Biofilm formation behaviour of marine filamentous cyanobacterial strains in controlled hydrodynamic conditions

Summary Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology Vol. 21; no. 11; pp. 4411 - 4424
Main Authors: Romeu, Maria J., Alves, Patrícia, Morais, João, Miranda, João M., Jong, Ed.D., Sjollema, Jelmer, Ramos, Vítor, Vasconcelos, Vitor, Mergulhão, Filipe J. M.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.11.2019
Wiley Subscription Services, Inc
Wiley-Blackwell
Subjects:
ISSN:1462-2912, 1462-2920, 1462-2920
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12‐well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s−1) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.
AbstractList Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12-well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s ) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.
Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12‐well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s −1 ) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.
Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12‐well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s−1) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.
Summary Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12‐well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s −1 ) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.
Summary Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12‐well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s−1) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.
Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12‐well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s⁻¹) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.
Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12-well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s-1 ) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12-well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s-1 ) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.
Author Vasconcelos, Vitor
Alves, Patrícia
Sjollema, Jelmer
Ramos, Vítor
Romeu, Maria J.
Miranda, João M.
Jong, Ed.D.
Morais, João
Mergulhão, Filipe J. M.
Author_xml – sequence: 1
  givenname: Maria J.
  orcidid: 0000-0002-1094-5425
  surname: Romeu
  fullname: Romeu, Maria J.
  organization: University of Porto
– sequence: 2
  givenname: Patrícia
  orcidid: 0000-0001-5159-5006
  surname: Alves
  fullname: Alves, Patrícia
  organization: University of Porto
– sequence: 3
  givenname: João
  orcidid: 0000-0002-4190-0959
  surname: Morais
  fullname: Morais, João
  organization: University of Porto, Terminal de Cruzeiros do Porto de Leixões
– sequence: 4
  givenname: João M.
  surname: Miranda
  fullname: Miranda, João M.
  organization: University of Porto
– sequence: 5
  givenname: Ed.D.
  surname: Jong
  fullname: Jong, Ed.D.
  organization: University of Groningen, University Medical Center Groningen
– sequence: 6
  givenname: Jelmer
  surname: Sjollema
  fullname: Sjollema, Jelmer
  organization: University of Groningen, University Medical Center Groningen
– sequence: 7
  givenname: Vítor
  surname: Ramos
  fullname: Ramos, Vítor
  organization: University of Porto, Terminal de Cruzeiros do Porto de Leixões
– sequence: 8
  givenname: Vitor
  orcidid: 0000-0003-3585-2417
  surname: Vasconcelos
  fullname: Vasconcelos, Vitor
  organization: University of Porto
– sequence: 9
  givenname: Filipe J. M.
  orcidid: 0000-0001-5233-1037
  surname: Mergulhão
  fullname: Mergulhão, Filipe J. M.
  email: filipem@fe.up.pt
  organization: University of Porto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31573125$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1570020$$D View this record in Osti.gov
BookMark eNqFkTtvFDEUhS0URB5Q0yELGpolfo5nSogCRAqigdry2B6tI48dbG_Q_HvuZMMWadaNH_rO9T33nKOTlJNH6C0lnyisSyo6tmEDg6voiXqBzg4vJ4czZafovNY7QqjiirxCp5xKxSmTZyh9CXkKccZTLrNpISc8-q15CHlXcJ7wbEpIHgNiZp9a3lVsF5PyaGzzJZiIaysmpIpDwjanVnKM3uHt4kp2SzJzsOu7C2vt-hq9nEys_s3TfoF-f73-dfV9c_vz283V59uNFcOgNk6AG0lHYVwnVT92xltqlFOjYpJOI6c9IZMYxoko6cTAu56YzvVGTtIbYvgFer-vm2sLutrQvN1CG8nbpsE8IYwA9HEP3Zf8Z-dr03Oo1sdokgejmgkCTcDU-HGUQduKMMUA_fAMvYNZJnCrGadUcNn1Eqh3T9RunL3T9yXAqBf9PxkALveALbnW4qcDQoles9drunpNWj9mDwr5TAG2HyNdE4rHdX9D9Muxb_T1j5u97h8_KMBY
CitedBy_id crossref_primary_10_1016_j_marenvres_2022_105752
crossref_primary_10_3390_antibiotics11081102
crossref_primary_10_1016_j_watres_2024_121315
crossref_primary_10_3390_polym14204410
crossref_primary_10_1080_08927014_2025_2499107
crossref_primary_10_3390_coatings10090893
crossref_primary_10_3390_microorganisms11061568
crossref_primary_10_3390_microorganisms9081743
crossref_primary_10_1016_j_cej_2025_161509
crossref_primary_10_1002_jctb_70037
crossref_primary_10_1016_j_biopha_2025_117833
crossref_primary_10_1016_j_jenvman_2020_110691
crossref_primary_10_1016_j_envres_2021_111566
crossref_primary_10_1111_1758_2229_13050
crossref_primary_10_3390_antibiotics12091450
crossref_primary_10_3390_md20080507
crossref_primary_10_3390_ijms232314647
crossref_primary_10_3390_coatings12111775
crossref_primary_10_3390_polym12030653
crossref_primary_10_3390_antibiotics9050216
crossref_primary_10_3390_nano13030381
crossref_primary_10_1002_advs_202207373
crossref_primary_10_1093_femsec_fiad004
crossref_primary_10_3390_microorganisms9091993
crossref_primary_10_1016_j_jwpe_2023_103595
crossref_primary_10_31083_j_fbl2904133
crossref_primary_10_1007_s00231_025_03590_4
crossref_primary_10_3390_microorganisms9051102
crossref_primary_10_1080_08927014_2020_1795141
crossref_primary_10_1038_s41522_022_00340_w
crossref_primary_10_3390_coatings11010090
crossref_primary_10_1002_bit_28072
crossref_primary_10_1093_femsec_fiab052
crossref_primary_10_1016_j_envres_2021_111219
Cites_doi 10.1007/s00204-016-1913-6
10.5194/os-6-503-2010
10.1016/0021-9991(81)90145-5
10.1016/j.colsurfb.2018.02.035
10.1016/j.fbp.2015.05.011
10.1007/978-3-642-34243-1_1
10.1016/j.cis.2012.06.015
10.1080/0892701021000057891
10.1080/08927014.2017.1360870
10.1073/pnas.1300321110
10.1016/S0005-2728(89)80347-0
10.1128/AEM.69.10.6280-6287.2003
10.1016/0021-9991(92)90240-Y
10.1109/TSMC.1979.4310076
10.1016/j.ocemod.2015.12.002
10.1007/s10811-017-1369-y
10.1111/j.1365-2672.2006.03029.x
10.1002/bit.22233
10.1002/jbm.a.35277
10.3390/microorganisms5030046
10.1016/S0167-7012(00)00236-0
10.1007/978-3-540-69796-1
10.3354/meps191141
10.1016/j.colsurfb.2014.08.016
10.1016/j.lwt.2017.01.038
10.1007/s10811-017-1172-9
10.1080/08927014.2014.890713
10.1080/08927014.2010.535206
10.3390/md8061908
10.1016/B978-075062530-2/50016-7
10.1080/1040841X.2016.1208146
10.1111/1462-2920.12186
10.1039/b314073c
10.1016/B978-1-78242-283-9.00005-1
10.3354/meps207109
10.1016/j.toxicon.2005.06.010
10.1155/2014/716080
10.1016/j.ces.2014.12.054
10.1002/bit.26283
10.3390/life5021218
10.1016/j.watres.2013.01.011
10.1080/08927014.2013.828712
10.1300/J028v18n01_05
10.1039/c3an00958k
10.3390/toxins10070297
10.1116/1.2999559
ContentType Journal Article
Copyright 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.
2019 Society for Applied Microbiology and John Wiley & Sons Ltd
Copyright_xml – notice: 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2019 Society for Applied Microbiology and John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
OTOTI
DOI 10.1111/1462-2920.14807
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Economics
EISSN 1462-2920
EndPage 4424
ExternalDocumentID 1570020
31573125
10_1111_1462_2920_14807
EMI14807
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ENBA
  funderid: CA15216
– fundername: FCT/MCTES (PIDDAC)
  funderid: UID/EQU/00511/2019
– fundername: iPROMEDAI
  funderid: TD1305
– fundername: FCT
  funderid: SFRH/BD/140080/2018
– fundername: INTERREG V A Espanha Portugal (POCTEP)
  funderid: 0302_CVMAR_I_1_P
– fundername: FCT/MCTES (PIDDAC)
  grantid: UID/EQU/00511/2019
– fundername: INTERREG V A Espanha Portugal (POCTEP)
  grantid: 0302_CVMAR_I_1_P
– fundername: ENBA
  grantid: CA15216
– fundername: iPROMEDAI
  grantid: TD1305
– fundername: FCT
  grantid: SFRH/BD/140080/2018
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
AAJUZ
AAPBV
ABCVL
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4997-d448051b4ad6578b6aec1a7d7b7251fb31800f49bf075d493680a6d8a5f5ea0a3
IEDL.DBID DRFUL
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493780300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1462-2912
1462-2920
IngestDate Mon Sep 11 05:25:17 EDT 2023
Fri Jul 11 18:38:44 EDT 2025
Wed Oct 01 14:17:45 EDT 2025
Sun Sep 07 23:51:43 EDT 2025
Thu Apr 03 07:06:00 EDT 2025
Sat Nov 29 06:59:12 EST 2025
Tue Nov 18 21:21:09 EST 2025
Wed Jan 22 16:39:12 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4997-d448051b4ad6578b6aec1a7d7b7251fb31800f49bf075d493680a6d8a5f5ea0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0001-5233-1037
0000-0001-5159-5006
0000-0002-1094-5425
0000-0002-4190-0959
0000-0003-3585-2417
0000000335852417
0000000241900959
0000000152331037
0000000151595006
0000000210945425
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1462-2920.14807
PMID 31573125
PQID 2311435685
PQPubID 1066360
PageCount 14
ParticipantIDs osti_scitechconnect_1570020
proquest_miscellaneous_2400510013
proquest_miscellaneous_2299770272
proquest_journals_2311435685
pubmed_primary_31573125
crossref_primary_10_1111_1462_2920_14807
crossref_citationtrail_10_1111_1462_2920_14807
wiley_primary_10_1111_1462_2920_14807_EMI14807
PublicationCentury 2000
PublicationDate November 2019
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Oxford
– name: United Kingdom
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Wiley-Blackwell
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
– name: Wiley-Blackwell
References 2017; 5
2013; 29
2018; 165
2017; 85
2015; 103
2017; 43
2004; 6
1972
2003; 19
2008; 3
2001; 44
2017; 114
2013; 15
2000
2017; 33
2013; 51
2000; 207
2018; 30
1983
1981; 39
1982
2013; 110
2007; 2
2011; 27
2010; 6
1979; 9
2014; 123
2010; 8
2013; 47
1989; 975
2015; 5
1992; 100
1999; 191
2016; 98
2009
2006; 18
1996
2017; 29
2014; 2014
2005; 46
1999
2017; 91
2015a; 95
2015b; 126
2013; 138
2003; 69
2012; 179–182
2016
2014; 30
2018; 10
2006; 101
2009; 103
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
Roy G.J. (e_1_2_5_43_1) 1983
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
Chorus I. (e_1_2_5_11_1) 2000
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_45_1
e_1_2_5_22_1
Youngs D. (e_1_2_5_52_1) 1982
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
Kotai J. (e_1_2_5_27_1) 1972
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
Henriques M. (e_1_2_5_24_1) 2007; 2
e_1_2_5_31_1
Lawton L. (e_1_2_5_28_1) 1999
e_1_2_5_50_1
References_xml – volume: 44
  start-page: 13
  year: 2001
  end-page: 26
  article-title: Quantification of biofilm accumulation by an optical approach
  publication-title: J Microbiol Methods
– year: 2009
– volume: 85
  start-page: 293
  year: 2017
  end-page: 300
  article-title: Characterization of the heterotrophic bacteria from a minimally processed vegetables plant
  publication-title: LWT‐Food Sci Technol
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray‐level histograms
  publication-title: IEEE Trans Syst Man Cybern
– volume: 10
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Differential toxicity of cyanobacteria isolated from marine sponges towards echinoderms and crustaceans
  publication-title: Toxins
– volume: 27
  start-page: 1
  year: 2011
  end-page: 11
  article-title: Flow cell hydrodynamics and their effects on . biofilm formation under different nutrient conditions and turbulent flow
  publication-title: Biofouling
– volume: 165
  start-page: 127
  year: 2018
  end-page: 134
  article-title: The effects of extrinsic factors on the structural and mechanical properties of biofilms: a combined study of nutrient concentrations and shear conditions
  publication-title: Colloids Surf B Biointerfaces
– volume: 8
  start-page: 1908
  year: 2010
  end-page: 1919
  article-title: Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous North Atlantic marine cyanobacteria?
  publication-title: Mar. Drugs
– volume: 5
  start-page: 1218
  year: 2015
  end-page: 1238
  article-title: Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats
  publication-title: Life
– volume: 2
  start-page: 586
  year: 2007
  end-page: 593
  article-title: Extraction and quantification of pigments from a marine microalga : a simple and reproducible method
  publication-title: Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol
– start-page: 273
  year: 1982
  end-page: 285
– volume: 5
  start-page: 46
  year: 2017
  article-title: Culturing toxic benthic blooms: the fate of natural biofilms in a microcosm system
  publication-title: Microorganisms
– volume: 15
  start-page: 2879
  year: 2013
  end-page: 2893
  article-title: Marine biofilms on artificial surfaces: structure and dynamics
  publication-title: Environ Microbiol
– volume: 69
  start-page: 6280
  year: 2003
  end-page: 6287
  article-title: Comparison of velocity profiles for different flow chamber designs used in studies of microbial adhesion to surfaces
  publication-title: Appl Environ Microbiol
– volume: 110
  start-page: 4345
  year: 2013
  end-page: 4350
  article-title: Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems
  publication-title: Proc Natl Acad Sci U S A
– volume: 95
  start-page: 228
  year: 2015a
  end-page: 236
  article-title: The impact of material properties, nutrient load and shear stress on biofouling in food industries
  publication-title: Food Bioprod Process
– volume: 2014
  year: 2014
  article-title: Antibacterial efficacy of iron‐oxide nanoparticles against biofilms on different biomaterial surfaces
  publication-title: Int J Biomater
– volume: 6
  start-page: 569
  year: 2004
  end-page: 575
  article-title: High frequency monitoring of the coastal marine environment using the MAREL buoy
  publication-title: J Environ Monit
– volume: 47
  start-page: 2153
  year: 2013
  end-page: 2163
  article-title: Interaction between local hydrodynamics and algal community in epilithic biofilm
  publication-title: Water Res
– year: 1983
– start-page: 5
  year: 1972
– volume: 30
  start-page: 1437
  year: 2018
  end-page: 1451
  article-title: Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: the case study of the newly established LEGE culture collection
  publication-title: J Appl Phycol
– volume: 191
  start-page: 141
  year: 1999
  end-page: 151
  article-title: Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement
  publication-title: Mar Ecol Prog Ser
– volume: 51
  start-page: 3
  year: 2013
  end-page: 34
– volume: 29
  start-page: 1097
  year: 2013
  end-page: 1113
  article-title: Interactions between microbial biofilms and marine fouling algae: a mini review
  publication-title: Biofouling
– volume: 18
  start-page: 79
  year: 2006
  end-page: 88
  article-title: Comparison of bacterial presence in biofilms on different materials commonly found in recirculating aquaculture systems
  publication-title: J Appl Aquaculture
– volume: 138
  start-page: 6422
  year: 2013
  end-page: 6428
  article-title: Rapid real‐time detection of procalcitonin using a microcontact imprinted surface plasmon resonance biosensor
  publication-title: Analyst
– volume: 43
  start-page: 313
  year: 2017
  end-page: 351
  article-title: Critical review on biofilm methods
  publication-title: Crit Rev Microbiol
– volume: 123
  start-page: 1
  year: 2014
  end-page: 7
  article-title: The effects of surface properties on adhesion are modulated by shear stress
  publication-title: Colloids Surf B Biointerfaces
– volume: 103
  start-page: 92
  year: 2009
  end-page: 104
  article-title: A two‐dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment
  publication-title: Biotechnol Bioeng
– volume: 91
  start-page: 1049
  year: 2017
  end-page: 1130
  article-title: Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation
  publication-title: Arch Toxicol
– volume: 179–182
  start-page: 142
  year: 2012
  end-page: 149
  article-title: Surface topographical factors influencing bacterial attachment
  publication-title: Adv Colloid Interface Sci
– volume: 101
  start-page: 718
  year: 2006
  end-page: 724
  article-title: Adhesion of water stressed to abiotic surfaces
  publication-title: J Appl Microbiol
– start-page: 123
  year: 2016
  end-page: 155
– volume: 6
  start-page: 503
  year: 2010
  end-page: 511
  article-title: Biofouling protection for marine environmental sensors
  publication-title: Ocean Sci
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J Comput Phys
– volume: 30
  start-page: 535
  year: 2014
  end-page: 546
  article-title: 96‐well microtiter plates for biofouling simulation in biomedical settings
  publication-title: Biofouling
– volume: 98
  start-page: 51
  year: 2016
  end-page: 64
  article-title: Biomixing due to diel vertical migrations of zooplankton: comparison of computational fluid dynamics model with observations
  publication-title: Ocean Model
– volume: 207
  start-page: 109
  year: 2000
  end-page: 121
  article-title: Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the interaction of flow and surface characteristics on the attachment of barnacle, bryozoan and polychaete larvae
  publication-title: Mar Ecol Prog Ser
– volume: 100
  start-page: 335
  year: 1992
  end-page: 354
  article-title: A continuum method for modeling surface tension
  publication-title: J Comput Phys
– volume: 19
  start-page: 111
  year: 2003
  end-page: 122
  article-title: Fouling and ships’ hulls: how changing circumstances and spawning events may result in the spread of exotic species
  publication-title: Biofouling
– start-page: 219
  year: 2000
  end-page: 271
– start-page: 347
  year: 1999
  end-page: 367
– volume: 126
  start-page: 440
  year: 2015b
  end-page: 445
  article-title: Micro‐ and macro‐flow systems to study adhesion to biomedical materials
  publication-title: Chem Eng Sci
– volume: 3
  start-page: FC23
  year: 2008
  end-page: FC39
  article-title: Water at polar and nonpolar solid walls (review)
  publication-title: Biointerphases
– volume: 29
  start-page: 2729
  year: 2017
  end-page: 2744
  article-title: Phototrophic biofilms: diversity, ecology and applications
  publication-title: J. Appl. Phycol.
– volume: 46
  start-page: 454
  year: 2005
  end-page: 464
  article-title: Toxicity of culturable cyanobacteria strains isolated from the Portuguese coast
  publication-title: Toxicon
– volume: 114
  start-page: 1386
  year: 2017
  end-page: 1402
  article-title: Optical coherence tomography in biofilm research: a comprehensive review
  publication-title: Biotechnol Bioeng
– volume: 33
  start-page: 712
  year: 2017
  end-page: 721
  article-title: Structural changes in . biofilms after transmission between stainless steel surfaces
  publication-title: Biofouling
– volume: 975
  start-page: 384
  year: 1989
  end-page: 394
  article-title: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls and extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy
  publication-title: Biochim Biophys Acta
– volume: 103
  start-page: 1414
  year: 2015
  end-page: 1423
  article-title: adhesion, biofilm development and antibiotic susceptibility on biomedical materials
  publication-title: J Biomed Mater Res Part A
– start-page: 279
  year: 1996
  end-page: 325
– ident: e_1_2_5_10_1
  doi: 10.1007/s00204-016-1913-6
– ident: e_1_2_5_14_1
  doi: 10.5194/os-6-503-2010
– ident: e_1_2_5_25_1
  doi: 10.1016/0021-9991(81)90145-5
– ident: e_1_2_5_2_1
  doi: 10.1016/j.colsurfb.2018.02.035
– ident: e_1_2_5_34_1
  doi: 10.1016/j.fbp.2015.05.011
– ident: e_1_2_5_53_1
  doi: 10.1007/978-3-642-34243-1_1
– start-page: 5
  volume-title: Instructions for the Preparation of Modified Nutrient Solution Z8 for Algae
  year: 1972
  ident: e_1_2_5_27_1
– ident: e_1_2_5_12_1
  doi: 10.1016/j.cis.2012.06.015
– ident: e_1_2_5_32_1
  doi: 10.1080/0892701021000057891
– ident: e_1_2_5_23_1
  doi: 10.1080/08927014.2017.1360870
– ident: e_1_2_5_16_1
  doi: 10.1073/pnas.1300321110
– ident: e_1_2_5_37_1
  doi: 10.1016/S0005-2728(89)80347-0
– ident: e_1_2_5_6_1
  doi: 10.1128/AEM.69.10.6280-6287.2003
– ident: e_1_2_5_9_1
  doi: 10.1016/0021-9991(92)90240-Y
– ident: e_1_2_5_36_1
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_5_13_1
  doi: 10.1016/j.ocemod.2015.12.002
– ident: e_1_2_5_40_1
  doi: 10.1007/s10811-017-1369-y
– start-page: 219
  volume-title: Monitoring Bathing Waters: A Practical Guide to the Design and Implementation of Assessments and Monitoring Programmes
  year: 2000
  ident: e_1_2_5_11_1
– ident: e_1_2_5_4_1
  doi: 10.1111/j.1365-2672.2006.03029.x
– ident: e_1_2_5_17_1
  doi: 10.1002/bit.22233
– ident: e_1_2_5_21_1
  doi: 10.1002/jbm.a.35277
– ident: e_1_2_5_15_1
  doi: 10.3390/microorganisms5030046
– ident: e_1_2_5_5_1
  doi: 10.1016/S0167-7012(00)00236-0
– ident: e_1_2_5_18_1
  doi: 10.1007/978-3-540-69796-1
– ident: e_1_2_5_38_1
  doi: 10.3354/meps191141
– volume: 2
  start-page: 586
  year: 2007
  ident: e_1_2_5_24_1
  article-title: Extraction and quantification of pigments from a marine microalga : a simple and reproducible method
  publication-title: Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol
– ident: e_1_2_5_33_1
  doi: 10.1016/j.colsurfb.2014.08.016
– ident: e_1_2_5_30_1
  doi: 10.1016/j.lwt.2017.01.038
– ident: e_1_2_5_7_1
  doi: 10.1007/s10811-017-1172-9
– ident: e_1_2_5_20_1
  doi: 10.1080/08927014.2014.890713
– ident: e_1_2_5_49_1
  doi: 10.1080/08927014.2010.535206
– ident: e_1_2_5_19_1
  doi: 10.3390/md8061908
– ident: e_1_2_5_47_1
  doi: 10.1016/B978-075062530-2/50016-7
– ident: e_1_2_5_3_1
  doi: 10.1080/1040841X.2016.1208146
– ident: e_1_2_5_44_1
  doi: 10.1111/1462-2920.12186
– ident: e_1_2_5_8_1
  doi: 10.1039/b314073c
– ident: e_1_2_5_48_1
  doi: 10.1016/B978-1-78242-283-9.00005-1
– ident: e_1_2_5_39_1
  doi: 10.3354/meps207109
– ident: e_1_2_5_29_1
  doi: 10.1016/j.toxicon.2005.06.010
– start-page: 347
  volume-title: Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences, Monitoring and Management
  year: 1999
  ident: e_1_2_5_28_1
– ident: e_1_2_5_50_1
  doi: 10.1155/2014/716080
– ident: e_1_2_5_35_1
  doi: 10.1016/j.ces.2014.12.054
– start-page: 273
  volume-title: Numerical Methods for Fluid Dynamics
  year: 1982
  ident: e_1_2_5_52_1
– ident: e_1_2_5_51_1
  doi: 10.1002/bit.26283
– ident: e_1_2_5_42_1
  doi: 10.3390/life5021218
– volume-title: Notes on Instrumentation and Control
  year: 1983
  ident: e_1_2_5_43_1
– ident: e_1_2_5_22_1
  doi: 10.1016/j.watres.2013.01.011
– ident: e_1_2_5_31_1
  doi: 10.1080/08927014.2013.828712
– ident: e_1_2_5_26_1
  doi: 10.1300/J028v18n01_05
– ident: e_1_2_5_46_1
  doi: 10.1039/c3an00958k
– ident: e_1_2_5_41_1
  doi: 10.3390/toxins10070297
– ident: e_1_2_5_45_1
  doi: 10.1116/1.2999559
SSID ssj0017370
Score 2.4763122
Snippet Summary Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial...
Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4411
SubjectTerms biofilm
Biofilms
Biofouling
Cell adhesion
Cell adhesion & migration
Computational fluid dynamics
Computer applications
Cosmopolitan species
Cyanobacteria
Cyanobacteria - physiology
Economic impact
Economics
ecosystems
Fluid dynamics
Fouling
glass
Hydrodynamics
Laboratory equipment
Optical Coherence Tomography
Perspex
Shear
Shear rate
Statistical analysis
Strains (organisms)
Tomography
Title Biofilm formation behaviour of marine filamentous cyanobacterial strains in controlled hydrodynamic conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.14807
https://www.ncbi.nlm.nih.gov/pubmed/31573125
https://www.proquest.com/docview/2311435685
https://www.proquest.com/docview/2299770272
https://www.proquest.com/docview/2400510013
https://www.osti.gov/biblio/1570020
Volume 21
WOSCitedRecordID wos000493780300031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1462-2920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017370
  issn: 1462-2912
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC50VsGL70fcdWnBg5dIku6kO0dRBw-yiLgwt6ZfwYGZjExmhPn3VnV6gis-ELw1SSf0o77qr5J6ALwoWltQnaLcKR9yUduQW85DLrkQDil-4YyKxSbkxYVaLNqPyZuQYmHG_BDTBzdCRtTXBHBjhx9AjhCvcqq1hGBXFE9-UqH0ihmcvP00v_ww_UqQPFaMS93LKuX3IXeen15x5WiabRBiv6KdV1lsPIbmd_7DBO7C7cRB2etRaO7BtdDfh5tjVcrDA-ix1S1XazYFNrIUzL_fsk3H1oYiBhl2MfRpcbMfmDuYHhVDTPyMbx5i4YmBLXuWXOFXwbMvB4_a-tCb9dLRdT96iz2Ey_m7z2_e56ksQ-4E5W71aNEhlK0wvkG828YEVxrppZVIljqLWqIoOtHaDumIFy1vVGEar0zd1cEUhj-CWb_pwxNgljs0ibxqas9F4SwKTi19jSZMCKIsbQavjjuiXcpZTjNY6aPtQouoaRF1XMQMXk4PfB3Tdfy-6yltsUamQelyHfkVuZ0uKeF_VWRwdtx5nVA9aOTCRC8bVWfwfLqNeKSfLKYPuOC6wvNdSjT2qz_0EVEXIvvO4PEoVdNoOQ6AI-vEqUfh-ds0NMI1Np7-6wOncAvZXzsGVp7BbLfdh2dww33bLYftOVyXC3WewPQd2ZYagg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hLgguvB9hFzASBy5BTuzEyREB1SJKD2hX2pvlV0SlNkVNi9R_z4yTRruIh5C4RYltxfZ8429szwzAK15bTnmKUlf5kMrChtQKEVIlpHRI8bkzVUw2oebz6uKivuwL08eHGDfcCBlRXxPAaUP6EsoR43lKyZYQ7RU5lB9JFKZiAkfvv0zPZ-NZghIxZdxQPMuHAD90n-enJq6sTZM1YuxXvPMqjY3r0PTO_-jBXbg9sFD2thebe3AttPfhRp-Xcv8AWnxqFssVG10b2eDOv9uwdcNWhnwGGRYxtLm43nXM7U2LqiGGfsaWu5h6omOLlg2X4ZfBs697j_p635rVwtF7398Xewjn0w9n707TITFD6iRFb_Vo0yGYrTS-RMTb0gSXGeWVVUiXGot6gvNG1rZBQuJlLcqKm9JXpmiKYLgRj2DSrtvwBJgVDo0iX5WFF5I7i6JTKF-gEROCzDKbwJvDlGg3RC2nHiz1wXqhQdQ0iDoOYgKvxwrf-oAdvy96THOskWtQwFxHN4vcVmcU8j_nCZwcpl4PuO40smEimGVVJPBy_IyIpGMW0wYccJ3jCq8Umvv5H8rIqA2RfyfwuBer8W8F_oBA3oldj9Lzt25oBGx8ePqvFV7AzdOzzzM9-zj_dAy3kAvWvZvlCUy2m114Btfd9-2i2zwfMPUDJfodig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB9kT8UXv_XqnRrBB18qbZM27aN4LorHIuLBvYV8FRd2u8d292D_e2fSbLkTPxB8C20S8vWb_CbJzAC8zhqTUZyi1NbOp6I0PjWc-1RyISxS_MzqOgSbkLNZfX7eXLWFGfxDjAduhIwgrwng_sK1V1COGC9SCraEaK_JoPxAlE2F4Dw4-To9Ox3vEiQPIeNi9ryIDn7oPc9PVVzbmyYrxNiveOd1Ghv2oem9_9GD-3A3slD2blg2D-CG7x7CrSEu5e4RdJhq54slG00bWTTn367ZqmVLTTaDDLNoOlxcbXtmd7pD0RBcP2PNfQg90bN5x-Jj-IV37PvOobzedXo5t_TdDe_FHsPZ9MO39x_TGJghtYK8tzrU6RDMRmhXIeJNpb3NtXTSSKRLrUE5kWWtaEyLhMSJhld1pitX67Itvc40fwKTbtX5Q2CGW1SKXF2VjovMGlw6pXQlKjHeizw3CbzdT4my0Ws59WCh9toLDaKiQVRhEBN4Mxa4GBx2_D7rEc2xQq5BDnMtvSyyG5WTy_8iS-B4P_Uq4rpXyIaJYFZ1mcCr8Tcikq5ZdOdxwFWBO7yUqO4Xf8gjgjRE_p3A02FZja3l2ACOvBO7HlbP37qhELAh8exfC7yE219Opur00-zzEdxBKtgMVpbHMNmst_453LSXm3m_fhEh9QODCB0F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofilm+formation+behaviour+of+marine+filamentous+cyanobacterial+strains+in+controlled+hydrodynamic+conditions&rft.jtitle=Environmental+microbiology&rft.au=Romeu%2C+Maria+J.&rft.au=Alves%2C+Patr%C3%ADcia&rft.au=Morais%2C+Jo%C3%A3o&rft.au=Miranda%2C+Jo%C3%A3o+M.&rft.date=2019-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=21&rft.issue=11&rft.spage=4411&rft.epage=4424&rft_id=info:doi/10.1111%2F1462-2920.14807&rft.externalDBID=10.1111%252F1462-2920.14807&rft.externalDocID=EMI14807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon