Practical HDR Texture Compression

The use of high dynamic range (HDR) textures in real‐time graphics applications can increase realism and provide a more vivid experience. However, the increased bandwidth and storage requirements for uncompressed HDR data can become a major bottleneck. Hence, several recent algorithms for HDR textur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 27; číslo 6; s. 1664 - 1676
Hlavní autoři: Munkberg, J., Clarberg, P., Hasselgren, J., Akenine-Möller, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.09.2008
Témata:
ISSN:0167-7055, 1467-8659, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The use of high dynamic range (HDR) textures in real‐time graphics applications can increase realism and provide a more vivid experience. However, the increased bandwidth and storage requirements for uncompressed HDR data can become a major bottleneck. Hence, several recent algorithms for HDR texture compression have been proposed. In this paper, we discuss several practical issues one has to confront in order to develop and implement HDR texture compression schemes. These include improved texture filtering and efficient offline compression. For compression, we describe how Procrustes analysis can be used to quickly match a predefined template shape against chrominance data. To reduce the cost of HDR texture filtering, we perform filtering prior to the colour transformation, and use a simple trick to reduce the incurred errors. We also introduce a number of novel compression modes, which can be combined with existing compression schemes, or used on their own.
AbstractList The use of high dynamic range (HDR) textures in real-time graphics applications can increase realism and provide a more vivid experience. However, the increased bandwidth and storage requirements for uncompressed HDR data can become a major bottleneck. Hence, several recent algorithms for HDR texture compression have been proposed. In this paper, we discuss several practical issues one has to confront in order to develop and implement HDR texture compression schemes. These include improved texture filtering and efficient offline compression. For compression, we describe how Procrustes analysis can be used to quickly match a predefined template shape against chrominance data. To reduce the cost of HDR texture filtering, we perform filtering prior to the colour transformation, and use a simple trick to reduce the incurred errors. We also introduce a number of novel compression modes, which can be combined with existing compression schemes, or used on their own. Submitted February 2008 Revised April 2008 Accepted May 2008.
The use of high dynamic range (HDR) textures in real‐time graphics applications can increase realism and provide a more vivid experience. However, the increased bandwidth and storage requirements for uncompressed HDR data can become a major bottleneck. Hence, several recent algorithms for HDR texture compression have been proposed. In this paper, we discuss several practical issues one has to confront in order to develop and implement HDR texture compression schemes. These include improved texture filtering and efficient offline compression. For compression, we describe how Procrustes analysis can be used to quickly match a predefined template shape against chrominance data. To reduce the cost of HDR texture filtering, we perform filtering prior to the colour transformation, and use a simple trick to reduce the incurred errors. We also introduce a number of novel compression modes, which can be combined with existing compression schemes, or used on their own.
The use of high dynamic range (HDR) textures in real-time graphics applications can increase realism and provide a more vivid experience. However, the increased bandwidth and storage requirements for uncompressed HDR data can become a major bottleneck. Hence, several recent algorithms for HDR texture compression have been proposed. In this paper, we discuss several practical issues one has to confront in order to develop and implement HDR texture compression schemes. These include improved texture filtering and efficient offline compression. For compression, we describe how Procrustes analysis can be used to quickly match a predefined template shape against chrominance data. To reduce the cost of HDR texture filtering, we perform filtering prior to the colour transformation, and use a simple trick to reduce the incurred errors. We also introduce a number of novel compression modes, which can be combined with existing compression schemes, or used on their own. [PUBLICATION ABSTRACT]
The use of high dynamic range (HDR) textures in real-time graphics applications can increase realism and provide a more vivid experience. However, the increased bandwidth and storage requirements for uncompressed HDR data can become a major bottleneck. Hence, several recent algorithms for HDR texture compression have been proposed. In this paper, we discuss several practical issues one has to confront in order to develop and implement HDR texture compression schemes. These include improved texture filtering and efficient offline compression. For compression, we describe how Procrustes analysis can be used to quickly match a predefined template shape against chrominance data. To reduce the cost of HDR texture filtering, we perform filtering prior to the color transformation, and use a simple trick to reduce the incurred errors. We also introduce a number of novel compression modes, which can be combined with existing compression schemes, or used on their own.
Author Clarberg, P.
Munkberg, J.
Akenine-Möller, T.
Hasselgren, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Munkberg
  fullname: Munkberg, J.
  organization: Department of Computer Science, Faculty of Science and Engineering, Lund University, Lund, Sweden
– sequence: 2
  givenname: P.
  surname: Clarberg
  fullname: Clarberg, P.
  organization: Department of Computer Science, Faculty of Science and Engineering, Lund University, Lund, Sweden
– sequence: 3
  givenname: J.
  surname: Hasselgren
  fullname: Hasselgren, J.
  organization: Department of Computer Science, Faculty of Science and Engineering, Lund University, Lund, Sweden
– sequence: 4
  givenname: T.
  surname: Akenine-Möller
  fullname: Akenine-Möller, T.
  organization: Department of Computer Science, Faculty of Science and Engineering, Lund University, Lund, Sweden
BookMark eNqNUUuP0zAQttAi0S38h8KBW8I4fsUHkFBhu6AKVqsiJC4jO7FFStoEO9F2_z3OBvWwp_XFI833Gn2X5OLYHR0hKwo5Te_dPqdcqqyUQucFQJkDpYrnp2dkcV5ckAXQNCsQ4gW5jHEPAFxJsSCvb4KphqYy7er60-1q507DGNxq3R364GJsuuNL8tybNrpX__8l-XH1ebe-zrbfN1_WH7dZxbXmGWOiBm29dNxqrXgtBJSyFnVRMm2ML8FYz1mlC-u1lZ7VhWBMc26cM6X1bEnMrBvvXD9a7ENzMOEeO9Ng34XBtJgSOROq39iOGB0mVJuSDylkRE2ZFJ5KFLWokFvG0TJGEWgNwjJlPLDk8Xb26EP3d3RxwEMTK9e25ui6MSITILRIiZfkzSPgvhvDMd2PVHMplCpkApUzqApdjMH5c2YKOJWDe5w6wKkDnMrBh3LwlKgfHlGrZni4ZAimaZ8i8H4WuGtad_9kY1xvrqYp8bOZ38TBnc58E_6gVEwJ_Pltg3L7FXa3cIO_2D-AUbjn
CitedBy_id crossref_primary_10_1109_TVCG_2009_60
crossref_primary_10_1007_s00371_009_0372_y
Cites_doi 10.3109/09637489509012561
10.1145/1141911.1141944
10.1145/1141911.1141945
10.1126/science.220.4598.671
10.1145/1015706.1015794
10.1145/1230100.1230103
10.1117/12.238737
10.1117/12.586757
10.1145/1342250.1342282
ContentType Journal Article
Copyright 2008 The Authors Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.
Journal compilation © 2008 The Eurographics Association and Blackwell Publishing
Copyright_xml – notice: 2008 The Authors Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.
– notice: Journal compilation © 2008 The Eurographics Association and Blackwell Publishing
CorporateAuthor Institutioner vid LTH
Parallella System
Departments at LTH
Lunds universitet
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Institutionen för datavetenskap
Lund University
Parallel Systems
Department of Computer Science
CorporateAuthor_xml – name: Parallella System
– name: Faculty of Engineering, LTH
– name: Department of Computer Science
– name: Parallel Systems
– name: Lund University
– name: Institutioner vid LTH
– name: Institutionen för datavetenskap
– name: Lunds Tekniska Högskola
– name: Departments at LTH
– name: Lunds universitet
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ADTPV
AOWAS
D95
DOI 10.1111/j.1467-8659.2008.01174.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 1676
ExternalDocumentID oai_portal_research_lu_se_publications_91365f16_5d5c_4b34_b331_01d05b37af03
1559631261
10_1111_j_1467_8659_2008_01174_x
CGF1174
ark_67375_WNG_6LJ0TR0P_Z
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c4994-335d09bf6e4b9974d55086d5d2839aaf80abf43c92bf9b6f3d2533944aeea8bf3
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259360200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
1467-8659
IngestDate Tue Nov 04 16:09:09 EST 2025
Fri Sep 05 12:26:57 EDT 2025
Fri Jul 25 04:39:27 EDT 2025
Tue Nov 18 22:00:07 EST 2025
Sat Nov 29 03:41:02 EST 2025
Sun Sep 21 06:23:46 EDT 2025
Tue Nov 11 03:31:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4994-335d09bf6e4b9974d55086d5d2839aaf80abf43c92bf9b6f3d2533944aeea8bf3
Notes istex:BC223DFFF68B87A581B954613A9ACF4B5877972A
ArticleID:CGF1174
ark:/67375/WNG-6LJ0TR0P-Z
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 194657726
PQPubID 30877
PageCount 13
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_91365f16_5d5c_4b34_b331_01d05b37af03
proquest_miscellaneous_35059528
proquest_journals_194657726
crossref_primary_10_1111_j_1467_8659_2008_01174_x
crossref_citationtrail_10_1111_j_1467_8659_2008_01174_x
wiley_primary_10_1111_j_1467_8659_2008_01174_x_CGF1174
istex_primary_ark_67375_WNG_6LJ0TR0P_Z
PublicationCentury 2000
PublicationDate September 2008
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: September 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2008
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Roimela K., Aarnio T., Itäranta J.: High dynamic range texture compression. ACM Transactions on Graphics, 25, 3 (2006), 707-712.
Munkberg J., Clarberg P., Hasselgren J., Akenine-Möller T.: High dynamic range texture compression for graphics hardware. ACM Transactions on Graphics 25, 3 (2006), 698-706.
Xu R., Pattanaik S. N., Hughes C. E.: High-dynamic-range still-image encoding in JPEG 2000. IEEE Computer Graphics and Applications 25, 6 (2005), 57-64.
Moore R. E.: Interval Analysis. Prentice-Hall, 1966.
Reinhard E., Ward G., Pattanaik S., Debevec P.: High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting. Morgan Kaufmann, 2005.
Wandell B.: Foundations of Vision. Sinauer Associates, 1995.
Iourcha K., Nayak K., Hong Z.: System and method for fixed-rate block-based image compression with inferred pixel values. US Patent 5, 956, 431, 1999.
Sayood K.: Introduction to Data Compression. Morgan Kaufmann, 1996.
Mantiuk R., Krawczyk G., Myszkowski K., Seidel H.-P.: Perception-motivated high dynamic range video encoding. ACM Transactions on Graphics 23, 3 (2004), 733-741.
Denn M. M.: Optimization by Variational Methods. McGraw-Hill, 1969.
Dryden I., Mardia K.: Statistical Shape Analysis. Wiley, 1998.
Poynton C.: Digital Video and HDTV Algorithms and Interfaces. Morgan Kaufmann, 2003.
Kirkpatrick S., Gelatt C. D., Vecchi M. P.: Optimization by simulated annealing. Science 220, 4598 (1983), 671-680.
1983; 6
1998
2004; 3
2008
1996
2007
1995
2005; 6
2006; 3
2005
2003
1996; 2657
1969
1983; 4598
1999; 956
1966
Sayood K. (e_1_2_11_17_2) 1996
Denn M. M. (e_1_2_11_2_2) 1969
Poynton C. (e_1_2_11_12_2) 2003
Reinhard E. (e_1_2_11_16_2) 2005
Moore R. E. (e_1_2_11_10_2) 1966
e_1_2_11_20_2
e_1_2_11_13_2
e_1_2_11_9_2
e_1_2_11_8_2
Dryden I. (e_1_2_11_3_2) 1998
e_1_2_11_7_2
e_1_2_11_6_2
e_1_2_11_14_2
Reininger R. C. (e_1_2_11_15_2) 1983
e_1_2_11_19_2
e_1_2_11_18_2
Owens J. D. (e_1_2_11_11_2) 2005
Fenney S. (e_1_2_11_4_2) 2003
Iourcha K. (e_1_2_11_5_2) 1999; 956
Xu R. (e_1_2_11_21_2) 2005; 6
References_xml – reference: Roimela K., Aarnio T., Itäranta J.: High dynamic range texture compression. ACM Transactions on Graphics, 25, 3 (2006), 707-712.
– reference: Xu R., Pattanaik S. N., Hughes C. E.: High-dynamic-range still-image encoding in JPEG 2000. IEEE Computer Graphics and Applications 25, 6 (2005), 57-64.
– reference: Denn M. M.: Optimization by Variational Methods. McGraw-Hill, 1969.
– reference: Kirkpatrick S., Gelatt C. D., Vecchi M. P.: Optimization by simulated annealing. Science 220, 4598 (1983), 671-680.
– reference: Dryden I., Mardia K.: Statistical Shape Analysis. Wiley, 1998.
– reference: Moore R. E.: Interval Analysis. Prentice-Hall, 1966.
– reference: Iourcha K., Nayak K., Hong Z.: System and method for fixed-rate block-based image compression with inferred pixel values. US Patent 5, 956, 431, 1999.
– reference: Mantiuk R., Krawczyk G., Myszkowski K., Seidel H.-P.: Perception-motivated high dynamic range video encoding. ACM Transactions on Graphics 23, 3 (2004), 733-741.
– reference: Sayood K.: Introduction to Data Compression. Morgan Kaufmann, 1996.
– reference: Munkberg J., Clarberg P., Hasselgren J., Akenine-Möller T.: High dynamic range texture compression for graphics hardware. ACM Transactions on Graphics 25, 3 (2006), 698-706.
– reference: Poynton C.: Digital Video and HDTV Algorithms and Interfaces. Morgan Kaufmann, 2003.
– reference: Wandell B.: Foundations of Vision. Sinauer Associates, 1995.
– reference: Reinhard E., Ward G., Pattanaik S., Debevec P.: High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting. Morgan Kaufmann, 2005.
– volume: 3
  start-page: 698
  year: 2006
  end-page: 706
  article-title: High dynamic range texture compression for graphics hardware
  publication-title: ACM Transactions on Graphics 25
– volume: 2657
  start-page: 403
  year: 1996
  end-page: 441
– volume: 956
  start-page: 431
  year: 1999
  article-title: System and method for fixed‐rate block‐based image compression with inferred pixel values
  publication-title: US Patent 5
– year: 1966
– year: 2005
– year: 1969
– start-page: 457
  year: 2005
  end-page: 470
– start-page: 207
  year: 2008
  end-page: 214
– year: 2003
– volume: 3
  start-page: 707
  year: 2006
  end-page: 712
  article-title: High dynamic range texture compression
  publication-title: ACM Transactions on Graphics, 25
– volume: 3
  start-page: 733
  year: 2004
  end-page: 741
  article-title: Perception‐motivated high dynamic range video encoding
  publication-title: ACM Transactions on Graphics 23
– volume: 6
  start-page: 835
  year: 1983
  end-page: 839
– year: 1996
– year: 1995
– volume: 4598
  start-page: 671
  year: 1983
  end-page: 680
  article-title: Optimization by simulated annealing
  publication-title: Science 220
– start-page: 204
  year: 2005
  end-page: 214
– start-page: 84
  year: 2003
  end-page: 91
– volume: 6
  start-page: 57
  year: 2005
  end-page: 64
  article-title: High‐dynamic‐range still‐image encoding in JPEG 2000
  publication-title: IEEE Computer Graphics and Applications 25
– start-page: 17
  year: 2007
  end-page: 24
– year: 1998
– ident: e_1_2_11_19_2
  doi: 10.3109/09637489509012561
– ident: e_1_2_11_7_2
  doi: 10.1145/1141911.1141944
– volume-title: Interval Analysis
  year: 1966
  ident: e_1_2_11_10_2
– ident: e_1_2_11_13_2
  doi: 10.1145/1141911.1141945
– volume: 6
  start-page: 57
  year: 2005
  ident: e_1_2_11_21_2
  article-title: High‐dynamic‐range still‐image encoding in JPEG 2000
  publication-title: IEEE Computer Graphics and Applications 25
– volume-title: Optimization by Variational Methods
  year: 1969
  ident: e_1_2_11_2_2
– ident: e_1_2_11_6_2
  doi: 10.1126/science.220.4598.671
– volume-title: Digital Video and HDTV Algorithms and Interfaces
  year: 2003
  ident: e_1_2_11_12_2
– ident: e_1_2_11_9_2
  doi: 10.1145/1015706.1015794
– start-page: 457
  volume-title: GPU Gems 2
  year: 2005
  ident: e_1_2_11_11_2
– ident: e_1_2_11_20_2
  doi: 10.1145/1230100.1230103
– start-page: 84
  volume-title: Graphics Hardware
  year: 2003
  ident: e_1_2_11_4_2
– volume-title: Statistical Shape Analysis
  year: 1998
  ident: e_1_2_11_3_2
– volume-title: Introduction to Data Compression
  year: 1996
  ident: e_1_2_11_17_2
– ident: e_1_2_11_18_2
  doi: 10.1117/12.238737
– ident: e_1_2_11_8_2
  doi: 10.1117/12.586757
– volume: 956
  start-page: 431
  year: 1999
  ident: e_1_2_11_5_2
  article-title: System and method for fixed‐rate block‐based image compression with inferred pixel values
  publication-title: US Patent 5
– volume-title: High Dynamic Range Imaging: Acquisition, Display and Image‐Based Lighting
  year: 2005
  ident: e_1_2_11_16_2
– ident: e_1_2_11_14_2
  doi: 10.1145/1342250.1342282
– start-page: 835
  volume-title: IEEE Transactions on Communications 31
  year: 1983
  ident: e_1_2_11_15_2
SSID ssj0004765
Score 1.8840104
Snippet The use of high dynamic range (HDR) textures in real‐time graphics applications can increase realism and provide a more vivid experience. However, the...
The use of high dynamic range (HDR) textures in real-time graphics applications can increase realism and provide a more vivid experience. However, the...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1664
SubjectTerms Algorithms
Computer and Information Sciences
Computer graphics
Computer programming
Computer Sciences
Data compression
Data- och informationsvetenskap (Datateknik)
Datavetenskap (Datalogi)
E.4 [Coding and Information Theory]: Data compaction and compression
HDR images
I.3.7 [Computer Graphics]: Texture
I.4.2 [Image Processing and Computer Vision]: Compression (Coding)
Natural Sciences
Naturvetenskap
Procrustes analysis
Realism
Studies
texture compression
Title Practical HDR Texture Compression
URI https://api.istex.fr/ark:/67375/WNG-6LJ0TR0P-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2008.01174.x
https://www.proquest.com/docview/194657726
https://www.proquest.com/docview/35059528
Volume 27
WOSCitedRecordID wos000259360200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7Kbg_toU1fxE0fLpTeXGzrYetYkm5CWZawbGjIZZBkiZYEJ6yzJT-_I9vrxjSHUHozNmOj0czoG3n0DcBHWWhLQZAnjgJkwnnOE6O8TSyhi9QR4Le27VoyLxaL8vRUHff1T-EsTMcPMWy4Bc9o43VwcG2av528lEL1JZEZoevPhCenOZmxmMD0YDk7mf85JVlIsWX6Dhwy47qeO981WqymQe83YyTasYuOgW27Ms2e_s8x7cCTHp_GXzqDegYPXP0cHt9iLXwBHzqOI5rc-OhgGa8ovG_WLg6RpSuqrV_Cyezrav8o6TstJJYHbmDGRJUq46XjRlGGUVHeUspKVAQ-lNa-TLXxnFmVG6-M9KzKCSYqzrVzujSevYJJfVm7XYiNKU3mMu24F5zQRuDTo0ChrMzovkkjKLYqRdvTkIduGBc4SkcKDErom2QGJeBNBNkgedVRcdxD5lM7a4OAXp-HUrZC4PfFIcr5t3S1TI_xLIK97bRi78UNZopLQemHjOD98JTcL_xT0bW73DTICEEqkZcRnHW2MHwp8HZ3KRT2vE0_8GKDjcOrWxuyqEKdoc8kikpY5IZxNIxlNIAqFYYV2qcsAtlazb2HjfuHs3D1-l8F9-DRtjAmzd7A5Hq9cW_hof11_bNZv-s96zd3zh4R
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kJ6gP9bOYVm0E8S2S3H4k-yit11PjUY4rlr4Mu5tdFEta7nrSP9_ZJBcb9KGIbyFhEnZ2ZvY3m9nfALyRubYUBHniKEAmnI95YpS3iSV0kToC_NY2XUvKfDYrTk_VcdcOKJyFafkh-g234BlNvA4OHjak__TyQgrV1URmBK_fEaAccbIqMvfR4XxyUv4-JplLsaH6DiQyw8Kev75rsFqNguKvh1C0pRcdIttmaZo8_K-DegTbHUKN37cm9RjuuPoJPLjBW_gUXrcsRzS98fRwHi8owK-XLg6xpS2rrZ_ByeTD4mCadL0WEssDOzBjokqV8dJxoyjHqChzKWQlKoIfSmtfpNp4zqwaG6-M9KwaE1BUnGvndGE824Gt-qJ2zyE2pjCZy7TjXnDCG4FRj0KFsjKj-yaNIN_oFG1HRB76YZzjICHJMSiha5MZlIDXEWS95GVLxnELmbfNtPUCevkjFLPlAr_OjlCWn9LFPD3Gswj2NvOKnR-vMFNcCkpAZAT7_VNywPBXRdfuYr1CRhhSiXERwVlrDP2XAnN3m0Rhx9z0Dc_XuHJ4eWNLFlWoNPSZRFEJi9wwjoaxjAZQpcKwXPuURSAbs7n1sPHgaBKudv9VcB_uTRdfSiw_zj7vwf1NmUyavYCtq-XavYS79ufV99XyVedmvwCpniIB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hFiH2wDdaGLAgId6Ckvoj8SNa6QZUVVV1YtrLyXZsgZiyql3R_nzOSRoWwcOEeIsSXSLf-c6_c86_A3grc20pCPLEUYBMOB_xxChvE0voInUE-K2tu5ZM89msODtT87YdUDgL0_BDdBtuwTPqeB0c3K1K_6eXF1KotiYyI3j9ngDlkIeeMgMYjheT0-nvY5K5FDuq70Ai0y_s-eu7eqvVMCj-ug9FG3rRPrKtl6bJw_86qEfwoEWo8YdmSj2GO656Ans3eAufwpuG5YjMG5-MF_GSAvx27eIQW5qy2uoZnE4-Lo9OkrbXQmJ5YAdmTJSpMl46bhTlGCVlLoUsRUnwQ2nti1Qbz5lVI-OVkZ6VIwKKinPtnC6MZ89hUF1Wbh9iYwqTuUw77gUnvBEY9ShUKCszum_SCPKdTtG2ROShH8YF9hKSHIMS2jaZQQl4HUHWSa4aMo5byLyrzdYJ6PWPUMyWC_w6O0Y5_ZwuF-kczyM42NkVWz_eYKa4FJSAyAgOu6fkgOGviq7c5XaDjDCkEqMigvNmMnRfCszdTRKFLXPTN7zY4sbh6saWLKpQaegziaIUFrlhHA1jGQ2gTIVhufYpi0DW0-bWw8aj40m4evGvgodwbz6e4PTT7MsB3N9VyaTZSxhcrbfuFdy1P6--b9avWy_7Bf9DIXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+HDR+Texture+Compression&rft.jtitle=Computer+graphics+forum&rft.au=Munkberg%2C+J.&rft.au=Clarberg%2C+P.&rft.au=Hasselgren%2C+J.&rft.au=Akenine%E2%80%90M%C3%B6ller%2C+T.&rft.date=2008-09-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=27&rft.issue=6&rft.spage=1664&rft.epage=1676&rft_id=info:doi/10.1111%2Fj.1467-8659.2008.01174.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1467_8659_2008_01174_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon