Scripting MODFLOW Model Development Using Python and FloPy
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages avai...
Saved in:
| Published in: | Ground water Vol. 54; no. 5; pp. 733 - 739 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Malden, US
Blackwell Publishing Ltd
01.09.2016
|
| Subjects: | |
| ISSN: | 0017-467X, 1745-6584, 1745-6584 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW‐based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture‐fraction analysis with a real‐world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.
Article Impact Statement: Python/FloPy scripts are a powerful approach to build and analyze MODFLOW‐based models and are a full record of the entire modeling process. |
|---|---|
| AbstractList | Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW‐based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture‐fraction analysis with a real‐world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.
Article Impact Statement: Python/FloPy scripts are a powerful approach to build and analyze MODFLOW‐based models and are a full record of the entire modeling process. Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. Article Impact Statement: Python/FloPy scripts are a powerful approach to build and analyze MODFLOW-based models and are a full record of the entire modeling process. Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. |
| Author | Hughes, J. D. Post, V. Langevin, C. D. Bakker, M. White, J. T. Fienen, M. N. Starn, J. J. |
| Author_xml | – sequence: 1 givenname: M. surname: Bakker fullname: Bakker, M. email: mark.bakker@tudelft.nl, mark.bakker@tudelft.nl organization: E-mail: mark.bakker@tudelft.nl – sequence: 2 givenname: V. surname: Post fullname: Post, V. organization: Flinders University, Adelaide, South Australia – sequence: 3 givenname: C. D. surname: Langevin fullname: Langevin, C. D. organization: U.S. Geological Survey, VA, Reston – sequence: 4 givenname: J. D. surname: Hughes fullname: Hughes, J. D. organization: U.S. Geological Survey, VA, Reston – sequence: 5 givenname: J. T. surname: White fullname: White, J. T. organization: U.S. Geological Survey, Texas Water Science Center, TX, Austin – sequence: 6 givenname: J. J. surname: Starn fullname: Starn, J. J. organization: U.S. Geological Survey, CT, East Hartford – sequence: 7 givenname: M. N. surname: Fienen fullname: Fienen, M. N. organization: U.S. Geological Survey Wisconsin Water Science Center, WI, Middleton |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27027984$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkV1P2zAUhi3EBKXbDT9gyiVCCvNXYps7VJYOqV2ZAJU7y3FOmSGNS-yO9d-TrnQXaIIdWccXfp5j2e8B2m18AwgdEnxCuvpy92TiCaGcsB3UI4JnaZ5Jvot6GBOR8lzc7qODEO4xxkxhtYf2qcBUKMl76PTKtm4RXXOXjCfnxWgyTca-gjo5h19Q-8UcmpjchPX55Sr-9E1imiopan-5-og-zEwd4NPL3kc3xdfrwbd0NBleDM5GqeVKsVQKaytZ4ZnAlkPGialUt2ZVnhkhSsBZSa3MoOvGZkYxI8tK8dIQyy0oyfroaDN30frHJYSo5y5YqGvTgF8GTbt3dTcJSt9FiWSCcSJV_h8ozXOBsRAd-vkFXZZzqPSidXPTrvT2FzsAbwDb-hBamGnroonON7E1rtYE63VQeh2U_hNUpxy_UrZT_wmTDfzkali9Qerh9Ox666Qbx4UIv_86pn3QuWAi09PvQ31FuSxui6H-wZ4B-qSwxA |
| CitedBy_id | crossref_primary_10_1111_gwat_13470 crossref_primary_10_1109_MC_2021_3102299 crossref_primary_10_1016_j_jhydrol_2022_128642 crossref_primary_10_1007_s00477_020_01888_9 crossref_primary_10_1007_s41324_017_0140_4 crossref_primary_10_1016_j_envsoft_2024_105980 crossref_primary_10_3390_w16233481 crossref_primary_10_1007_s40899_025_01259_8 crossref_primary_10_1016_j_envsoft_2020_104888 crossref_primary_10_1111_gwat_13351 crossref_primary_10_1007_s10040_023_02660_3 crossref_primary_10_1111_gwat_70024 crossref_primary_10_1016_j_jhydrol_2021_126509 crossref_primary_10_1016_j_jenvman_2024_122231 crossref_primary_10_3390_w12041042 crossref_primary_10_1111_gwat_70018 crossref_primary_10_1016_j_jhydrol_2024_131703 crossref_primary_10_1029_2018WR024408 crossref_primary_10_1111_gwat_70017 crossref_primary_10_1016_j_advwatres_2023_104507 crossref_primary_10_1016_j_jenvman_2024_122699 crossref_primary_10_1111_gwat_13005 crossref_primary_10_1111_gwat_13367 crossref_primary_10_1016_j_envsoft_2020_104653 crossref_primary_10_1016_j_jhydrol_2025_133820 crossref_primary_10_1029_2018WR024403 crossref_primary_10_1111_gwat_70014 crossref_primary_10_1016_j_agwat_2020_106571 crossref_primary_10_3389_frwa_2024_1375523 crossref_primary_10_1029_2020WR028706 crossref_primary_10_1111_gwat_13117 crossref_primary_10_1111_1752_1688_12998 crossref_primary_10_1002_hyp_70007 crossref_primary_10_1016_j_jhydrol_2022_127447 crossref_primary_10_1016_j_jhydrol_2022_128536 crossref_primary_10_1029_2024JH000574 crossref_primary_10_1016_j_jconhyd_2024_104454 crossref_primary_10_1029_2020WR029474 crossref_primary_10_1016_j_envsoft_2018_03_025 crossref_primary_10_1111_gwat_13137 crossref_primary_10_1007_s00550_024_00557_7 crossref_primary_10_1007_s13137_023_00219_8 crossref_primary_10_5194_essd_10_1591_2018 crossref_primary_10_1029_2020WR028027 crossref_primary_10_1111_1752_1688_13013 crossref_primary_10_1007_s10661_023_12027_6 crossref_primary_10_1111_gwat_12957 crossref_primary_10_1007_s11242_022_01822_3 crossref_primary_10_4102_jamba_v17i1_1798 crossref_primary_10_5194_hess_28_5107_2024 crossref_primary_10_1111_gwat_13129 crossref_primary_10_1007_s10040_021_02385_1 crossref_primary_10_1029_2017WR021531 crossref_primary_10_5194_hess_25_2261_2021 crossref_primary_10_1029_2020WR029463 crossref_primary_10_1016_j_jhydrol_2025_133842 crossref_primary_10_1111_gwat_13025 crossref_primary_10_1111_gwat_13144 crossref_primary_10_1007_s10040_021_02347_7 crossref_primary_10_5802_crgeos_160 crossref_primary_10_1111_gwat_13017 crossref_primary_10_1111_gwat_13259 crossref_primary_10_1016_j_apenergy_2022_118587 crossref_primary_10_3389_frai_2021_624629 crossref_primary_10_1016_j_enggeo_2019_105259 crossref_primary_10_1016_j_geothermics_2024_103152 crossref_primary_10_1007_s10230_025_01070_z crossref_primary_10_20965_jaciii_2023_p0012 crossref_primary_10_3389_feart_2022_975156 crossref_primary_10_3390_w17172617 crossref_primary_10_1016_j_envsoft_2024_106114 crossref_primary_10_3389_frwa_2021_799738 crossref_primary_10_1038_s41558_020_0874_1 crossref_primary_10_1111_gwat_12581 crossref_primary_10_1016_j_jsames_2024_104781 crossref_primary_10_1016_j_advwatres_2025_105103 crossref_primary_10_1016_j_jsames_2025_105512 crossref_primary_10_1002_2016WR020039 crossref_primary_10_1016_j_envsoft_2020_104693 crossref_primary_10_1016_j_jhydrol_2019_04_003 crossref_primary_10_1111_gwat_12577 crossref_primary_10_1016_j_watres_2024_122141 crossref_primary_10_1016_j_jhydrol_2018_03_029 crossref_primary_10_1016_j_eswa_2025_128820 crossref_primary_10_1029_2023WR035280 crossref_primary_10_1016_j_geothermics_2021_102072 crossref_primary_10_3390_w11112311 crossref_primary_10_1016_j_envsoft_2018_07_020 crossref_primary_10_1016_j_watres_2025_123194 crossref_primary_10_1007_s10040_019_02004_0 crossref_primary_10_1029_2021WR030635 crossref_primary_10_1016_j_envsoft_2024_106120 crossref_primary_10_1029_2024WR038468 crossref_primary_10_1029_2022WR032712 crossref_primary_10_3389_frwa_2022_828099 crossref_primary_10_1016_j_advwatres_2024_104763 crossref_primary_10_1016_j_advwatres_2024_104884 crossref_primary_10_1016_j_cageo_2021_104705 crossref_primary_10_1111_gwat_12588 crossref_primary_10_2166_ws_2022_280 crossref_primary_10_1002_hyp_15167 crossref_primary_10_1029_2024GL113428 crossref_primary_10_1007_s11242_018_1094_2 crossref_primary_10_1016_j_jhydrol_2024_131714 crossref_primary_10_3389_feart_2023_1302828 crossref_primary_10_3390_w15020365 crossref_primary_10_1002_2017GL075238 crossref_primary_10_5194_hess_28_505_2024 crossref_primary_10_1007_s10040_020_02246_3 crossref_primary_10_1016_j_scitotenv_2021_149216 crossref_primary_10_1016_j_jhydrol_2024_132368 crossref_primary_10_5194_piahs_379_1_2018 crossref_primary_10_1029_2019JB018962 crossref_primary_10_1111_gwat_13331 crossref_primary_10_1016_j_gsd_2023_100953 crossref_primary_10_1029_2022WR032295 crossref_primary_10_3389_frwa_2023_1028922 crossref_primary_10_1016_j_envsoft_2018_06_007 crossref_primary_10_1029_2019WR026777 crossref_primary_10_3389_feart_2022_903965 crossref_primary_10_1111_gwat_13327 crossref_primary_10_11648_j_ajbes_20251103_11 crossref_primary_10_1051_e3sconf_202560702002 crossref_primary_10_1016_j_envsoft_2018_06_009 crossref_primary_10_1016_j_jhydrol_2022_127657 crossref_primary_10_1061_JWRMD5_WRENG_6415 crossref_primary_10_5194_hess_23_4397_2019 crossref_primary_10_1007_s40899_024_01137_9 crossref_primary_10_5194_tc_19_1513_2025 crossref_primary_10_1016_j_jhydrol_2020_125441 crossref_primary_10_1016_j_jhydrol_2020_124909 crossref_primary_10_1016_j_envsoft_2024_106266 crossref_primary_10_1111_gwat_13224 crossref_primary_10_3390_w16111515 crossref_primary_10_1029_2024WR038364 crossref_primary_10_1111_gwat_13221 crossref_primary_10_1111_gwat_12925 crossref_primary_10_1111_gwat_12803 crossref_primary_10_1016_j_geothermics_2023_102889 crossref_primary_10_3390_app14093675 crossref_primary_10_1016_j_jhydrol_2024_132010 crossref_primary_10_1111_gwat_13459 crossref_primary_10_1016_j_scitotenv_2019_07_284 crossref_primary_10_1016_j_jhydrol_2020_125568 crossref_primary_10_3390_agronomy13061534 crossref_primary_10_3389_feart_2022_904271 crossref_primary_10_1029_2020WR027591 crossref_primary_10_3390_w11101989 crossref_primary_10_1016_j_cageo_2022_105210 crossref_primary_10_1016_j_jhydrol_2024_131411 crossref_primary_10_2166_wpt_2024_299 crossref_primary_10_3390_hydrology11050060 crossref_primary_10_1016_j_jhydrol_2024_131416 crossref_primary_10_1016_j_jhydrol_2025_133439 crossref_primary_10_1016_j_apenergy_2019_03_110 crossref_primary_10_1029_2023WR036610 crossref_primary_10_1029_2023WR036059 crossref_primary_10_3389_feart_2023_1168609 crossref_primary_10_1111_gwat_12536 crossref_primary_10_1029_2019WR025983 crossref_primary_10_1111_gwat_12654 crossref_primary_10_1016_j_agwat_2021_107438 crossref_primary_10_1029_2021WR031241 crossref_primary_10_1016_j_scitotenv_2024_177716 crossref_primary_10_1111_gwat_13080 crossref_primary_10_3389_feart_2022_907533 crossref_primary_10_1186_s40517_024_00326_1 crossref_primary_10_1038_s41598_019_48382_z crossref_primary_10_1111_gwat_12552 crossref_primary_10_1111_gwat_12793 crossref_primary_10_1016_j_advwatres_2020_103632 crossref_primary_10_1016_j_envsoft_2023_105723 crossref_primary_10_5194_hess_28_735_2024 crossref_primary_10_1016_j_jhydrol_2017_10_028 crossref_primary_10_1029_2024GL111325 crossref_primary_10_1007_s13280_024_02068_7 crossref_primary_10_1111_gwat_13095 crossref_primary_10_1016_j_jhydrol_2018_01_043 crossref_primary_10_1016_j_envsoft_2025_106372 crossref_primary_10_1029_2021WR031458 crossref_primary_10_1016_j_advwatres_2024_104637 crossref_primary_10_1029_2020WR027335 crossref_primary_10_1016_j_jhydrol_2023_129151 crossref_primary_10_1007_s10040_021_02430_z crossref_primary_10_3390_w12010041 crossref_primary_10_1016_j_envsoft_2022_105563 crossref_primary_10_3390_w13101384 crossref_primary_10_1002_hyp_15015 crossref_primary_10_1016_j_jhydrol_2025_133455 crossref_primary_10_1029_2018GL080404 crossref_primary_10_1111_gwat_12558 crossref_primary_10_1111_gwat_13405 crossref_primary_10_3390_hydrology9030049 crossref_primary_10_5194_hess_20_3739_2016 crossref_primary_10_1007_s12145_024_01568_0 crossref_primary_10_1029_2020WR029509 crossref_primary_10_1111_gwat_13403 crossref_primary_10_1111_gwat_12797 crossref_primary_10_1007_s00477_020_01943_5 crossref_primary_10_1029_2023WR036394 crossref_primary_10_3390_w13030306 crossref_primary_10_1016_j_cageo_2017_11_013 crossref_primary_10_1016_j_jhydrol_2022_128159 crossref_primary_10_1016_j_jconhyd_2020_103638 crossref_primary_10_1029_2023WR035625 crossref_primary_10_5194_os_21_1407_2025 crossref_primary_10_1029_2024WR037474 crossref_primary_10_1016_j_jhydrol_2019_02_024 crossref_primary_10_1007_s11004_023_10074_w crossref_primary_10_1016_j_envsoft_2022_105452 crossref_primary_10_1016_j_agwat_2024_109109 crossref_primary_10_1016_j_jhydrol_2021_127205 crossref_primary_10_5194_hess_27_3221_2023 crossref_primary_10_1016_j_jhydrol_2024_132308 crossref_primary_10_1029_2021WR031438 crossref_primary_10_5194_hess_25_3351_2021 crossref_primary_10_1016_j_jconhyd_2022_103980 crossref_primary_10_1111_gwat_13270 crossref_primary_10_2166_hydro_2025_046 crossref_primary_10_1016_j_jhydrol_2021_126780 crossref_primary_10_1111_gwat_13390 crossref_primary_10_1016_j_agwat_2021_106947 crossref_primary_10_1029_2021WR031554 crossref_primary_10_1029_2023GL106964 crossref_primary_10_3390_w16182609 crossref_primary_10_1111_gwat_13159 crossref_primary_10_1016_j_advwatres_2023_104538 crossref_primary_10_1029_2020WR029339 crossref_primary_10_1007_s12665_023_10877_4 crossref_primary_10_1111_gwat_12979 crossref_primary_10_1007_s11269_021_02828_0 crossref_primary_10_1525_elementa_2020_00182 crossref_primary_10_1016_j_envsoft_2021_105022 crossref_primary_10_1029_2019WR025269 crossref_primary_10_1007_s13137_022_00202_9 crossref_primary_10_1016_j_advwatres_2019_103381 crossref_primary_10_1111_gwat_13161 crossref_primary_10_1016_j_advwatres_2019_04_010 crossref_primary_10_1016_j_envsoft_2019_01_006 crossref_primary_10_1016_j_advwatres_2021_103976 crossref_primary_10_1111_gwat_13164 crossref_primary_10_1007_s10040_021_02442_9 crossref_primary_10_1007_s12665_018_7469_4 crossref_primary_10_1029_2023WR035446 crossref_primary_10_1111_gwat_13163 crossref_primary_10_1016_j_envsoft_2021_105257 crossref_primary_10_1016_j_jhydrol_2022_127807 crossref_primary_10_3389_frwa_2022_989440 crossref_primary_10_3390_en14237958 crossref_primary_10_5194_hess_23_3481_2019 crossref_primary_10_1007_s10040_019_02095_9 crossref_primary_10_1007_s10040_024_02854_3 crossref_primary_10_1016_j_jconhyd_2024_104410 crossref_primary_10_1016_j_advwatres_2024_104714 crossref_primary_10_1016_j_jhydrol_2024_132641 crossref_primary_10_1016_j_jhydrol_2024_132645 crossref_primary_10_3389_feart_2022_916198 crossref_primary_10_1007_s41748_025_00583_5 crossref_primary_10_1016_j_jhydrol_2020_125715 crossref_primary_10_3390_app131910707 crossref_primary_10_3389_feart_2020_00050 crossref_primary_10_1002_hyp_70141 crossref_primary_10_1016_j_jhydrol_2020_125163 crossref_primary_10_1007_s12665_024_11899_2 crossref_primary_10_1016_j_envsoft_2023_105828 crossref_primary_10_1016_j_envsoft_2022_105406 crossref_primary_10_2166_hydro_2024_275 crossref_primary_10_1016_j_jconhyd_2020_103713 crossref_primary_10_3390_hydrology10090188 crossref_primary_10_1080_10934529_2020_1724503 crossref_primary_10_1016_j_advwatres_2024_104821 crossref_primary_10_1111_gwat_13185 crossref_primary_10_3389_feart_2022_884075 crossref_primary_10_1016_j_scitotenv_2025_178679 crossref_primary_10_1007_s00521_022_07507_8 crossref_primary_10_1016_j_jconhyd_2019_103520 crossref_primary_10_5194_hess_29_1469_2025 |
| Cites_doi | 10.1109/MCSE.2007.53 10.3133/tm6A16 10.3133/tm6A22 10.1111/gwat.12320 10.1109/MCSE.2010.119 10.1111/gwat.12269 10.3133/ofr200092 10.1111/j.1745-6584.2010.00701.x 10.3133/tm6A41 10.3133/sir20065228 10.1109/MCSE.2007.55 10.1111/j.1745-6584.2009.00583.x |
| ContentType | Journal Article |
| Copyright | 2016, National Ground Water Association. |
| Copyright_xml | – notice: 2016, National Ground Water Association. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QH 7ST 7UA C1K F1W H96 H97 L.G SOI 7S9 L.6 |
| DOI | 10.1111/gwat.12413 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1745-6584 |
| EndPage | 739 |
| ExternalDocumentID | 27027984 10_1111_gwat_12413 GWAT12413 ark_67375_WNG_S248FXFG_Q |
| Genre | article Journal Article |
| GroupedDBID | --- -DZ -~X .3N .DC .GA .Y3 05W 0R~ 10A 186 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X2 7X7 7XC 8-0 8-1 8-3 8-4 8-5 88E 88I 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJCF ABJNI ABPPZ ABPVW ABUWG ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYN AEUYR AEYWJ AFBPY AFFHD AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCR BCU BDRZF BEC BENPR BES BFHJK BGLVJ BHBCM BHPHI BKOMP BKSAR BLC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F D1J D1K DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 F5P FEDTE FYUFA FZ0 G-S G.N GNUQQ GODZA GUQSH H.T H.X HCIFZ HF~ HGLYW HMCUK HVGLF HZI HZ~ IAG IAO IEA IEP IOF ITC IX1 J0M K48 K6- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK5 LOXES LP6 LP7 LUTES LW6 LYRES M0K M1P M2O M2P M7R M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PEA PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PRG PROAC PSQYO PTHSS PYCSY Q.N Q11 Q2X QB0 R.K R05 RIWAO RJQFR ROL RWL RX1 S0X SAMSI SJFOW SUPJJ TAE TN5 UB1 UKHRP V8K VH1 VJK W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 Y6R ZCA ZZTAW ~02 ~IA ~KM ~WT 3V. AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV ALUQN WRC YCJ AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 7QH 7ST 7UA C1K F1W H96 H97 L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c4993-87ccd8d0f70c4e541ad9ad9fd65a77be05b2c85eb2cac5a93a8bd94ba1c4ce983 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 297 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388719400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-467X 1745-6584 |
| IngestDate | Fri Sep 05 17:32:22 EDT 2025 Tue Oct 07 09:28:05 EDT 2025 Sun Nov 09 13:11:03 EST 2025 Mon Jul 21 06:04:52 EDT 2025 Sat Nov 29 06:58:43 EST 2025 Tue Nov 18 22:23:11 EST 2025 Wed Jan 22 16:52:33 EST 2025 Tue Nov 11 03:33:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016, National Ground Water Association. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4993-87ccd8d0f70c4e541ad9ad9fd65a77be05b2c85eb2cac5a93a8bd94ba1c4ce983 |
| Notes | istex:46D77A834C13B16EB7C4F625AD0469DFDA349A9E ArticleID:GWAT12413 ark:/67375/WNG-S248FXFG-Q ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 27027984 |
| PQID | 1826670077 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2000499722 proquest_miscellaneous_1837341896 proquest_miscellaneous_1826670077 pubmed_primary_27027984 crossref_citationtrail_10_1111_gwat_12413 crossref_primary_10_1111_gwat_12413 wiley_primary_10_1111_gwat_12413_GWAT12413 istex_primary_ark_67375_WNG_S248FXFG_Q |
| PublicationCentury | 2000 |
| PublicationDate | September/October 2016 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: September/October 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Malden, US |
| PublicationPlace_xml | – name: Malden, US – name: United States |
| PublicationTitle | Ground water |
| PublicationTitleAlternate | Groundwater |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | McKinney, W. 2012. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. Sebastopol, California: O'Reilly Media Sebastopol, CA. Leake, S.A., H.W. Reeves, and J.E. Dickinson. 2010. A new capture fraction method to map how pumpage affects surface water flow. Ground Water 48, no. 5: 690-700. Pérez, F., and B.E. Granger. 2007. IPython: A system for interactive scientific computing. Computing in Science & Engineering 9, no. 3: 21-29. Bakker, M., and V.A. Kelson. 2009. Writing analytic element programs in python. Ground Water 47, no. 6: 828-834. Oliphant, T.E. 2006. Guide to NumPy. USA: Trelgol Publishing. Pérez, F., B.E. Granger, and J.D. Hunter. 2011. Python: An ecosystem for scientific computing. Computing in Science & Engineering 13, no. 2: 13-21. Fienen, M.N., and R.J. Hunt. 2015. High-throughput computing versus high-performance computing for groundwater applications. Ground Water 53, no. 2: 180-184. Hunter, J. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9, no. 3: 90-95. Bakker, M. 2014. Python scripting: The return to programming. Ground Water 52, no. 6: 821-822. 2009; 47 2010; 48 2001 2012 2000 2015; 53 2007; 9 2008 2007 2006 2005 2011; 13 2014 2013 2014; 52 1999 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 Oliphant T.E. (e_1_2_8_14_1) 2006 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 McKinney W. (e_1_2_8_13_1) 2012 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
| References_xml | – reference: Fienen, M.N., and R.J. Hunt. 2015. High-throughput computing versus high-performance computing for groundwater applications. Ground Water 53, no. 2: 180-184. – reference: Hunter, J. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9, no. 3: 90-95. – reference: McKinney, W. 2012. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. Sebastopol, California: O'Reilly Media Sebastopol, CA. – reference: Bakker, M., and V.A. Kelson. 2009. Writing analytic element programs in python. Ground Water 47, no. 6: 828-834. – reference: Oliphant, T.E. 2006. Guide to NumPy. USA: Trelgol Publishing. – reference: Leake, S.A., H.W. Reeves, and J.E. Dickinson. 2010. A new capture fraction method to map how pumpage affects surface water flow. Ground Water 48, no. 5: 690-700. – reference: Pérez, F., B.E. Granger, and J.D. Hunter. 2011. Python: An ecosystem for scientific computing. Computing in Science & Engineering 13, no. 2: 13-21. – reference: Pérez, F., and B.E. Granger. 2007. IPython: A system for interactive scientific computing. Computing in Science & Engineering 9, no. 3: 21-29. – reference: Bakker, M. 2014. Python scripting: The return to programming. Ground Water 52, no. 6: 821-822. – volume: 13 start-page: 13 issue: 2 year: 2011 end-page: 21 article-title: Python: An ecosystem for scientific computing publication-title: Computing in Science & Engineering – volume: 47 start-page: 828 issue: 6 year: 2009 end-page: 834 article-title: Writing analytic element programs in python publication-title: Ground Water – year: 2005 – volume: 52 start-page: 821 issue: 6 year: 2014 end-page: 822 article-title: Python scripting: The return to programming publication-title: Ground Water – volume: 48 start-page: 690 issue: 5 year: 2010 end-page: 700 article-title: A new capture fraction method to map how pumpage affects surface water flow publication-title: Ground Water – volume: 53 start-page: 180 issue: 2 year: 2015 end-page: 184 article-title: High‐throughput computing versus high‐performance computing for groundwater applications publication-title: Ground Water – year: 2001 – year: 2008 – year: 2007 – year: 2006 – volume: 9 start-page: 90 issue: 3 year: 2007 end-page: 95 article-title: Matplotlib: A 2D graphics environment publication-title: Computing in Science & Engineering – year: 2000 – volume: 9 start-page: 21 issue: 3 year: 2007 end-page: 29 article-title: IPython: A system for interactive scientific computing publication-title: Computing in Science & Engineering – year: 2014 – year: 2013 – year: 2012 – year: 1999 – ident: e_1_2_8_5_1 – ident: e_1_2_8_10_1 – ident: e_1_2_8_15_1 doi: 10.1109/MCSE.2007.53 – ident: e_1_2_8_6_1 – ident: e_1_2_8_7_1 doi: 10.3133/tm6A16 – ident: e_1_2_8_19_1 – ident: e_1_2_8_11_1 doi: 10.3133/tm6A22 – volume-title: Guide to NumPy year: 2006 ident: e_1_2_8_14_1 – ident: e_1_2_8_4_1 doi: 10.1111/gwat.12320 – volume-title: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython year: 2012 ident: e_1_2_8_13_1 – ident: e_1_2_8_16_1 doi: 10.1109/MCSE.2010.119 – ident: e_1_2_8_2_1 doi: 10.1111/gwat.12269 – ident: e_1_2_8_8_1 doi: 10.3133/ofr200092 – ident: e_1_2_8_12_1 doi: 10.1111/j.1745-6584.2010.00701.x – ident: e_1_2_8_17_1 doi: 10.3133/tm6A41 – ident: e_1_2_8_18_1 doi: 10.3133/sir20065228 – ident: e_1_2_8_9_1 doi: 10.1109/MCSE.2007.55 – ident: e_1_2_8_3_1 doi: 10.1111/j.1745-6584.2009.00583.x |
| SSID | ssj0003909 |
| Score | 2.587964 |
| Snippet | Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 733 |
| SubjectTerms | computer software Groundwater groundwater flow Humans hydrologic models Models, Theoretical Programming Languages Python Water Movements |
| Title | Scripting MODFLOW Model Development Using Python and FloPy |
| URI | https://api.istex.fr/ark:/67375/WNG-S248FXFG-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgwat.12413 https://www.ncbi.nlm.nih.gov/pubmed/27027984 https://www.proquest.com/docview/1826670077 https://www.proquest.com/docview/1837341896 https://www.proquest.com/docview/2000499722 |
| Volume | 54 |
| WOSCitedRecordID | wos000388719400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1745-6584 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003909 issn: 0017-467X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6CdtLGw9jYhTCGPG1CYlKmJHVie-IFwdI9sFIGqHmzfCubqFLUlo3--9m5USRAmpDy4IcvknNuPic-F4BPZEgxG2LtB0QlvhUK6ssgpL4N4gITRTqxi2LYBOn1aJax_hLs1rUwZX-I5oeb04zCXjsFF3K6oOTnf8XsS-iuhZahHVnBxS1oH_xMzw4bS2zjeVZbYmsQsqo9qcvkuXn71oHUdrS9vsvbvO28FqdPuvq4fb-A55XXifZKMXkJSyZfg5WFXoRr8LQah_5r_gq-npS2JD9HP44O0sOjAXIz00ZoIcUIFckGqD93zQeQyDVKR-P-_DWcpd9O97_71ZAFX2GXu0eJUprqYEgChU2MQ6GZfYY6iQUh0gSxjBSNLcuUULFgHUGlZliKUGFlGO28gVY-zs06IClZEGtsqCDGemEJtd5nJxBShkoZGTMPdmpKc1V1IHeDMEa8jkQcbXhBGw8-NtjLsu_GnajtgmENREwuXKYaifmg1-UnEaZplnb5sQcfao5yqz_uUkTkZnw15S6-cqVKhDyE6RB72lOW3I-JyuiRRJEHb0uRaXblav4Io9iDz4VkPPBFvDvYOy1WG_8DfgfPrCeXlMlvm9CaTa7Me3ii_sx-TydbsEwyulVpxz872RA8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFmnwsMEYkDHACIQEUqYktWN7b9NGOkTXFdapfbP81YGo0qnrBv3vsZM066QxCSHlwQ9nybkv39k_3wG8oyOG-QibMKI6DZ1SsFBFMQtdEhfZJDGpGxTNJmi3y4ZD3quwOf4tTFkfoj5w85ZR-Gtv4P5AesnKz37J2U7s74XuQRM7PSINaB58y047tSt2CT1fuGLnEYZVfVIP5bmefWNHanrm_r4t3LwZvRbbT7b-nwt_BGtV3In2SkV5DCs234CHS9UIN2C1aoj-ff4Edk9Kb5KfoaPjg6xzPEC-a9oYLYGMUAE3QL25Lz-AZG5QNp705ptwmn3q7x-GVZuFUGOP3mNUa8NMNKKRxpbgWBruvpFJiaRU2YioRDPihKalJpK3JFOGYyVjjbXlrPUUGvkkt88BKcUjYrBlkloXh6XMxZ-tSCoVa20V4QF8WLBa6KoGuW-FMRaLXMTzRhS8CeBtTXteVt64lep9IbGaRE5_eqwaJWLQbYuTBLNsmLXF1wDeLEQqnAX5axGZ28nlhfAZln-sROldNC3q9nvG07_TJGX-SJMkgGelztSr8q_-KGc4gI-FatzxR6I92OsXo61_IX4Nq4f9o47ofO5-eQEPXFyXllC4bWjMppf2JdzXV7MfF9NXlZH8ARkAE0Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_Bivh4GDAGhLFhBJrEpKAktWN7bxNdCqJ0hW1q3yx_ZSCqdOo6oP_97CQNnTQmoUl58MNFcu7Ld_Hv7gDe0pxhnmMTRlSnoVMKFqooZqFL4iKbJCZ1i3LYBO332WjEBzU2x9fCVP0hmh9u3jJKf-0N3J6afMnKT37L2fvY3wvdhhYmPHV22ep8y457jSt2CT1fuGLnEUZ1f1IP5fn79qUTqeWZ--eqcPNy9FoeP9nDG278EazWcSfaqxTlMdyyxRo8WOpGuAb36oHo3-dPYPew8ibFCfpy0Ml6B0Pkp6aN0RLICJVwAzSY-_YDSBYGZePJYL4Ox9n-0YePYT1mIdTYo_cY1dowE-U00tgSHEvD3ZOblEhKlY2ISjQjTmhaaiJ5WzJlOFYy1lhbztpPYaWYFPY5IKV4RAy2TFLr4rCUufizHUmlYq2tIjyAdwtWC133IPejMMZikYt43oiSNwG8aWhPq84bV1JtlxJrSOT0p8eqUSKG_a44TDDLRllXfA3g9UKkwlmQvxaRhZ2cnwmfYfliJUqvo2lTd94znv6bJqnyR5okATyrdKbZla_6o5zhAHZK1bjmi0R3uHdUrl78D_EruDvoZKL3qf95A-67sC6tkHAvYWU2PbebcEf_mv04m27VNnIBh_MSvw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scripting+MODFLOW+Model+Development+Using+Python+and+FloPy&rft.jtitle=Ground+water&rft.au=Bakker%2C+M&rft.au=Post%2C+V&rft.au=Langevin%2C+C+D&rft.au=Hughes%2C+J+D&rft.date=2016-09-01&rft.issn=0017-467X&rft.eissn=1745-6584&rft.volume=54&rft.issue=5&rft.spage=733&rft.epage=739&rft_id=info:doi/10.1111%2Fgwat.12413&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-467X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-467X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-467X&client=summon |