboCd8ceIxcxbPJQ9-Idutcmb5qH5iW2ydXkH1A_G1IEJi9uzPLzuPJzseoaHyGLTCo8zgwIIPS7qS8lvBSi0LbJUa2hceUtF_Ff9WyTl80w-DlMXqnMzlYFDYhQ-gJoHpfG0MyE-YipFAJzsWUmW1PdHsmm3wssdemC8EX45OppvSAHYC_x5-F49JTc8vAEDAL4siPSWuYr-4zc1JfL6SJ_XvkASs6u23L-AJAFpTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Digital+Pathology+and+Artificial+Intelligence+in+Histopathological+Diagnostic+Assessment+of+Prostate+Cancer%3A+A+Survey+of+Prostate+Cancer+UK+Supporters&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Rakovic%2C+Kai&rft.au=Colling%2C+Richard&rft.au=Browning%2C+Lisa&rft.au=Dolton%2C+Monica&rft.date=2022-05-13&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=12&rft.issue=5&rft.spage=1225&rft_id=info:doi/10.3390%2Fdiagnostics12051225&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon