Racial bias in AI-mediated psychiatric diagnosis and treatment: a qualitative comparison of four large language models

Artificial intelligence (AI), particularly large language models (LLMs), is increasingly integrated into mental health care. This study examined racial bias in psychiatric diagnosis and treatment across four leading LLMs: Claude, ChatGPT, Gemini, and NewMes-15 (a local, medical-focused LLaMA 3 varia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NPJ digital medicine Ročník 8; číslo 1; s. 332 - 6
Hlavní autoři: Bouguettaya, Ayoub, Stuart, Elizabeth M., Aboujaoude, Elias
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Nature Publishing Group 04.06.2025
Nature Publishing Group UK
Nature Portfolio
Témata:
ISSN:2398-6352, 2398-6352
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Artificial intelligence (AI), particularly large language models (LLMs), is increasingly integrated into mental health care. This study examined racial bias in psychiatric diagnosis and treatment across four leading LLMs: Claude, ChatGPT, Gemini, and NewMes-15 (a local, medical-focused LLaMA 3 variant). Ten psychiatric patient cases representing five diagnoses were presented to these models under three conditions: race-neutral, race-implied, and race-explicitly stated (i.e., stating patient is African American). The models' diagnostic recommendations and treatment plans were qualitatively evaluated by a clinical psychologist and a social psychologist, who scored 120 outputs for bias by comparing responses generated under race-neutral, race-implied, and race-explicit conditions. Results indicated that LLMs often proposed inferior treatments when patient race was explicitly or implicitly indicated, though diagnostic decisions demonstrated minimal bias. NewMes-15 exhibited the highest degree of racial bias, while Gemini showed the least. These findings underscore critical concerns about the potential for AI to perpetuate racial disparities in mental healthcare, emphasizing the necessity of rigorous bias assessment in algorithmic medical decision support systems.
AbstractList Artificial intelligence (AI), particularly large language models (LLMs), is increasingly integrated into mental health care. This study examined racial bias in psychiatric diagnosis and treatment across four leading LLMs: Claude, ChatGPT, Gemini, and NewMes-15 (a local, medical-focused LLaMA 3 variant). Ten psychiatric patient cases representing five diagnoses were presented to these models under three conditions: race-neutral, race-implied, and race-explicitly stated (i.e., stating patient is African American). The models' diagnostic recommendations and treatment plans were qualitatively evaluated by a clinical psychologist and a social psychologist, who scored 120 outputs for bias by comparing responses generated under race-neutral, race-implied, and race-explicit conditions. Results indicated that LLMs often proposed inferior treatments when patient race was explicitly or implicitly indicated, though diagnostic decisions demonstrated minimal bias. NewMes-15 exhibited the highest degree of racial bias, while Gemini showed the least. These findings underscore critical concerns about the potential for AI to perpetuate racial disparities in mental healthcare, emphasizing the necessity of rigorous bias assessment in algorithmic medical decision support systems.Artificial intelligence (AI), particularly large language models (LLMs), is increasingly integrated into mental health care. This study examined racial bias in psychiatric diagnosis and treatment across four leading LLMs: Claude, ChatGPT, Gemini, and NewMes-15 (a local, medical-focused LLaMA 3 variant). Ten psychiatric patient cases representing five diagnoses were presented to these models under three conditions: race-neutral, race-implied, and race-explicitly stated (i.e., stating patient is African American). The models' diagnostic recommendations and treatment plans were qualitatively evaluated by a clinical psychologist and a social psychologist, who scored 120 outputs for bias by comparing responses generated under race-neutral, race-implied, and race-explicit conditions. Results indicated that LLMs often proposed inferior treatments when patient race was explicitly or implicitly indicated, though diagnostic decisions demonstrated minimal bias. NewMes-15 exhibited the highest degree of racial bias, while Gemini showed the least. These findings underscore critical concerns about the potential for AI to perpetuate racial disparities in mental healthcare, emphasizing the necessity of rigorous bias assessment in algorithmic medical decision support systems.
Artificial intelligence (AI), particularly large language models (LLMs), is increasingly integrated into mental health care. This study examined racial bias in psychiatric diagnosis and treatment across four leading LLMs: Claude, ChatGPT, Gemini, and NewMes-15 (a local, medical-focused LLaMA 3 variant). Ten psychiatric patient cases representing five diagnoses were presented to these models under three conditions: race-neutral, race-implied, and race-explicitly stated (i.e., stating patient is African American). The models’ diagnostic recommendations and treatment plans were qualitatively evaluated by a clinical psychologist and a social psychologist, who scored 120 outputs for bias by comparing responses generated under race-neutral, race-implied, and race-explicit conditions. Results indicated that LLMs often proposed inferior treatments when patient race was explicitly or implicitly indicated, though diagnostic decisions demonstrated minimal bias. NewMes-15 exhibited the highest degree of racial bias, while Gemini showed the least. These findings underscore critical concerns about the potential for AI to perpetuate racial disparities in mental healthcare, emphasizing the necessity of rigorous bias assessment in algorithmic medical decision support systems.
Abstract Artificial intelligence (AI), particularly large language models (LLMs), is increasingly integrated into mental health care. This study examined racial bias in psychiatric diagnosis and treatment across four leading LLMs: Claude, ChatGPT, Gemini, and NewMes-15 (a local, medical-focused LLaMA 3 variant). Ten psychiatric patient cases representing five diagnoses were presented to these models under three conditions: race-neutral, race-implied, and race-explicitly stated (i.e., stating patient is African American). The models’ diagnostic recommendations and treatment plans were qualitatively evaluated by a clinical psychologist and a social psychologist, who scored 120 outputs for bias by comparing responses generated under race-neutral, race-implied, and race-explicit conditions. Results indicated that LLMs often proposed inferior treatments when patient race was explicitly or implicitly indicated, though diagnostic decisions demonstrated minimal bias. NewMes-15 exhibited the highest degree of racial bias, while Gemini showed the least. These findings underscore critical concerns about the potential for AI to perpetuate racial disparities in mental healthcare, emphasizing the necessity of rigorous bias assessment in algorithmic medical decision support systems.
ArticleNumber 332
Author Stuart, Elizabeth M.
Bouguettaya, Ayoub
Aboujaoude, Elias
Author_xml – sequence: 1
  givenname: Ayoub
  surname: Bouguettaya
  fullname: Bouguettaya, Ayoub
– sequence: 2
  givenname: Elizabeth M.
  surname: Stuart
  fullname: Stuart, Elizabeth M.
– sequence: 3
  givenname: Elias
  surname: Aboujaoude
  fullname: Aboujaoude, Elias
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40467886$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustq3DAUFSWlSaf5gS6KoJtu3OplW-qmhNDHQKBQshdXDzsabGsi2QP5-yqeNCRZdCMdrs493Ht03qKTKU4eofeUfKaEyy9Z0FY0FWF1RVYkXqEzxpWsGl6zkyf4FJ3nvCOEMCKkEs0bdCqIaFopmzN0-AM2wIBNgIzDhC-21ehdgNk7vM939qbAFCwupX6KOWQMk8Nz8jCPfpq_YsC3CwxhhjkcPLZx3EMKOU44driLS8IDpN6Xc-oXKGCMzg_5HXrdwZD9-cO9Qdc_vl9f_qqufv_cXl5cVVYoNVcUWtpRC44qxTh42TopiDSEM6W8IFA7MJ4bw52RlHetA-koodBYT5nlG7Q9yroIO71PYYR0pyMEvRZi6jWkOdjBa8W5q8GKGkwrqKTArYFamkYAk7x2RevbUWu_mGKRLdsnGJ6JPn-Zwo3u40FTRnnbkLYofHpQSPF28XnWY8jWD8UbH5esOaO1kjUvo2zQxxfUXfFyKlatrJaQEoLC-vB0pMdZ_n1vIbAjwaaYc_LdI4USfR8jfYyRLjHSa4y0KE3yRZNdvzferxWG_7X-BXXpzUo
CitedBy_id crossref_primary_10_3390_bioengineering12090967
crossref_primary_10_1080_09540261_2025_2559108
Cites_doi 10.2139/ssrn.4880335
10.4088/JCP.v69n0609
10.1073/pnas.2416228122
10.1101/2024.03.28.24305027
10.1016/j.isci.2024.109713
10.1111/1754-9485.13261
10.1038/s43856-024-00601-z
10.1038/s44184-024-00056-z
10.1038/s41597-023-01947-0
10.18653/v1/2024.naacl-long.198
10.1080/00323187.2024.2335471
10.1038/s41591-024-03258-2
10.1038/s44277-024-00010-z
10.1038/s41586-024-07856-5
10.2147/NDT.S128584
10.1016/j.schres.2023.09.033
10.1007/s10916-024-02090-y
10.1038/s41597-023-02814-8
10.1001/jamanetworkopen.2024.40969
10.1038/s41591-025-03626-6
10.1038/s41746-023-00939-z
10.7916/vib.v6i.5890
10.1111/ijd.17076
10.21037/jmai-21-12
10.1007/s40596-024-01996-6
10.1001/jamapediatrics.2023.5750
10.1016/j.health.2023.100147
10.1176/ps.46.6.586
10.1111/jcpp.12204
10.48550/arXiv.2411.02355
10.3233/SHTI220468
10.1056/CAT.23.0404
10.1177/2156869318811435
10.1016/j.beth.2005.12.002
10.1016/S2589-7500(23)00225-X
10.18653/v1/2024.findings-emnlp.120
10.1002/eat.10070
10.1038/s41746-024-01233-2
10.1002/wps.21079
10.1016/j.psychres.2020.113302
10.1001/jama.2023.22557
10.31234/osf.io/y8ax9
10.1093/jamia/ocae060
ContentType Journal Article
Copyright 2025. The Author(s).
Copyright Nature Publishing Group Dec 2025
The Author(s) 2025 2025
Copyright_xml – notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group Dec 2025
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41746-025-01746-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2398-6352
EndPage 6
ExternalDocumentID oai_doaj_org_article_933d5ac45ab74181a3cba58b64a2835d
PMC12137607
40467886
10_1038_s41746_025_01746_4
Genre Journal Article
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
CITATION
EBLON
EBS
EIHBH
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
RNT
RPM
SNYQT
UKHRP
ALIPV
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c499t-1a71f1cad19923ae87d8408b03299e40a5dabe3bb3db813f7da8d101a6ce12c3
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502324200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2398-6352
IngestDate Fri Oct 03 12:51:58 EDT 2025
Tue Nov 04 02:02:54 EST 2025
Fri Sep 05 15:58:47 EDT 2025
Tue Oct 07 07:16:31 EDT 2025
Sun Jun 08 01:33:39 EDT 2025
Sun Nov 09 14:48:58 EST 2025
Tue Nov 18 22:04:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-1a71f1cad19923ae87d8408b03299e40a5dabe3bb3db813f7da8d101a6ce12c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3215700103?pq-origsite=%requestingapplication%
PMID 40467886
PQID 3215700103
PQPubID 5061815
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_933d5ac45ab74181a3cba58b64a2835d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12137607
proquest_miscellaneous_3215985393
proquest_journals_3215700103
pubmed_primary_40467886
crossref_primary_10_1038_s41746_025_01746_4
crossref_citationtrail_10_1038_s41746_025_01746_4
PublicationCentury 2000
PublicationDate 2025-06-04
PublicationDateYYYYMMDD 2025-06-04
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle NPJ digital medicine
PublicationTitleAlternate NPJ Digit Med
PublicationYear 2025
Publisher Nature Publishing Group
Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Portfolio
References N Obradovich (1746_CR9) 2024; 2
A Alamoodi (1746_CR53) 2024; 48
KH Gordon (1746_CR29) 2002; 32
DM Anglin (1746_CR18) 2008; 69
1746_CR27
1746_CR24
1746_CR25
1746_CR22
1746_CR23
J Gravel (1746_CR44) 2023; 1
LN Yatham (1746_CR45) 2023; 22
J Barile (1746_CR2) 2024; 178
PL Morgan (1746_CR30) 2014; 55
DM Anglin (1746_CR19) 2008; 69
H Chung (1746_CR21) 1995; 46
X Bai (1746_CR26) 2025; 122
JA Omiye (1746_CR11) 2023; 6
A Palmer (1746_CR43) 2023; 75
1746_CR15
1746_CR59
RK Bailey (1746_CR16) 2019; 15
1746_CR13
1746_CR57
1746_CR58
1746_CR55
1746_CR56
X Meng (1746_CR28) 2024; 27
1746_CR54
I-M Mølstrøm (1746_CR46) 2020; 291
F Chen (1746_CR52) 2024; 31
EC Stade (1746_CR8) 2024; 3
P Chlap (1746_CR51) 2021; 65
J Pesa (1746_CR20) 2023; 261
IC Wiest (1746_CR60) 2024; 7
1746_CR49
NF Ayoub (1746_CR14) 2024; 2
1746_CR47
R Khera (1746_CR12) 2023; 330
J Vanderminden (1746_CR17) 2019; 9
1746_CR42
1746_CR40
1746_CR41
1746_CR7
1746_CR6
E Goh (1746_CR10) 2024; 7
KH Gordon (1746_CR31) 2006; 37
Y Yang (1746_CR34) 2024; 4
O Itauma (1746_CR5) 2024; 14
1746_CR37
1746_CR38
1746_CR35
X Bai (1746_CR48) 2025; 122
1746_CR36
1746_CR33
R Fliorent (1746_CR39) 2024; 63
1746_CR1
Y-C Wang (1746_CR50) 2023; 3
1746_CR32
1746_CR3
C Crabtree (1746_CR61) 2023; 10
1746_CR4
References_xml – ident: 1746_CR32
  doi: 10.2139/ssrn.4880335
– volume: 69
  start-page: 941
  year: 2008
  ident: 1746_CR19
  publication-title: J. Clin. Psychiatry
  doi: 10.4088/JCP.v69n0609
– volume: 122
  year: 2025
  ident: 1746_CR48
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2416228122
– ident: 1746_CR58
– ident: 1746_CR4
  doi: 10.1101/2024.03.28.24305027
– volume: 1
  start-page: 226
  year: 2023
  ident: 1746_CR44
  publication-title: Mayo Clin. Proc.: Digit. Health
– volume: 27
  year: 2024
  ident: 1746_CR28
  publication-title: Iscience
  doi: 10.1016/j.isci.2024.109713
– ident: 1746_CR49
– volume: 65
  start-page: 545
  year: 2021
  ident: 1746_CR51
  publication-title: J. Med. Imaging Radiat. Oncol.
  doi: 10.1111/1754-9485.13261
– volume: 4
  start-page: 176
  year: 2024
  ident: 1746_CR34
  publication-title: Commun. Med.
  doi: 10.1038/s43856-024-00601-z
– ident: 1746_CR3
– volume: 3
  start-page: 12
  year: 2024
  ident: 1746_CR8
  publication-title: NPJ Ment. Health Res.
  doi: 10.1038/s44184-024-00056-z
– volume: 10
  year: 2023
  ident: 1746_CR61
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-01947-0
– ident: 1746_CR35
  doi: 10.18653/v1/2024.naacl-long.198
– ident: 1746_CR42
– ident: 1746_CR15
– ident: 1746_CR57
– volume: 2
  start-page: 186
  year: 2024
  ident: 1746_CR14
  publication-title: Mayo Clin. Proc.: Digital Health
– volume: 75
  start-page: 281
  year: 2023
  ident: 1746_CR43
  publication-title: Political Sci.
  doi: 10.1080/00323187.2024.2335471
– ident: 1746_CR38
  doi: 10.1038/s41591-024-03258-2
– volume: 2
  start-page: 8
  year: 2024
  ident: 1746_CR9
  publication-title: NPP—Digit. Psychiatry Neurosci.
  doi: 10.1038/s44277-024-00010-z
– volume: 14
  start-page: 09
  year: 2024
  ident: 1746_CR5
  publication-title: Int. J. Bioinform. Biosci.
– ident: 1746_CR25
– ident: 1746_CR24
  doi: 10.1038/s41586-024-07856-5
– volume: 15
  start-page: 603
  year: 2019
  ident: 1746_CR16
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S128584
– volume: 261
  start-page: 170
  year: 2023
  ident: 1746_CR20
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2023.09.033
– volume: 48
  start-page: 1
  year: 2024
  ident: 1746_CR53
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-024-02090-y
– ident: 1746_CR54
  doi: 10.1038/s41597-023-02814-8
– volume: 7
  start-page: e2440969
  year: 2024
  ident: 1746_CR10
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2024.40969
– ident: 1746_CR37
– ident: 1746_CR23
  doi: 10.1038/s41591-025-03626-6
– ident: 1746_CR33
– ident: 1746_CR56
– volume: 6
  year: 2023
  ident: 1746_CR11
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-023-00939-z
– volume: 122
  start-page: 8
  year: 2025
  ident: 1746_CR26
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2416228122
– ident: 1746_CR40
  doi: 10.7916/vib.v6i.5890
– volume: 63
  start-page: 455
  year: 2024
  ident: 1746_CR39
  publication-title: Int. J. Dermatol.
  doi: 10.1111/ijd.17076
– ident: 1746_CR41
  doi: 10.21037/jmai-21-12
– ident: 1746_CR1
  doi: 10.1007/s40596-024-01996-6
– volume: 178
  start-page: 313
  year: 2024
  ident: 1746_CR2
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2023.5750
– volume: 3
  start-page: 100147
  year: 2023
  ident: 1746_CR50
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2023.100147
– volume: 46
  start-page: 586
  year: 1995
  ident: 1746_CR21
  publication-title: Psychiatr. Serv. (Washington, DC)
  doi: 10.1176/ps.46.6.586
– volume: 55
  start-page: 905
  year: 2014
  ident: 1746_CR30
  publication-title: J. Child Psychol. Psychiatry
  doi: 10.1111/jcpp.12204
– ident: 1746_CR7
– ident: 1746_CR36
  doi: 10.48550/arXiv.2411.02355
– ident: 1746_CR47
  doi: 10.3233/SHTI220468
– ident: 1746_CR6
  doi: 10.1056/CAT.23.0404
– volume: 69
  start-page: 941
  year: 2008
  ident: 1746_CR18
  publication-title: J. Clin. Psychiatry
  doi: 10.4088/JCP.v69n0609
– volume: 9
  start-page: 111
  year: 2019
  ident: 1746_CR17
  publication-title: Soc. Ment. Health
  doi: 10.1177/2156869318811435
– volume: 37
  start-page: 319
  year: 2006
  ident: 1746_CR31
  publication-title: Behav. Ther.
  doi: 10.1016/j.beth.2005.12.002
– ident: 1746_CR13
  doi: 10.1016/S2589-7500(23)00225-X
– ident: 1746_CR55
– ident: 1746_CR27
  doi: 10.18653/v1/2024.findings-emnlp.120
– ident: 1746_CR59
– volume: 32
  start-page: 219
  year: 2002
  ident: 1746_CR29
  publication-title: Int. J. Eat. Disord.
  doi: 10.1002/eat.10070
– volume: 7
  year: 2024
  ident: 1746_CR60
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-024-01233-2
– volume: 22
  start-page: 263
  year: 2023
  ident: 1746_CR45
  publication-title: World Psychiatry
  doi: 10.1002/wps.21079
– volume: 291
  year: 2020
  ident: 1746_CR46
  publication-title: Psychiatry Res.
  doi: 10.1016/j.psychres.2020.113302
– volume: 330
  start-page: 2255
  year: 2023
  ident: 1746_CR12
  publication-title: JAMA
  doi: 10.1001/jama.2023.22557
– ident: 1746_CR22
  doi: 10.31234/osf.io/y8ax9
– volume: 31
  start-page: 1172
  year: 2024
  ident: 1746_CR52
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocae060
SSID ssj0002048946
Score 2.313989
Snippet Artificial intelligence (AI), particularly large language models (LLMs), is increasingly integrated into mental health care. This study examined racial bias in...
Abstract Artificial intelligence (AI), particularly large language models (LLMs), is increasingly integrated into mental health care. This study examined...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 332
SubjectTerms Artificial intelligence
Bias
Large language models
Medical diagnosis
Psychologists
Race
Racism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yiHgR15_VVSJ4k7LNJk3Tva3ioqCLyB72FiaZBCtL37J9u3-_k6SvvCeiF2-lTWmamcnMJF--Yeyt73UbjZY1yAZqpRDrPmqoPaIOrQENPlPmf-nOzszFRf9tq9RXwoQVeuAycIeUcGMLXrXgEtGKAOkdtMZpBYkqDNPsS1HPVjL1M2-vKdMrPZ-SaaQ5nBTF3glvm7Bq6UrteKJM2P-nKPN3sOSW9zl9yB7MYSM_Kd3dZ3fC-Ijd-zpvjD9mt98hrX1zN8DEh5GffK7zmRCKJ_kCaB48x4KsGyYOI_IFZX7MgZfjlZkHnPulOiFfRR7p6_wyQcb5ZnmT5wo60xN2fvrx_MOnei6pUHtKbda1gE5E4QET6lRCMB1ShmdcI8ktBdVAi-CCdE6iM0LGDsEgWS1oH8SRl0_Z3rgaw3PGDSDNDs5ROggqtI2L2GhUwgURo0SomNiMrvUz3XiqenFp87a3NLZIxJJEbJaIVRV7t7xzVcg2_tr6fRLa0jIRZecbpD52Vh_7L_Wp2MFG5Ha23slKioO6XAGjYm-Wx2R3aTMFxrC6KW16inV6avOsaMjSE9WQ-zFGV8zs6M5OV3efjMOPzO2dGPY63XQv_sfPvWT3j7LCk96rA7a3vr4Jr9hdf7sepuvX2WJ-AYSvHDU
  priority: 102
  providerName: Directory of Open Access Journals
Title Racial bias in AI-mediated psychiatric diagnosis and treatment: a qualitative comparison of four large language models
URI https://www.ncbi.nlm.nih.gov/pubmed/40467886
https://www.proquest.com/docview/3215700103
https://www.proquest.com/docview/3215985393
https://pubmed.ncbi.nlm.nih.gov/PMC12137607
https://doaj.org/article/933d5ac45ab74181a3cba58b64a2835d
Volume 8
WOSCitedRecordID wos001502324200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7X7
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7RV
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: PIMPY
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTSm99N3Gbbqo0FsxsSNZlnspSUlooFmWJZTtSYwebg3BTteb_P5IstbtlpJLL8a2ZDwwGs1o9OkbgPe64kUtOE2RZpgyZkxa1RxTbQy3hUCOOlDmfy1nM7FcVvOYcOsjrHIzJ4aJ2nTa58gPqPNNZahK8OnqV-qrRvnd1VhCYwd2PVMZm8Du8clsvhizLJ6WtmI8npbJqDjomYvBPe7WY9b8HdvySIG4_1_R5t-gyT-80Onj_5X_CTyK8Sc5GgbMU7hn22fw4DzusD-HmwX6JDpRDfakacnRWRoOl7jAlIzI6EYTM0D0mp5ga8gIV_9IkAznNAOhONFjmUPS1aR2fyeXHntONnlSEkrx9C_g4vTk4vOXNNZmSLVbI63THMu8zjUaD1-laEVp3FJRqIw6_2ZZhoVBZalS1CiR07o0KIwzf-Ta5oeavoRJ27V2D4hA46YZpdy6EpktMlWbjBuWK5vXNTWYQL5Rj9SRt9yXz7iUYf-cCjmoVDqVyqBSyRL4MH5zNbB23Nn72Gt97OkZt8OLbvVDRgOWFaWmQM0KVJ7wJ0eqFRZCcYaess4ksL_Ru4zTQC9_Kz2Bd2OzM2C_K4Ot7a6HPpULmirX59UwxEZJWOb8mBA8AbE1-LZE3W5pm5-BJNxT9ZU8K1_fLdcbeHgYbMGZBNuHyXp1bd_CfX2zbvrVFHbKxTd_XZbhKqbRwKYhd-Ge5mfn8--3j34w1Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHghKIma8dxkBAqj6qrbleoWqHerPEjEKlKymZbxI_iP2I7D1iEeuuBWxQ7iZN8Mx7bn78BeKELnpWC0xhpgjFjxsRFyTHWxnCbCeSog2T-LJ_PxdFR8WkDfg57YTytcvCJwVGbRvs58m3q-qY8ZCV4e_It9lmj_OrqkEKjg8W-_fHdDdnaN9MP7v--nEx2Py7e78V9VoFYu-h-FaeYp2Wq0XjiJUUrcuMGOUIl1HlmyxLMDCpLlaJGiZSWuUFhHHCRa5tONHW3vQSXnRtPPYMsP_w8Tul4DdyC8X5rTkLFdstcwO9Jvp4g54_YWvcXsgT8K7T9m6H5R5e3e_M_-1i34EYfW5Odzhhuw4at78DVg549cBfODtEvEBBVYUuqmuxM47BxxgXdZGR9V5qYjn5YtQRrQ0Yq_muCpNuDGsTSiR5TOJKmJKV7Ojn2vHoyzAGTkGaovQeLi3jp-7BZN7V9CESgcS5UKTdmRmazRJUm4YalyqZlSQ1GkA5okLrXZPepQY5l4AZQITsESYcgGRAkWQSvxmtOOkWSc2u_8yAba3o18XCiWX6RvXOSBaUmQ80yVF7MKEWqFWZCcYZejs9EsDXATPYurpW_MRbB87HYOSe_4oS1bU67OoULCAtX50GH6LElLHF9tBA8ArGG9bWmrpfU1dcggO5lCHOe5I_Ob9czuLa3OJjJ2XS-_xiuT4IZOmtkW7C5Wp7aJ3BFn62qdvk02DEBecGm8AtwrIeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Racial+bias+in+AI-mediated+psychiatric+diagnosis+and+treatment%3A+a+qualitative+comparison+of+four+large+language+models&rft.jtitle=NPJ+digital+medicine&rft.au=Bouguettaya%2C+Ayoub&rft.au=Stuart%2C+Elizabeth+M.&rft.au=Aboujaoude%2C+Elias&rft.date=2025-06-04&rft.issn=2398-6352&rft.eissn=2398-6352&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41746-025-01746-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41746_025_01746_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon