A binary linear programming formulation of the graph edit distance

A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 28; no. 8; pp. 1200 - 1214
Main Authors: Justice, D., Hero, A.
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.08.2006
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs
AbstractList A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.
A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.
[...] a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem.
A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs
Author Hero, A.
Justice, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Justice
  fullname: Justice, D.
  organization: Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI
– sequence: 2
  givenname: A.
  surname: Hero
  fullname: Hero, A.
  organization: Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17935106$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16886857$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAYhC1URLeFKxckZCEBpyyvHcexj0vFR6UiOOzd8jqvW1eJs9jJof8ep7uoqBJw8sHPjMczZ-QkjhEJeclgzRjoD9sfm2-Xaw4g16zhT8iKMwmV5pqfkBUwySuluDolZznfAjDRQP2MnDKplFRNuyIfN3QXok13tA8RbaL7NF4nOwwhXlM_pmHu7RTGSEdPpxuk5W5_Q7ELE-1Cnmx0-Jw89bbP-OJ4npPt50_bi6_V1fcvlxebq8oJradKQCc1lAyt8o4rZ1G5ndh55TxrOi8EMC5a5lE6X0gtOi3QYislQytFfU7eH2xLwp8z5skMITvsextxnLNRWjKtdSML-e6fpFRteQrq_4JcATSCLY5vHoG345xi-a1RsmnrWssFen2E5t2AndmnMJRize-yC_D2CNjsbO9TaS_kB67VdcNgMVofOJfGnBP6BwTMsrq5X90sq5uyehGIRwIXpvvZpmRD_3fZq4MsIOIfcQWXpcVfpV-2jQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_patrec_2014_04_015
crossref_primary_10_1109_JLT_2013_2293193
crossref_primary_10_1016_j_is_2021_101766
crossref_primary_10_1016_j_patcog_2017_07_029
crossref_primary_10_1109_TKDE_2017_2772243
crossref_primary_10_1016_j_patcog_2014_11_002
crossref_primary_10_1016_j_patrec_2015_10_007
crossref_primary_10_1016_j_patrec_2017_10_007
crossref_primary_10_1016_j_knosys_2018_10_002
crossref_primary_10_1016_j_patrec_2016_10_004
crossref_primary_10_1016_j_patcog_2019_01_043
crossref_primary_10_1016_j_patrec_2016_10_001
crossref_primary_10_1016_j_patcog_2021_108132
crossref_primary_10_1186_s13321_025_00958_w
crossref_primary_10_1109_TSC_2021_3054036
crossref_primary_10_1002_widm_1099
crossref_primary_10_1007_s10559_019_00213_9
crossref_primary_10_1007_s11063_017_9739_7
crossref_primary_10_1016_j_patrec_2018_08_026
crossref_primary_10_1016_j_patcog_2009_10_013
crossref_primary_10_1016_j_cor_2018_02_002
crossref_primary_10_1007_s10044_008_0141_y
crossref_primary_10_1109_TCBB_2015_2478463
crossref_primary_10_1007_s10107_020_01564_4
crossref_primary_10_1016_j_patcog_2018_03_019
crossref_primary_10_1007_s00778_013_0306_1
crossref_primary_10_1109_JSYST_2022_3222357
crossref_primary_10_1007_s00542_019_04472_6
crossref_primary_10_14778_3749646_3749726
crossref_primary_10_1109_ACCESS_2025_3561083
crossref_primary_10_1016_j_patrec_2011_04_017
crossref_primary_10_1016_j_patrec_2018_03_033
crossref_primary_10_1016_j_jnca_2024_104043
crossref_primary_10_1109_TSP_2024_3449091
crossref_primary_10_1016_j_patrec_2018_05_002
crossref_primary_10_1145_3709673
crossref_primary_10_1016_j_patrec_2008_12_014
crossref_primary_10_1016_j_comgeo_2023_102056
crossref_primary_10_1016_j_imavis_2015_06_005
crossref_primary_10_1109_TKDE_2019_2954527
crossref_primary_10_1007_s42484_022_00077_x
crossref_primary_10_1007_s00778_019_00544_1
crossref_primary_10_1016_j_patrec_2015_08_003
crossref_primary_10_1016_j_patrec_2021_02_014
crossref_primary_10_1109_TKDE_2010_28
crossref_primary_10_1016_j_patrec_2021_02_019
crossref_primary_10_1016_j_patrec_2016_06_014
crossref_primary_10_1109_TCCN_2022_3147196
crossref_primary_10_1007_s11704_015_4505_3
crossref_primary_10_1145_3725304
crossref_primary_10_1016_j_eswa_2019_04_008
crossref_primary_10_1016_j_knosys_2013_10_015
crossref_primary_10_14778_3748191_3748221
crossref_primary_10_1007_s10878_008_9184_7
crossref_primary_10_1016_j_patcog_2014_07_015
crossref_primary_10_1016_j_cviu_2010_12_010
crossref_primary_10_1007_s13042_013_0210_4
crossref_primary_10_1016_j_patcog_2012_05_022
crossref_primary_10_1016_j_is_2018_10_003
crossref_primary_10_1016_j_patrec_2015_11_026
crossref_primary_10_1109_TPAMI_2017_2767591
crossref_primary_10_1016_j_imavis_2008_04_004
crossref_primary_10_1016_j_patrec_2019_06_024
crossref_primary_10_1145_2699878
crossref_primary_10_1016_j_eswa_2017_10_043
crossref_primary_10_1016_j_neucom_2008_10_021
crossref_primary_10_1007_s11280_014_0286_0
crossref_primary_10_1016_j_patrec_2015_02_004
Cites_doi 10.1021/ja00465a041
10.1007/BF01975866
10.1007/978-1-4757-2016-7
10.1109/TSMC.1979.4310127
10.1145/321796.321811
10.1023/A:1021271615909
10.1109/34.491619
10.1142/S0218001498000415
10.1016/S0166-218X(01)00290-6
10.1093/comjnl/45.6.631
10.1007/3-540-44522-6_26
10.1109/34.954603
10.1109/TPAMI.2005.56
10.1109/34.211474
10.1109/TPAMI.2004.95
10.1016/S0167-8655(01)00022-8
10.1016/S0167-8655(97)00179-7
10.1016/S0167-8655(01)00017-4
10.1021/ci049860f
10.1109/ICPR.2002.1047427
10.1109/34.862201
10.1023/A:1016387816342
10.1002/9780470125847.ch1
10.1021/ci00009a019
10.1007/BF02575586
10.1109/TPAMI.2005.138
10.1109/TPAMI.2004.1273924
10.1007/978-3-642-88304-0
10.1109/34.954601
10.1109/34.6778
10.1109/34.790431
10.1109/ICPR.2000.906030
10.1109/TPAMI.2005.146
10.1007/3-540-44683-4_60
10.1109/ICPR.2004.1334548
10.1002/qsar.19860050105
10.1007/978-1-4612-1480-9_3
10.1109/TPAMI.2004.75
10.1145/543613.543620
10.1017/CBO9780511804441
10.1007/978-1-4615-2311-6
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2006.152
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
MEDLINE - Academic
Technology Research Database
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 1214
ExternalDocumentID 2343239601
16886857
17935106
10_1109_TPAMI_2006_152
1642656
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c499t-40d69000178fc28cae8cb4bf8cf15df44012471fe6cfd6994d94eae7661ea643
IEDL.DBID RIE
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238162400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Sun Sep 28 02:48:27 EDT 2025
Sun Nov 09 10:29:23 EST 2025
Sun Sep 28 08:04:52 EDT 2025
Sun Nov 09 08:18:56 EST 2025
Wed Feb 19 01:52:53 EST 2025
Mon Jul 21 09:16:10 EDT 2025
Sat Nov 29 08:09:45 EST 2025
Tue Nov 18 22:34:45 EST 2025
Tue Aug 26 16:40:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords structural pattern recognition
Similarity
Information system
Assignment problem
String matching
Linear programming
Graph theory
Pattern recognition
Continuation method
similarity measures
Homotopy
Chemical databasis
Graph algorithms
continuation (homotopy) methods
Pattern analysis
graphs and networks
Non directed graph
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-40d69000178fc28cae8cb4bf8cf15df44012471fe6cfd6994d94eae7661ea643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 16886857
PQID 865733966
PQPubID 23500
PageCount 15
ParticipantIDs pascalfrancis_primary_17935106
crossref_primary_10_1109_TPAMI_2006_152
ieee_primary_1642656
proquest_miscellaneous_896199956
proquest_journals_865733966
proquest_miscellaneous_28005416
proquest_miscellaneous_68712403
crossref_citationtrail_10_1109_TPAMI_2006_152
pubmed_primary_16886857
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2006
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref52
ref11
Dunford-Shore (ref42) 2002
Papadimitriou (ref40) 1982
ref16
ref19
ref18
ref51
ref50
Pavel (ref35) 1989
ref45
ref48
Johnson (ref13) 1987
Berkelaar (ref47) 2004
Conway (ref41) 1988
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Luenberger (ref44) 1969
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Klein (ref34)
Willett (ref46) 1987
ref24
ref23
McKay (ref17); 30
ref26
ref25
ref20
Garey (ref10) 1979
ref22
ref21
ref28
ref27
ref29
Saigal (ref43) 1995
Johnson (ref5) 1990
References_xml – ident: ref48
  doi: 10.1021/ja00465a041
– ident: ref32
  doi: 10.1007/BF01975866
– volume-title: Sphere Packings, Lattices and Groups
  year: 1988
  ident: ref41
  doi: 10.1007/978-1-4757-2016-7
– ident: ref19
  doi: 10.1109/TSMC.1979.4310127
– ident: ref26
  doi: 10.1145/321796.321811
– ident: ref9
  doi: 10.1023/A:1021271615909
– ident: ref22
  doi: 10.1109/34.491619
– ident: ref28
  doi: 10.1142/S0218001498000415
– ident: ref52
  doi: 10.1016/S0166-218X(01)00290-6
– ident: ref49
  doi: 10.1093/comjnl/45.6.631
– ident: ref31
  doi: 10.1007/3-540-44522-6_26
– volume-title: Combinatorial Optimization: Algorithms and Complexity
  year: 1982
  ident: ref40
– ident: ref3
  doi: 10.1109/34.954603
– ident: ref30
  doi: 10.1109/TPAMI.2005.56
– ident: ref20
  doi: 10.1109/34.211474
– ident: ref23
  doi: 10.1109/TPAMI.2004.95
– ident: ref12
  doi: 10.1016/S0167-8655(01)00022-8
– ident: ref11
  doi: 10.1016/S0167-8655(97)00179-7
– ident: ref14
  doi: 10.1016/S0167-8655(01)00017-4
– ident: ref38
  doi: 10.1021/ci049860f
– volume-title: Fundamentals of Pattern Recognition
  year: 1989
  ident: ref35
– ident: ref27
  doi: 10.1109/ICPR.2002.1047427
– ident: ref29
  doi: 10.1109/34.862201
– ident: ref7
  doi: 10.1023/A:1016387816342
– ident: ref6
  doi: 10.1002/9780470125847.ch1
– start-page: 696
  volume-title: Proc. ACM-SIAM Symp. Discrete Algorithms
  ident: ref34
  article-title: A Tree-Edit Distance Algorithm for Comparing Simple, Closed Shapes
– ident: ref50
  doi: 10.1021/ci00009a019
– volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
  year: 1979
  ident: ref10
– ident: ref51
  doi: 10.1007/BF02575586
– year: 2004
  ident: ref47
  article-title: lp_solve: Open Source (Mixed-Integer) Linear Programming System
– ident: ref16
  doi: 10.1109/TPAMI.2005.138
– ident: ref37
  doi: 10.1109/TPAMI.2004.1273924
– ident: ref1
  doi: 10.1007/978-3-642-88304-0
– ident: ref2
  doi: 10.1109/34.954601
– ident: ref21
  doi: 10.1109/34.6778
– ident: ref24
  doi: 10.1109/34.790431
– volume: 30
  start-page: 45
  volume-title: Congressus Numerantium
  ident: ref17
  article-title: Practical Graph Isomorphism
– ident: ref25
  doi: 10.1109/ICPR.2000.906030
– ident: ref15
  doi: 10.1109/TPAMI.2005.146
– ident: ref33
  doi: 10.1007/3-540-44683-4_60
– ident: ref36
  doi: 10.1109/ICPR.2004.1334548
– ident: ref39
  doi: 10.1002/qsar.19860050105
– year: 2002
  ident: ref42
  article-title: Klotho: Biochemical Compounds Declarative Database
– volume-title: Optimization by Vector Space Methods
  year: 1969
  ident: ref44
– volume-title: Clustering in Chemical Information Systems
  year: 1987
  ident: ref46
– volume-title: Concepts and Applications of Molecular Similarity
  year: 1990
  ident: ref5
– ident: ref8
  doi: 10.1007/978-1-4612-1480-9_3
– ident: ref18
  doi: 10.1109/TPAMI.2004.75
– ident: ref4
  doi: 10.1145/543613.543620
– start-page: 219
  volume-title: Graph Theory and Topology in Chemistry
  year: 1987
  ident: ref13
  article-title: Unique Mathematical Features of the Substructure Metric Approach to Quantitative Molecular Similarity Analysis
– ident: ref45
  doi: 10.1017/CBO9780511804441
– volume-title: Linear Programming: A Modern Integrated Analysis
  year: 1995
  ident: ref43
  doi: 10.1007/978-1-4615-2311-6
SSID ssj0014503
Score 2.27972
Snippet A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph...
[...] a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1200
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Chemicals
Computer Graphics
Computer science; control theory; systems
continuation (homotopy) methods
Cost function
Exact sciences and technology
Fingerprint recognition
Formulations
Graph algorithms
Graphs
graphs and networks
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
Information systems
Linear programming
Machine vision
Mathematical models
Operations research
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Polynomials
Product development
Programming, Linear
Prototypes
Recognition
similarity measures
Standards development
structural pattern recognition
Studies
Title A binary linear programming formulation of the graph edit distance
URI https://ieeexplore.ieee.org/document/1642656
https://www.ncbi.nlm.nih.gov/pubmed/16886857
https://www.proquest.com/docview/865733966
https://www.proquest.com/docview/28005416
https://www.proquest.com/docview/68712403
https://www.proquest.com/docview/896199956
Volume 28
WOSCitedRecordID wos000238162400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB2RiEM5EAqlXT6CD5V66ZLdxeu1jwGBygHEIYfcVl6vLVWCpMpHfz8zthOC1FRCyiGSR5Fje_a9WdvvAXzXGnFIlFXK6YYMIn6TIujxVOlW8zK3ZRXNJqrHRzkeq6cd-Lm-C2Ot9YfP7CV99Xv57dQs6VXZAKl9gfyjA52qEuGu1nrHgJfeBRkZDGY4lhFRoDHP1GD0NHy4D_sOiFYkEyqkFJIQaQOLvLkKHY3UcxwdF2wttvNOjz93vY_1_AD2I89kw7AwPsOOnRxCb-XhwGJKH8LehiDhEVwPWeMv6DJin3rG4vGtF2xlRG-j2RebOobMkXm5a4b4t2AtEVH8yS8wursd3fxKo8tCarDaWWAB2QrldXOkM4U02krT8MZJ4_KydRwLsAIRzFlhHEYq3iputa0Q2K1GPnMM3cl0Yr8By0qNxQxvVFsoXiC1zGwulM3wY4y7ukogXQ13baICORlhPNe-EslU7WeKnDFFjTOVwI91_J-gvbE18ojG_C0qDHcC_Xez-daOTyV8GGHA6Wp665i781oK0ojEMjCBi3UrJh3tpOiJnS7ndSGJ6ub_iRBYiJLUYQJsS4RUgiQgqJdfw8La6H5Ynyf__lun8Cm8CKJjiGfQXcyW9hx2zd_F7_msj8kxln2fHK9N6whV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xWAk4wC7P8PRhJS4EkuC49rG7AoGAikMP3CLHsSUkaFEf_H5mbLcUia60Ug-VPKpc25Pvm9j-PoDfWiMOibKVcrohg4hfpwh6PFW60bzMbdmKZhOtTkc-PanHBTib3oWx1vrDZ_acvvq9_KZvxvSq7AKpfYH8YxGWS86LLNzWmu4Z8NL7ICOHwRzHQiJKNOaZuug-th9uw84D4hUJhQophSRMmkEjb69ChyP1EMfHBWOL-czTI9D1xv_1_SesR6bJ2mFp_IIF29uEjYmLA4tJvQlrM5KEW_CnzWp_RZcR_9QDFg9wvWIrI4Ib7b5Y3zHkjswLXjNEwBFriIriT25D9_qq-_cmjT4LqcF6Z4QlZCOUV86RzhTSaCtNzWsnjcvLxnEswQrEMGeFcRipeKO41baF0G41MpodWOr1e3YPWFZqLGd4rZpC8QLJZWZzoWyGH2Pc5WUC6WS4KxM1yMkK46XytUimKj9T5I0pKpypBE6n8W9BfWNu5BaN-WdUGO4Ejr_M5mc7PpfwcYQBB5PprWL2DispSCUSC8EETqatmHa0l6J7tj8eVoUkspv_I0JgKUpihwmwORFSCRKBoF7uhoU10_2wPve__1snsHLTfbiv7m87dwewGl4L0aHEQ1gaDcb2CH6Y99HzcHDsU-QD8F4KtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+binary+linear+programming+formulation+of+the+graph+edit+distance&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Justice%2C+D&rft.au=Hero%2C+A&rft.date=2006-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=28&rft.issue=8&rft.spage=1200&rft_id=info:doi/10.1109%2FTPAMI.2006.152&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2343239601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon