Multiscale unfolding of real networks by geometric renormalization
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However...
Saved in:
| Published in: | Nature physics Vol. 14; no. 6; pp. 583 - 589 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group
01.06.2018
|
| Subjects: | |
| ISSN: | 1745-2473, 1745-2481 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers. |
|---|---|
| AbstractList | Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.Complex networks are not obviously renormalizable, as different length scales coexist. Embedding networks in a geometrical space allows the definition of a renormalization group that can be used to construct smaller-scale replicas of large networks. Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers. |
| Author | M Ángeles Serrano García-Pérez, Guillermo Boguñá, Marián |
| Author_xml | – sequence: 1 givenname: Guillermo surname: García-Pérez fullname: García-Pérez, Guillermo – sequence: 2 givenname: Marián surname: Boguñá fullname: Boguñá, Marián – sequence: 3 fullname: M Ángeles Serrano |
| BookMark | eNp9jU1LAzEURYNUsK3-AHcDrqPv5TtLLVqFihtdl3TmTZk6TTSZQfTXW1BcuroXzuXcGZvEFImxc4RLBOmuikJtLAd0HMAKro_YFK3SXCiHk79u5QmblbIDUMKgnLKbx7EfulKHnqoxtqlvuritUltlCn0VafhI-bVUm89qS2lPQ-7qA4op70PffYWhS_GUHbehL3T2m3P2cnf7vLjnq6flw-J6xWvl_cClFtZj7clCSyjJEPmAQqMwddMQBsSNsl4JT1JqDY0Bo2mjvVGNcqqVc3bx433L6X2kMqx3aczxcLmW4AVKaZ3-byVAeedQAcpvrkhZwA |
| CitedBy_id | crossref_primary_10_1016_j_engfracmech_2024_110327 crossref_primary_10_1103_PhysRevResearch_2_033519 crossref_primary_10_1016_j_physa_2023_129232 crossref_primary_10_1103_k4bx_w273 crossref_primary_10_1007_s10955_018_2084_z crossref_primary_10_1016_j_ins_2020_03_046 crossref_primary_10_1016_j_physd_2024_134505 crossref_primary_10_1109_TNSE_2021_3137862 crossref_primary_10_1088_1361_6633_ad5c99 crossref_primary_10_1038_s41467_023_43337_5 crossref_primary_10_1038_s41598_021_04379_1 crossref_primary_10_1103_PhysRevResearch_4_033196 crossref_primary_10_1002_wcms_1701 crossref_primary_10_1007_s11071_023_08830_y crossref_primary_10_1016_j_istruc_2024_107695 crossref_primary_10_1016_j_physrep_2024_11_006 crossref_primary_10_1080_13632469_2024_2435500 crossref_primary_10_1038_s41567_022_01866_8 crossref_primary_10_1103_PhysRevResearch_7_033036 crossref_primary_10_1016_j_chaos_2022_112847 crossref_primary_10_3390_e23060729 crossref_primary_10_1088_1742_5468_ab535b crossref_primary_10_1140_epjb_s10051_024_00705_4 crossref_primary_10_1103_PhysRevResearch_2_023040 crossref_primary_10_1103_PhysRevLett_134_057401 crossref_primary_10_1103_PhysRevResearch_2_043113 crossref_primary_10_1093_pnasnexus_pgad136 crossref_primary_10_1098_rsta_2020_0421 crossref_primary_10_1007_s41109_021_00375_6 crossref_primary_10_1038_s41467_022_33685_z crossref_primary_10_1109_TCSS_2024_3381777 crossref_primary_10_1088_1367_2630_ab1e1c crossref_primary_10_1088_1742_5468_ad57b1 crossref_primary_10_1103_PhysRevE_111_024309 crossref_primary_10_1038_s42005_025_02122_0 crossref_primary_10_1103_PhysRevX_13_021038 crossref_primary_10_1038_s41467_021_24884_1 crossref_primary_10_1103_PhysRevResearch_6_013337 crossref_primary_10_1109_ACCESS_2021_3050014 crossref_primary_10_1103_PhysRevResearch_4_043185 crossref_primary_10_1103_PhysRevResearch_5_043101 crossref_primary_10_1016_j_jobe_2024_109448 crossref_primary_10_1080_10298436_2024_2378337 crossref_primary_10_3390_rs13071322 crossref_primary_10_1016_j_engstruct_2025_119857 crossref_primary_10_1073_pnas_2018994118 crossref_primary_10_1103_PhysRevE_103_052307 crossref_primary_10_1073_pnas_1922248117 crossref_primary_10_1038_s41567_022_01842_2 crossref_primary_10_3390_fractalfract7020109 crossref_primary_10_1073_pnas_2013825118 crossref_primary_10_1038_s41598_021_93921_2 crossref_primary_10_1038_s42005_022_01023_w crossref_primary_10_1103_PhysRevX_10_021047 crossref_primary_10_1103_s9cx_cftv crossref_primary_10_3390_e23040492 crossref_primary_10_1038_s41567_023_02246_6 crossref_primary_10_1109_TNSE_2022_3169691 crossref_primary_10_1103_PhysRevResearch_7_013065 crossref_primary_10_3389_feart_2022_966907 crossref_primary_10_1038_s41598_024_71756_x crossref_primary_10_1088_1674_1056_acd3e2 crossref_primary_10_1016_j_brainres_2024_149373 crossref_primary_10_1038_s41567_025_02784_1 crossref_primary_10_1038_s42005_024_01589_7 crossref_primary_10_1088_2632_072X_adf2ed crossref_primary_10_1109_TNSE_2023_3266381 crossref_primary_10_1088_2632_072X_ac457a crossref_primary_10_1109_TNSE_2024_3482188 crossref_primary_10_1088_1367_2630_ab57d2 crossref_primary_10_1109_TCSS_2022_3164975 crossref_primary_10_1371_journal_pcbi_1012848 crossref_primary_10_3390_su12229778 |
| ContentType | Journal Article |
| Copyright | Copyright Nature Publishing Group Jun 2018 The Author(s) 2018. |
| Copyright_xml | – notice: Copyright Nature Publishing Group Jun 2018 – notice: The Author(s) 2018. |
| DBID | 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U PRINS |
| DOI | 10.1038/s41567-018-0072-5 |
| DatabaseName | ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic ProQuest Central China |
| DatabaseTitle | ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) ProQuest Central China |
| DatabaseTitleList | ProQuest Central Student ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1745-2481 |
| EndPage | 589 |
| GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 6OB 70F 7U5 7XB 88I 8FD 8FE 8FG 8FH 8FK 8R4 8R5 AARCD AAYZH ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACSTC ADBBV ADFRT AENEX AEUYN AFANA AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ L7M LK5 M2P M7R N9A NNMJJ O9- P2P P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PROAC PUEGO Q2X Q9U RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG PRINS |
| ID | FETCH-LOGICAL-c499t-352791c9e70fe13e6ee9a125126cdde1a11b479429e33550d6065eb5964d484f3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434093800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1745-2473 |
| IngestDate | Sat Aug 16 18:51:23 EDT 2025 Sat Aug 23 14:34:53 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c499t-352791c9e70fe13e6ee9a125126cdde1a11b479429e33550d6065eb5964d484f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.nature.com/articles/s41567-018-0072-5.pdf |
| PQID | 2049881401 |
| PQPubID | 27545 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_3092133785 proquest_journals_2049881401 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature physics |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| SSID | ssj0042613 |
| Score | 2.6085186 |
| Snippet | Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 583 |
| SubjectTerms | Critical phenomena Embedding Hyperbolic coordinates Metric space Multilayers Networks Phase transitions Self-similarity Transportation networks |
| Title | Multiscale unfolding of real networks by geometric renormalization |
| URI | https://www.proquest.com/docview/2049881401 https://www.proquest.com/docview/3092133785 |
| Volume | 14 |
| WOSCitedRecordID | wos000434093800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmFN-JRKg-sVutXbE-IolYMUEUIUMVSOY7NUhJoWiT-PbabiAHEwpLllujOPn_fPQG4IFo7DywSJKy_5CyxGkktKcqV0oz2NWMxpvt0K8ZjOZmotA64VXVZZeMTo6POSxNi5D3aV8TzKSH55ds7ClujQna1XqGxDtoe2eBQ0nVH0sYTB3ZAVw2RHBEmaJPVpLJXBeISii4lCsOzEf_hi-MDM9r576_tgu0aWsKr1VnYA2u22AebscTTVAdgEHttK28TC5f-WMWsEywd9LBxBotVOXgFs0_4YsvXsGjLeFERMO2sbtY8BI-j4cP1Dao3KCDjmcwCeXQlFDbKir6zmNrEWqUjpEmM92tYY5yFEfNEWeqBRz_3dIbbjKuE5UwyR49AqygLewyglpYw7QjBuWDa6Mw6TrlLjAuQRIgT0GmUM62vQTUlnn_IMFML_yr-Vtzp3-IzsEWiqUL0owNai_nSnoMN8-HVNu-C9mA4Tu-70fj-m_LnLyjYtvk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsQwEB1xChpuxI0LKC02thPbBUKcArGsKADRLV5nQgNZIBzip_hGxt6NKEB0FNQjRYrnenMDbAjnCgIWGddISq4ydNw4I3lurVOy4ZSKOd2rpm61zPW1PR-Aj3oWJrRV1jYxGuq860OOfEs2rKB4Spt05-GRh6tRobpan9DoicUpvr9RyFZtnxwQfzeFODq82D_m_asC3BO6f-aEOLRNvEXdKDCRmCFaF9185knXE5cknbB2XViU5IwbOUH8FDupzVSujCokfXcQhlXYLBZaBcV5bflDNCJ7A5gpF0rLuooqzVYVAqXQ5Gl4WNbN02-2Pzq0o8n_9hRTMNGHzmy3J-vTMIDlDIzGFlZfzcJenCWuSOaQvZDaxKoa6xaMYPEdK3vt7hXrvLNb7N6HQ2KeSGXA7Hf9YdQ5uPyTH5iHobJb4gIwZ1AoVwiR5Fo57zpYpDItMl8EyKX1IqzUzGj31bxqC4qvTNgZlvxI_mLU0u_kdRg7vjhrtpsnrdNlGBdRTEKmZwWGnp9ecBVG_Cs94dNaFDgGN3_N1k939g8B |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6FFlAvFAqIQgs-0KOVrO1d2weEgDRqlCrKAVDUS3C8Yy5lF7p9qH-NX9exsysOVL3l0LOlldYz4_m-eQK8F84FAhYF10hGrgp03DgjeWmtU3LglEox3e_Hejo187md9eBv1wsTyyq7NzE91GXtY4y8LwdWEJ_SJu-HtixiNhx9_P2Hxw1SMdPardNYqcgEr6-IvjUfxkOS9YEQo8OvX454u2GAe0L655zQh7aZt6gHATOJBaJ1yeUXnuw-c1m2jCPYhUVJjnlQEtzPcZnbQpXKqCDpuw9gUxPHjOWEs_yk8wKRmchVM2bOhdKyy6hK028iaYoFn4bHwd08_88PJOc22r7P1_IUnrSQmn1a2cAz6GG1A49SaatvnsPn1GPckC4iuyBzStk2VgdGcPmUVasy-IYtr9lPrH_FBWOejqqI5U_bJtUX8G0tP_ASNqq6wlfAnEGhXBAiK7Vy3i0x5DIPhQ8Rimm9C3udYBat-TcLQbzLxFli2a3H_4T2-u7jd_CYpLk4Hk8nb2BLJI2JAaA92Dg_u8B9eOgv6QbP3ibdY_Bj3VK9ASeUF-0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+unfolding+of+real+networks+by+geometric+renormalization&rft.jtitle=Nature+physics&rft.au=Garc%C3%ADa-P%C3%A9rez%2C+Guillermo&rft.au=Bogu%C3%B1%C3%A1%2C+Mari%C3%A1n&rft.au=Serrano%2C+M.+%C3%81ngeles&rft.date=2018-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=14&rft.issue=6&rft.spage=583&rft.epage=589&rft_id=info:doi/10.1038%2Fs41567-018-0072-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |