Multiscale unfolding of real networks by geometric renormalization

Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics Vol. 14; no. 6; pp. 583 - 589
Main Authors: García-Pérez, Guillermo, Boguñá, Marián, M Ángeles Serrano
Format: Journal Article
Language:English
Published: London Nature Publishing Group 01.06.2018
Subjects:
ISSN:1745-2473, 1745-2481
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
AbstractList Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.Complex networks are not obviously renormalizable, as different length scales coexist. Embedding networks in a geometrical space allows the definition of a renormalization group that can be used to construct smaller-scale replicas of large networks.
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
Author M Ángeles Serrano
García-Pérez, Guillermo
Boguñá, Marián
Author_xml – sequence: 1
  givenname: Guillermo
  surname: García-Pérez
  fullname: García-Pérez, Guillermo
– sequence: 2
  givenname: Marián
  surname: Boguñá
  fullname: Boguñá, Marián
– sequence: 3
  fullname: M Ángeles Serrano
BookMark eNp9jU1LAzEURYNUsK3-AHcDrqPv5TtLLVqFihtdl3TmTZk6TTSZQfTXW1BcuroXzuXcGZvEFImxc4RLBOmuikJtLAd0HMAKro_YFK3SXCiHk79u5QmblbIDUMKgnLKbx7EfulKHnqoxtqlvuritUltlCn0VafhI-bVUm89qS2lPQ-7qA4op70PffYWhS_GUHbehL3T2m3P2cnf7vLjnq6flw-J6xWvl_cClFtZj7clCSyjJEPmAQqMwddMQBsSNsl4JT1JqDY0Bo2mjvVGNcqqVc3bx433L6X2kMqx3aczxcLmW4AVKaZ3-byVAeedQAcpvrkhZwA
CitedBy_id crossref_primary_10_1016_j_engfracmech_2024_110327
crossref_primary_10_1103_PhysRevResearch_2_033519
crossref_primary_10_1016_j_physa_2023_129232
crossref_primary_10_1103_k4bx_w273
crossref_primary_10_1007_s10955_018_2084_z
crossref_primary_10_1016_j_ins_2020_03_046
crossref_primary_10_1016_j_physd_2024_134505
crossref_primary_10_1109_TNSE_2021_3137862
crossref_primary_10_1088_1361_6633_ad5c99
crossref_primary_10_1038_s41467_023_43337_5
crossref_primary_10_1038_s41598_021_04379_1
crossref_primary_10_1103_PhysRevResearch_4_033196
crossref_primary_10_1002_wcms_1701
crossref_primary_10_1007_s11071_023_08830_y
crossref_primary_10_1016_j_istruc_2024_107695
crossref_primary_10_1016_j_physrep_2024_11_006
crossref_primary_10_1080_13632469_2024_2435500
crossref_primary_10_1038_s41567_022_01866_8
crossref_primary_10_1103_PhysRevResearch_7_033036
crossref_primary_10_1016_j_chaos_2022_112847
crossref_primary_10_3390_e23060729
crossref_primary_10_1088_1742_5468_ab535b
crossref_primary_10_1140_epjb_s10051_024_00705_4
crossref_primary_10_1103_PhysRevResearch_2_023040
crossref_primary_10_1103_PhysRevLett_134_057401
crossref_primary_10_1103_PhysRevResearch_2_043113
crossref_primary_10_1093_pnasnexus_pgad136
crossref_primary_10_1098_rsta_2020_0421
crossref_primary_10_1007_s41109_021_00375_6
crossref_primary_10_1038_s41467_022_33685_z
crossref_primary_10_1109_TCSS_2024_3381777
crossref_primary_10_1088_1367_2630_ab1e1c
crossref_primary_10_1088_1742_5468_ad57b1
crossref_primary_10_1103_PhysRevE_111_024309
crossref_primary_10_1038_s42005_025_02122_0
crossref_primary_10_1103_PhysRevX_13_021038
crossref_primary_10_1038_s41467_021_24884_1
crossref_primary_10_1103_PhysRevResearch_6_013337
crossref_primary_10_1109_ACCESS_2021_3050014
crossref_primary_10_1103_PhysRevResearch_4_043185
crossref_primary_10_1103_PhysRevResearch_5_043101
crossref_primary_10_1016_j_jobe_2024_109448
crossref_primary_10_1080_10298436_2024_2378337
crossref_primary_10_3390_rs13071322
crossref_primary_10_1016_j_engstruct_2025_119857
crossref_primary_10_1073_pnas_2018994118
crossref_primary_10_1103_PhysRevE_103_052307
crossref_primary_10_1073_pnas_1922248117
crossref_primary_10_1038_s41567_022_01842_2
crossref_primary_10_3390_fractalfract7020109
crossref_primary_10_1073_pnas_2013825118
crossref_primary_10_1038_s41598_021_93921_2
crossref_primary_10_1038_s42005_022_01023_w
crossref_primary_10_1103_PhysRevX_10_021047
crossref_primary_10_1103_s9cx_cftv
crossref_primary_10_3390_e23040492
crossref_primary_10_1038_s41567_023_02246_6
crossref_primary_10_1109_TNSE_2022_3169691
crossref_primary_10_1103_PhysRevResearch_7_013065
crossref_primary_10_3389_feart_2022_966907
crossref_primary_10_1038_s41598_024_71756_x
crossref_primary_10_1088_1674_1056_acd3e2
crossref_primary_10_1016_j_brainres_2024_149373
crossref_primary_10_1038_s41567_025_02784_1
crossref_primary_10_1038_s42005_024_01589_7
crossref_primary_10_1088_2632_072X_adf2ed
crossref_primary_10_1109_TNSE_2023_3266381
crossref_primary_10_1088_2632_072X_ac457a
crossref_primary_10_1109_TNSE_2024_3482188
crossref_primary_10_1088_1367_2630_ab57d2
crossref_primary_10_1109_TCSS_2022_3164975
crossref_primary_10_1371_journal_pcbi_1012848
crossref_primary_10_3390_su12229778
ContentType Journal Article
Copyright Copyright Nature Publishing Group Jun 2018
The Author(s) 2018.
Copyright_xml – notice: Copyright Nature Publishing Group Jun 2018
– notice: The Author(s) 2018.
DBID 3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
PRINS
DOI 10.1038/s41567-018-0072-5
DatabaseName ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
ProQuest Central China
DatabaseTitle ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
ProQuest Central China
DatabaseTitleList ProQuest Central Student
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 589
GroupedDBID 0R~
123
29M
39C
3V.
4.4
6OB
70F
7U5
7XB
88I
8FD
8FE
8FG
8FH
8FK
8R4
8R5
AARCD
AAYZH
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACSTC
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFKRA
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
L7M
LK5
M2P
M7R
N9A
NNMJJ
O9-
P2P
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PUEGO
Q2X
Q9U
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
PRINS
ID FETCH-LOGICAL-c499t-352791c9e70fe13e6ee9a125126cdde1a11b479429e33550d6065eb5964d484f3
IEDL.DBID M2P
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434093800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-2473
IngestDate Sat Aug 16 18:51:23 EDT 2025
Sat Aug 23 14:34:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-352791c9e70fe13e6ee9a125126cdde1a11b479429e33550d6065eb5964d484f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.nature.com/articles/s41567-018-0072-5.pdf
PQID 2049881401
PQPubID 27545
PageCount 7
ParticipantIDs proquest_journals_3092133785
proquest_journals_2049881401
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationYear 2018
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0042613
Score 2.6085186
Snippet Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group...
SourceID proquest
SourceType Aggregation Database
StartPage 583
SubjectTerms Critical phenomena
Embedding
Hyperbolic coordinates
Metric space
Multilayers
Networks
Phase transitions
Self-similarity
Transportation networks
Title Multiscale unfolding of real networks by geometric renormalization
URI https://www.proquest.com/docview/2049881401
https://www.proquest.com/docview/3092133785
Volume 14
WOSCitedRecordID wos000434093800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmFN-JRKg-sVutXbE-IolYMUEUIUMVSOY7NUhJoWiT-PbabiAHEwpLllujOPn_fPQG4IFo7DywSJKy_5CyxGkktKcqV0oz2NWMxpvt0K8ZjOZmotA64VXVZZeMTo6POSxNi5D3aV8TzKSH55ds7ClujQna1XqGxDtoe2eBQ0nVH0sYTB3ZAVw2RHBEmaJPVpLJXBeISii4lCsOzEf_hi-MDM9r576_tgu0aWsKr1VnYA2u22AebscTTVAdgEHttK28TC5f-WMWsEywd9LBxBotVOXgFs0_4YsvXsGjLeFERMO2sbtY8BI-j4cP1Dao3KCDjmcwCeXQlFDbKir6zmNrEWqUjpEmM92tYY5yFEfNEWeqBRz_3dIbbjKuE5UwyR49AqygLewyglpYw7QjBuWDa6Mw6TrlLjAuQRIgT0GmUM62vQTUlnn_IMFML_yr-Vtzp3-IzsEWiqUL0owNai_nSnoMN8-HVNu-C9mA4Tu-70fj-m_LnLyjYtvk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsQwEB1xChpuxI0LKC02thPbBUKcArGsKADRLV5nQgNZIBzip_hGxt6NKEB0FNQjRYrnenMDbAjnCgIWGddISq4ydNw4I3lurVOy4ZSKOd2rpm61zPW1PR-Aj3oWJrRV1jYxGuq860OOfEs2rKB4Spt05-GRh6tRobpan9DoicUpvr9RyFZtnxwQfzeFODq82D_m_asC3BO6f-aEOLRNvEXdKDCRmCFaF9185knXE5cknbB2XViU5IwbOUH8FDupzVSujCokfXcQhlXYLBZaBcV5bflDNCJ7A5gpF0rLuooqzVYVAqXQ5Gl4WNbN02-2Pzq0o8n_9hRTMNGHzmy3J-vTMIDlDIzGFlZfzcJenCWuSOaQvZDaxKoa6xaMYPEdK3vt7hXrvLNb7N6HQ2KeSGXA7Hf9YdQ5uPyTH5iHobJb4gIwZ1AoVwiR5Fo57zpYpDItMl8EyKX1IqzUzGj31bxqC4qvTNgZlvxI_mLU0u_kdRg7vjhrtpsnrdNlGBdRTEKmZwWGnp9ecBVG_Cs94dNaFDgGN3_N1k939g8B
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6FFlAvFAqIQgs-0KOVrO1d2weEgDRqlCrKAVDUS3C8Yy5lF7p9qH-NX9exsysOVL3l0LOlldYz4_m-eQK8F84FAhYF10hGrgp03DgjeWmtU3LglEox3e_Hejo187md9eBv1wsTyyq7NzE91GXtY4y8LwdWEJ_SJu-HtixiNhx9_P2Hxw1SMdPardNYqcgEr6-IvjUfxkOS9YEQo8OvX454u2GAe0L655zQh7aZt6gHATOJBaJ1yeUXnuw-c1m2jCPYhUVJjnlQEtzPcZnbQpXKqCDpuw9gUxPHjOWEs_yk8wKRmchVM2bOhdKyy6hK028iaYoFn4bHwd08_88PJOc22r7P1_IUnrSQmn1a2cAz6GG1A49SaatvnsPn1GPckC4iuyBzStk2VgdGcPmUVasy-IYtr9lPrH_FBWOejqqI5U_bJtUX8G0tP_ASNqq6wlfAnEGhXBAiK7Vy3i0x5DIPhQ8Rimm9C3udYBat-TcLQbzLxFli2a3H_4T2-u7jd_CYpLk4Hk8nb2BLJI2JAaA92Dg_u8B9eOgv6QbP3ibdY_Bj3VK9ASeUF-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+unfolding+of+real+networks+by+geometric+renormalization&rft.jtitle=Nature+physics&rft.au=Garc%C3%ADa-P%C3%A9rez%2C+Guillermo&rft.au=Bogu%C3%B1%C3%A1%2C+Mari%C3%A1n&rft.au=Serrano%2C+M.+%C3%81ngeles&rft.date=2018-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=14&rft.issue=6&rft.spage=583&rft.epage=589&rft_id=info:doi/10.1038%2Fs41567-018-0072-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon