Medical Image Retrieval Using Empirical Mode Decomposition with Deep Convolutional Neural Network

Content-based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in medical image analysis. The efficacy of high-level medical information representation using features is a major challenge in CBMIR systems. Features play a vital role in the a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BioMed research international Ročník 2020; číslo 2020; s. 1 - 12
Hlavní autoři: Zhang, Shaomin, Zhou, Tao, Zhi, Lijia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Témata:
ISSN:2314-6133, 2314-6141, 2314-6141
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Content-based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in medical image analysis. The efficacy of high-level medical information representation using features is a major challenge in CBMIR systems. Features play a vital role in the accuracy and speed of the search process. In this paper, we propose a deep convolutional neural network- (CNN-) based framework to learn concise feature vector for medical image retrieval. The medical images are decomposed into five components using empirical mode decomposition (EMD). The deep CNN is trained in a supervised way with multicomponent input, and the learned features are used to retrieve medical images. The IRMA dataset, containing 11,000 X-ray images, 116 classes, is used to validate the proposed method. We achieve a total IRMA error of 43.21 and a mean average precision of 0.86 for retrieval task and IRMA error of 68.48 and F1 measure of 0.66 on classification task, which is the best result compared with existing literature for this dataset.
AbstractList Content‐based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in medical image analysis. The efficacy of high‐level medical information representation using features is a major challenge in CBMIR systems. Features play a vital role in the accuracy and speed of the search process. In this paper, we propose a deep convolutional neural network‐ (CNN‐) based framework to learn concise feature vector for medical image retrieval. The medical images are decomposed into five components using empirical mode decomposition (EMD). The deep CNN is trained in a supervised way with multicomponent input, and the learned features are used to retrieve medical images. The IRMA dataset, containing 11,000 X‐ray images, 116 classes, is used to validate the proposed method. We achieve a total IRMA error of 43.21 and a mean average precision of 0.86 for retrieval task and IRMA error of 68.48 and F1 measure of 0.66 on classification task, which is the best result compared with existing literature for this dataset.
Content-based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in medical image analysis. The efficacy of high-level medical information representation using features is a major challenge in CBMIR systems. Features play a vital role in the accuracy and speed of the search process. In this paper, we propose a deep convolutional neural network- (CNN-) based framework to learn concise feature vector for medical image retrieval. The medical images are decomposed into five components using empirical mode decomposition (EMD). The deep CNN is trained in a supervised way with multicomponent input, and the learned features are used to retrieve medical images. The IRMA dataset, containing 11,000 X-ray images, 116 classes, is used to validate the proposed method. We achieve a total IRMA error of 43.21 and a mean average precision of 0.86 for retrieval task and IRMA error of 68.48 and F1 measure of 0.66 on classification task, which is the best result compared with existing literature for this dataset.Content-based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in medical image analysis. The efficacy of high-level medical information representation using features is a major challenge in CBMIR systems. Features play a vital role in the accuracy and speed of the search process. In this paper, we propose a deep convolutional neural network- (CNN-) based framework to learn concise feature vector for medical image retrieval. The medical images are decomposed into five components using empirical mode decomposition (EMD). The deep CNN is trained in a supervised way with multicomponent input, and the learned features are used to retrieve medical images. The IRMA dataset, containing 11,000 X-ray images, 116 classes, is used to validate the proposed method. We achieve a total IRMA error of 43.21 and a mean average precision of 0.86 for retrieval task and IRMA error of 68.48 and F1 measure of 0.66 on classification task, which is the best result compared with existing literature for this dataset.
Audience Academic
Author Zhi, Lijia
Zhou, Tao
Zhang, Shaomin
AuthorAffiliation School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
AuthorAffiliation_xml – name: School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
Author_xml – sequence: 1
  fullname: Zhang, Shaomin
– sequence: 2
  fullname: Zhou, Tao
– sequence: 3
  fullname: Zhi, Lijia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33426062$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URMvSG2cUiUsl2NZfcZILUrUtUKkFCdGz5diTXZfEDnayK_49TnfZ0koIX8YePzPzjmZeogPnHSD0muBTQvL8jGKKz4Qoi4KxZ-iIMsLngnBysL8zdoiOY7zD6ZRE4Eq8QIeMcSqwoEdI3YCxWrXZVaeWkH2DIVhYp_dttG6ZXXa9Dff_N95AdgHad72PdrDeZRs7rJIL-mzh3dq34-RN6BcYw70ZNj78eIWeN6qNcLyzM3T78fL74vP8-uunq8X59VzzqhrmXGlVcMiN0EmYSY3lmDVcYQo1ITUVBa5o2TSUYMMFK5tacCME16Yyoqw1m6EP27z9WHdgNLghqZB9sJ0Kv6RXVj7-cXYll34ti6IkBS5SgpNdguB_jhAH2dmooW2VAz9GSXkhyjyJm9C3T9A7P4bU-5biJSYsf6CWqgVpXeNTXT0lleeiyjnPaZrPDL35W_de8J8ZJeD9FtDBxxig2SMEy2kL5LQFcrcFCadPcG0HNY0mVbftv4LebYNW1hm1sf8rsZMMiYFGPdCECYJL9htAZclX
CitedBy_id crossref_primary_10_3233_XST_240069
crossref_primary_10_1007_s11227_022_04535_y
crossref_primary_10_1007_s11227_024_06350_z
crossref_primary_10_1155_2022_7020804
crossref_primary_10_1155_2022_6256126
crossref_primary_10_1186_s12891_025_08807_5
Cites_doi 10.1109/TBME.2014.2365494
10.1007/s11263-015-0816-y
10.1016/j.critrevonc.2008.07.012
10.1016/j.asoc.2017.11.024
10.1142/S1793536909000187
10.1016/j.compmedimag.2007.02.002
10.1109/CVPR.2015.7298594
10.1007/978-3-642-02976-9_17
10.1016/j.artmed.2010.02.006
10.1007/s00500-019-04150-9
10.1109/TITB.2007.904149
10.1109/CVPR.2016.90
10.1007/978-3-319-70093-9_33
10.1109/TPAMI.2012.277
10.1016/j.neucom.2015.05.036
10.1109/CBMS.2012.6266313
10.1109/ISBI.2015.7163871
10.1007/978-3-319-46478-7_31
10.1109/CCECE.2017.7946756
10.1016/j.patcog.2010.10.024
10.1109/CVPR.2015.7298643
10.1016/j.ijmedinf.2003.11.024
10.1017/jfm.2011.141
10.1007/978-3-319-10602-1_48
10.1007/s10278-010-9290-9
10.1055/s-0038-1633877
10.1109/CVPR.2016.274
10.1016/S0262-8856(03)00094-5
10.1145/3065386
10.1016/j.eswa.2018.01.056
10.1016/j.compmedimag.2004.09.010
10.1007/s10916-011-9764-4
10.1016/j.jacr.2007.06.004
10.1016/j.physa.2014.01.020
10.1109/IJCNN.2016.7727562
10.4258/hir.2012.18.1.3
10.1109/TMI.2016.2553401
10.1016/j.media.2017.09.007
10.1016/j.patrec.2020.03.029
10.1109/ISBI.2014.6868016
10.1109/TMI.2015.2482920
10.1007/s10278-013-9619-2
10.1109/ICMLA.2015.131
10.1109/TMI.2016.2536809
10.1155/2016/3162649
10.1016/j.media.2016.07.011
10.1016/j.neucom.2017.05.025
10.1109/CVPR.2017.683
10.1098/rspa.1998.0193
10.1109/TMI.2016.2528162
10.1016/j.acra.2009.02.014
ContentType Journal Article
Copyright Copyright © 2020 Shaomin Zhang et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Shaomin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2020 Shaomin Zhang et al. 2020
Copyright_xml – notice: Copyright © 2020 Shaomin Zhang et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Shaomin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2020 Shaomin Zhang et al. 2020
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
NPM
3V.
7QL
7QO
7T7
7TK
7U7
7U9
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1155/2020/6687733
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Middle East & Africa Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Middle East & Africa Database
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2314-6141
Editor Gu, Lin
Editor_xml – sequence: 1
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
EndPage 12
ExternalDocumentID PMC7781707
A695445261
33426062
10_1155_2020_6687733
1136108
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Ningxia Province
  grantid: 2020AAC03213
– fundername: “Image and Intelligent Information Processing Innovation Team” the State Ethnic Affairs Commission Innovation Team
  grantid: PY1606; PY1905
– fundername: Ningxia Medical Imaging Clinical Research Center Innovation Platform Construction Project
  grantid: 2018DPG05006
– fundername: Ningxia Key Research and Development Project
  grantid: 2020BEB04022
– fundername: National Natural Science Foundation of China
  grantid: 61561002; 62062003
– fundername: North Minzu University
  grantid: 2020KYQD08; 2021XYZJK04
GroupedDBID 04C
0R~
24P
4.4
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAMMB
AAWTL
ABDBF
ABUWG
ACCMX
ACIWK
ACPRK
ACUHS
ADBBV
ADJCN
ADOJX
ADRAZ
AEFGJ
AENEX
AFKRA
AFRAH
AGXDD
AHFXO
AHMBA
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BMSDO
BPHCQ
BVXVI
CCPQU
CWDGH
DIK
EAD
EAP
EAS
EBD
EBS
ECF
ECT
EIHBH
EJD
EMB
EMK
EMOBN
ESX
FYUFA
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INR
KQ8
LK8
M1P
M48
M7P
ML0
ML~
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RPM
SV3
TUS
UKHRP
3V.
AAJEY
GROUPED_DOAJ
IAG
IEA
INH
IOF
ISR
ITC
OK1
RHU
RHW
RHX
AAYXX
AFFHD
ALUQN
CITATION
ALIPV
NPM
7QL
7QO
7T7
7TK
7U7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c499t-4aca74e5d6c062d202503f4a02eb11b2670928ff210d4638fb64d664cd9d68bc3
IEDL.DBID RHX
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609501300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2314-6133
2314-6141
IngestDate Tue Nov 04 01:47:08 EST 2025
Sun Nov 09 09:17:29 EST 2025
Mon Nov 24 18:40:58 EST 2025
Tue Nov 11 10:55:11 EST 2025
Wed Feb 19 02:29:34 EST 2025
Tue Nov 18 22:28:06 EST 2025
Sat Nov 29 03:10:42 EST 2025
Sun Jun 02 18:51:14 EDT 2024
Thu Sep 25 15:24:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2020 Shaomin Zhang et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-4aca74e5d6c062d202503f4a02eb11b2670928ff210d4638fb64d664cd9d68bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Lin Gu
ORCID 0000-0002-2194-7442
0000-0002-8145-712X
OpenAccessLink https://dx.doi.org/10.1155/2020/6687733
PMID 33426062
PQID 2476480135
PQPubID 237798
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7781707
proquest_miscellaneous_2476850627
proquest_journals_2476480135
gale_infotracmisc_A695445261
pubmed_primary_33426062
crossref_primary_10_1155_2020_6687733
crossref_citationtrail_10_1155_2020_6687733
hindawi_primary_10_1155_2020_6687733
emarefa_primary_1136108
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: New York
PublicationTitle BioMed research international
PublicationTitleAlternate Biomed Res Int
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_9_52_2
e_1_2_9_50_2
e_1_2_9_10_2
e_1_2_9_56_2
e_1_2_9_12_2
e_1_2_9_31_2
Müller H. (e_1_2_9_33_2) 2012
Simonyan K. (e_1_2_9_18_2) 2015
e_1_2_9_14_2
Goodfellow I. (e_1_2_9_17_2) 2016
e_1_2_9_37_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_39_2
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_43_2
Srivastava N. (e_1_2_9_25_2) 2014; 15
e_1_2_9_6_2
e_1_2_9_4_2
e_1_2_9_2_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_49_2
e_1_2_9_26_2
e_1_2_9_47_2
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_30_2
e_1_2_9_34_2
e_1_2_9_11_2
e_1_2_9_53_2
Rahman M. M. (e_1_2_9_41_2) 2007; 11
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_59_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_57_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_61_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_23_2
e_1_2_9_42_2
Lehmann T. M. (e_1_2_9_55_2) 2003; 5033
e_1_2_9_7_2
e_1_2_9_5_2
e_1_2_9_3_2
Tommasi T. (e_1_2_9_60_2) 2009
e_1_2_9_1_2
Haas S. (e_1_2_9_32_2) 2011
e_1_2_9_9_2
Lehmann T. M. (e_1_2_9_54_2) 2004; 107
e_1_2_9_48_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_29_2
References_xml – ident: e_1_2_9_30_2
  doi: 10.1109/TBME.2014.2365494
– ident: e_1_2_9_58_2
  doi: 10.1007/s11263-015-0816-y
– ident: e_1_2_9_3_2
  doi: 10.1016/j.critrevonc.2008.07.012
– ident: e_1_2_9_9_2
  doi: 10.1016/j.asoc.2017.11.024
– ident: e_1_2_9_50_2
  doi: 10.1142/S1793536909000187
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_9_25_2
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_1_2
  doi: 10.1016/j.compmedimag.2007.02.002
– ident: e_1_2_9_20_2
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_9_31_2
  doi: 10.1007/978-3-642-02976-9_17
– ident: e_1_2_9_34_2
  doi: 10.1016/j.artmed.2010.02.006
– ident: e_1_2_9_48_2
  doi: 10.1007/s00500-019-04150-9
– ident: e_1_2_9_36_2
  doi: 10.1109/TITB.2007.904149
– ident: e_1_2_9_19_2
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_16_2
  doi: 10.1007/978-3-319-70093-9_33
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_9_17_2
– ident: e_1_2_9_24_2
  doi: 10.1109/TPAMI.2012.277
– ident: e_1_2_9_11_2
  doi: 10.1016/j.neucom.2015.05.036
– ident: e_1_2_9_39_2
  doi: 10.1109/CBMS.2012.6266313
– volume: 11
  start-page: 58
  year: 2007
  ident: e_1_2_9_41_2
  article-title: A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback
  publication-title: International Conference of the IEEE Engineering in Medicine and Biology Society
– ident: e_1_2_9_42_2
  doi: 10.1109/ISBI.2015.7163871
– ident: e_1_2_9_52_2
  doi: 10.1007/978-3-319-46478-7_31
– ident: e_1_2_9_56_2
  doi: 10.1109/CCECE.2017.7946756
– ident: e_1_2_9_40_2
  doi: 10.1016/j.patcog.2010.10.024
– start-page: 85
  volume-title: Workshop of the Cross-Language Evaluation Forum for European Languages
  year: 2009
  ident: e_1_2_9_60_2
– ident: e_1_2_9_44_2
  doi: 10.1109/CVPR.2015.7298643
– ident: e_1_2_9_6_2
  doi: 10.1016/j.ijmedinf.2003.11.024
– ident: e_1_2_9_47_2
  doi: 10.1017/jfm.2011.141
– volume: 107
  start-page: 842
  year: 2004
  ident: e_1_2_9_54_2
  article-title: IRMA--content-based image retrieval in medical applications
  publication-title: Studies in health technology and informatics
– ident: e_1_2_9_59_2
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_9_8_2
  doi: 10.1007/s10278-010-9290-9
– volume-title: Very deep convolutional networks for large-scale image recognition
  year: 2015
  ident: e_1_2_9_18_2
– ident: e_1_2_9_43_2
– ident: e_1_2_9_7_2
  doi: 10.1055/s-0038-1633877
– ident: e_1_2_9_13_2
  doi: 10.1109/CVPR.2016.274
– volume-title: Overview of the ImageCLEF 2012 medical image retrieval and classiFIcation tasks
  year: 2012
  ident: e_1_2_9_33_2
– ident: e_1_2_9_46_2
  doi: 10.1016/S0262-8856(03)00094-5
– ident: e_1_2_9_15_2
  doi: 10.1145/3065386
– ident: e_1_2_9_14_2
  doi: 10.1016/j.eswa.2018.01.056
– ident: e_1_2_9_53_2
  doi: 10.1016/j.compmedimag.2004.09.010
– ident: e_1_2_9_35_2
  doi: 10.1007/s10916-011-9764-4
– volume: 5033
  start-page: 440
  year: 2003
  ident: e_1_2_9_55_2
  article-title: The IRMA code for unique classification of medical images
  publication-title: Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation
– ident: e_1_2_9_4_2
  doi: 10.1016/j.jacr.2007.06.004
– ident: e_1_2_9_51_2
  doi: 10.1016/j.physa.2014.01.020
– ident: e_1_2_9_57_2
  doi: 10.1109/IJCNN.2016.7727562
– ident: e_1_2_9_28_2
  doi: 10.4258/hir.2012.18.1.3
– ident: e_1_2_9_21_2
  doi: 10.1109/TMI.2016.2553401
– ident: e_1_2_9_5_2
  doi: 10.1016/j.media.2017.09.007
– ident: e_1_2_9_49_2
  doi: 10.1016/j.patrec.2020.03.029
– ident: e_1_2_9_37_2
  doi: 10.1109/ISBI.2014.6868016
– ident: e_1_2_9_23_2
  doi: 10.1109/TMI.2015.2482920
– ident: e_1_2_9_29_2
  doi: 10.1007/s10278-013-9619-2
– ident: e_1_2_9_61_2
  doi: 10.1109/ICMLA.2015.131
– ident: e_1_2_9_22_2
  doi: 10.1109/TMI.2016.2536809
– ident: e_1_2_9_12_2
  doi: 10.1155/2016/3162649
– ident: e_1_2_9_38_2
  doi: 10.1016/j.media.2016.07.011
– ident: e_1_2_9_10_2
  doi: 10.1016/j.neucom.2017.05.025
– ident: e_1_2_9_27_2
  doi: 10.1109/CVPR.2017.683
– ident: e_1_2_9_45_2
  doi: 10.1098/rspa.1998.0193
– ident: e_1_2_9_26_2
  doi: 10.1109/TMI.2016.2528162
– ident: e_1_2_9_2_2
  doi: 10.1016/j.acra.2009.02.014
– start-page: 58
  volume-title: MICCAI International Workshop on Medical Content-Based Retrieval for Clinical Decision Support
  year: 2011
  ident: e_1_2_9_32_2
SSID ssj0000816096
Score 2.3055358
Snippet Content-based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in medical image analysis. The...
Content‐based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in medical image analysis. The...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Classification
Datasets
Decomposition
Deep learning
Diagnostic imaging
Digital imaging
Empirical analysis
Error analysis
Health aspects
Image analysis
Image management
Image processing
Image retrieval
Magnetic resonance imaging
Medical imaging
Medical technology
Methods
Neural networks
Search process
Semantics
Subject specialists
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9QwDLZgMMTLGDCg45iCtD2ham2SJu0TmsYmkGCa0CbtrUqTVDuJ6x272_j72Gmu4xCDB55atVaTyo7rz3E_A-zqvC3aSvnUWOEQoHibVpWRqRcOAYbWWWvDj8Kf9clJeXFRncaE2zyWVS59YnDUbmopR77PpVZEdSKK97PvKXWNot3V2ELjPjwglgQeSvdOhxwLNZXIqr6_XC4RJQmxrH0vCoL92b5SpdZCrHyV1v3E4IkZvPT6JeHjH-M_RaG_F1P-8nU6fvK_77UJGzEuZQe9IT2Fe757Bo--xJ3352Dijg77NEEPxL6GRlxopSzUHLCjyWwcyEYYNVdjHzyVqsd6MEa5XrzkZ-xw2t1EW0dRIgYJh1CJvgXnx0dnhx_T2J4htQiTFqk01mjpC6dsprjjFE2JVpqMo__PG07McLxsW9S5k7jM20ZJp5S0rnKqbKx4AWvdtPOvgLnGyDb3ObofIxHyNCJvKgSqFs1IYMiawLulemobucuphca3OmCYoqhJmXVUZgJ7g_Ss5-y4Q-5l1PStWC4wniwTGJHma1rkOI7FJWfrA1URcxFCzgR2o0X84_mjpcrr6Bnm9a2-E3g73KYBqNqt89PrXoaYBLnGKfbWNQwkBPUUUDwBvWJ3gwDxha_e6caXgTdca2Jj1Nt_n9ZreEwv0aeZRrC2uLr2b-ChvVmM51c7YYH9BJytKUM
  priority: 102
  providerName: ProQuest
Title Medical Image Retrieval Using Empirical Mode Decomposition with Deep Convolutional Neural Network
URI https://search.emarefa.net/detail/BIM-1136108
https://dx.doi.org/10.1155/2020/6687733
https://www.ncbi.nlm.nih.gov/pubmed/33426062
https://www.proquest.com/docview/2476480135
https://www.proquest.com/docview/2476850627
https://pubmed.ncbi.nlm.nih.gov/PMC7781707
Volume 2020
WOSCitedRecordID wos000609501300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: P5Z
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: M7P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: CWDGH
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: PIMPY
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: 24P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7RwRAviN8LlMpI4wlFJLFjJ49jdNokVkUVSIWXyHEcrRJNq7Xb_n3uHDfQAYKXtE0uddTPZ99nX78DOFRxkza5tKE2vEaCYk2Y51qEltdIMJSKGuP-KPxJTSbZbJYXXiRp_fsWPs52RM-j91JmSnE-gEGWUubW9HTWL6VQ7Ygo78rIxQLJEOfbFPdbt-9MPvt2ofGN7gfj_QuiwTfzPwWbt3Mmf5mETh7BQx89sqMO7sdwx7ZP4P653x9_Ctrvu7CzBY4TbOrKZWFfYi4zgI0Xq7mTBGFUAo19tJRQ7rO2GK3I4im7YsfL9tr3SDQl-Q734vLFn8GXk_Hn49PQF1EIDZKZTSi00UrYtJYmkkmdUMzDG6GjBEfpuEpIvy3JmgaRqQU6Y1NJUUspTJ3XMqsMfw577bK1B8DqSosmtjEOElogMal4XOVIJw2CzTGwDODd9tctjVcYp0IX30vHNNK0JCxKj0UAb3vrVaes8Re7Fx6on2Yxx6gvC2BIwJXkitiOQccw5ZHMSV8IiWEAhx7Qf3z_cIt26f13XSZCSRLW4WkAb_rL1ADlpLV2edXZkN5fovARu87RN8Q5Kf_LJAC10216A1L13r3Szi-curdSpJmoXv7f07-CB_SxWxQawt7m8sq-hnvmejNfX45goGbKHbMR3P0wnhTTEWW3Fngs0m94rjg7L76OnD_9ANnJD5I
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VlAIX3g9DgEVqT8iq7V3vxgeEqj7UqEkUoSKVk1mv12ok4oQmbcWf4jcyY69dgniceuBkyx551_Y3szPj8TcAmyos4iKR1teG5xigWOMniRa-5TkGGEoFhal-FB6o0ah3cpKM1-B78y8MlVU2NrEy1PnMUI58OxJKEtUJj9_Pv_rUNYq-rjYtNGpYHNlvlxiyLd719_D9bkXRwf7x7qHvugr4Br37pS-00UrYOJcmkFEekRPAC6GDCM1WmEVEaBb1igKnmgtEZ5FJkUspTJ7kspcZjte9AeuCwN6B9XF_OP7UZnWojUWQ1B3tQoFxGedNtX0cU6Ih2JaypxTnK-vghp1q3NHturBxShH55eR3fu-v5Zs_rYcH9_63J3kf7jrPm-3UqvIA1mz5EG4NXW3BI9DumxXrT9HGsg9VqzHUQ1ZVVbD96XxS0akwah_H9iwV47uKN0bZbDxk52x3Vl44bUZRoj6pNlWt_WP4eC03-AQ65ay0z4DlmRZFaEM0sFpgUJfxMEswFDeoKBydcg_eNnBIjWNnpyYhX9IqSovjlMCTOvB4sNVKz2tWkj_IPXXIuhILOXrMPQ-6hLSUzBiOY9ComHRHJsTNhEG1B5sOgf-4freBWOps3yK9wpcHb9rTNADV85V2dl7LEFdipHCKNZrbgTinrgky8kCt4LwVIEb01TPl5LRiRleK-CbV879P6zXcPjweDtJBf3T0Au7QDdVJtS50lmfn9iXcNBfLyeLslVNvBp-vWw9-ACZIhrY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VQisuvB-GAIvUnpAVe3e9ax8QqppGRC1RhECquBh7vVYjESc0aSv-Gr-OGXvtEsTj1AOnRPHIu3a-mZ1Zf_4GYEeHZVQmyvqZEQUWKNb4SZJJ34oCCwytg9LULwof6fE4Pj5OJhvwvX0XhmiVbUysA3UxN7RH3udSK5I6EVG_dLSIyWD4ZvHVpw5S9KS1bafRQOTQfrvA8m35ejTA_3qX8-HBh_23vusw4BvM9Fe-zEympY0KZQLFC04JgShlFnAMYWHOSdyMx2WJ0y4kIrXMlSyUkqZIChXnRuB5r8F1jTUm0Qkn0aduf4caWgRJ09sulFihCdHy7qOIthyCvlKx1kKsrYhbdpbhl6xbIbZOqDa_mP4uA_6VyPnTyji8_T_f0ztwy-XjbK9xoLuwYat7sP3OMQ7uQ-aeZLHRDCMve183IEPvZDXXgh3MFtNaZIVRUzk2sETRdzw4Rnvc-JNdsP15de58HE1JEKX-qBn4D-DjlVzgQ9is5pV9DKzIM1mGNsSwm0ks9XIR5gkW6AbdR2Cq7sGrFhqpcZrt1DrkS1rXblGUEpBSByQPdjvrRaNV8ge7Rw5ll2ahwDw69qBHqEspuOE4BkONSfcQ3JI60Yce7Dg0_uP8vRZuqYuIy_QSax687A7TAMTyq-z8rLEhBUWucYoNsruBhKBeCop7oNcw3xmQTvr6kWp6Uuula00qlPrJ36f1ArYR_OnRaHz4FG7S9TQ7bT3YXJ2e2Wdww5yvpsvT57WfM_h81U7wA107jhk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Retrieval+Using+Empirical+Mode+Decomposition+with+Deep+Convolutional+Neural+Network&rft.jtitle=BioMed+research+international&rft.au=Zhang%2C+Shaomin&rft.au=Zhi%2C+Lijia&rft.au=Zhou%2C+Tao&rft.date=2020&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2314-6133&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F6687733&rft.externalDocID=A695445261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon