Scripting MODFLOW Model Development Using Python and FloPy

Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages avai...

Full description

Saved in:
Bibliographic Details
Published in:Ground water Vol. 54; no. 5; pp. 733 - 739
Main Authors: Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., Fienen, M. N.
Format: Journal Article
Language:English
Published: Malden, US Blackwell Publishing Ltd 01.09.2016
Subjects:
ISSN:0017-467X, 1745-6584, 1745-6584
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW‐based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture‐fraction analysis with a real‐world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. Article Impact Statement: Python/FloPy scripts are a powerful approach to build and analyze MODFLOW‐based models and are a full record of the entire modeling process.
AbstractList Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW‐based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture‐fraction analysis with a real‐world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. Article Impact Statement: Python/FloPy scripts are a powerful approach to build and analyze MODFLOW‐based models and are a full record of the entire modeling process.
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. Article Impact Statement: Python/FloPy scripts are a powerful approach to build and analyze MODFLOW-based models and are a full record of the entire modeling process.
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.
Author Hughes, J. D.
Post, V.
Langevin, C. D.
Bakker, M.
White, J. T.
Fienen, M. N.
Starn, J. J.
Author_xml – sequence: 1
  givenname: M.
  surname: Bakker
  fullname: Bakker, M.
  email: mark.bakker@tudelft.nl, mark.bakker@tudelft.nl
  organization: E-mail: mark.bakker@tudelft.nl
– sequence: 2
  givenname: V.
  surname: Post
  fullname: Post, V.
  organization: Flinders University, Adelaide, South Australia
– sequence: 3
  givenname: C. D.
  surname: Langevin
  fullname: Langevin, C. D.
  organization: U.S. Geological Survey, VA, Reston
– sequence: 4
  givenname: J. D.
  surname: Hughes
  fullname: Hughes, J. D.
  organization: U.S. Geological Survey, VA, Reston
– sequence: 5
  givenname: J. T.
  surname: White
  fullname: White, J. T.
  organization: U.S. Geological Survey, Texas Water Science Center, TX, Austin
– sequence: 6
  givenname: J. J.
  surname: Starn
  fullname: Starn, J. J.
  organization: U.S. Geological Survey, CT, East Hartford
– sequence: 7
  givenname: M. N.
  surname: Fienen
  fullname: Fienen, M. N.
  organization: U.S. Geological Survey Wisconsin Water Science Center, WI, Middleton
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27027984$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1P2zAUhi3EBKXbDT9gyiVCCvNXYps7VJYOqV2ZAJU7y3FOmSGNS-yO9d-TrnQXaIIdWccXfp5j2e8B2m18AwgdEnxCuvpy92TiCaGcsB3UI4JnaZ5Jvot6GBOR8lzc7qODEO4xxkxhtYf2qcBUKMl76PTKtm4RXXOXjCfnxWgyTca-gjo5h19Q-8UcmpjchPX55Sr-9E1imiopan-5-og-zEwd4NPL3kc3xdfrwbd0NBleDM5GqeVKsVQKaytZ4ZnAlkPGialUt2ZVnhkhSsBZSa3MoOvGZkYxI8tK8dIQyy0oyfroaDN30frHJYSo5y5YqGvTgF8GTbt3dTcJSt9FiWSCcSJV_h8ozXOBsRAd-vkFXZZzqPSidXPTrvT2FzsAbwDb-hBamGnroonON7E1rtYE63VQeh2U_hNUpxy_UrZT_wmTDfzkali9Qerh9Ox666Qbx4UIv_86pn3QuWAi09PvQ31FuSxui6H-wZ4B-qSwxA
CitedBy_id crossref_primary_10_1111_gwat_13470
crossref_primary_10_1109_MC_2021_3102299
crossref_primary_10_1016_j_jhydrol_2022_128642
crossref_primary_10_1007_s00477_020_01888_9
crossref_primary_10_1007_s41324_017_0140_4
crossref_primary_10_1016_j_envsoft_2024_105980
crossref_primary_10_3390_w16233481
crossref_primary_10_1007_s40899_025_01259_8
crossref_primary_10_1016_j_envsoft_2020_104888
crossref_primary_10_1111_gwat_13351
crossref_primary_10_1007_s10040_023_02660_3
crossref_primary_10_1111_gwat_70024
crossref_primary_10_1016_j_jhydrol_2021_126509
crossref_primary_10_1016_j_jenvman_2024_122231
crossref_primary_10_3390_w12041042
crossref_primary_10_1111_gwat_70018
crossref_primary_10_1016_j_jhydrol_2024_131703
crossref_primary_10_1029_2018WR024408
crossref_primary_10_1111_gwat_70017
crossref_primary_10_1016_j_advwatres_2023_104507
crossref_primary_10_1016_j_jenvman_2024_122699
crossref_primary_10_1111_gwat_13005
crossref_primary_10_1111_gwat_13367
crossref_primary_10_1016_j_envsoft_2020_104653
crossref_primary_10_1016_j_jhydrol_2025_133820
crossref_primary_10_1029_2018WR024403
crossref_primary_10_1111_gwat_70014
crossref_primary_10_1016_j_agwat_2020_106571
crossref_primary_10_3389_frwa_2024_1375523
crossref_primary_10_1029_2020WR028706
crossref_primary_10_1111_gwat_13117
crossref_primary_10_1111_1752_1688_12998
crossref_primary_10_1002_hyp_70007
crossref_primary_10_1016_j_jhydrol_2022_127447
crossref_primary_10_1016_j_jhydrol_2022_128536
crossref_primary_10_1029_2024JH000574
crossref_primary_10_1016_j_jconhyd_2024_104454
crossref_primary_10_1029_2020WR029474
crossref_primary_10_1016_j_envsoft_2018_03_025
crossref_primary_10_1111_gwat_13137
crossref_primary_10_1007_s00550_024_00557_7
crossref_primary_10_1007_s13137_023_00219_8
crossref_primary_10_5194_essd_10_1591_2018
crossref_primary_10_1029_2020WR028027
crossref_primary_10_1111_1752_1688_13013
crossref_primary_10_1007_s10661_023_12027_6
crossref_primary_10_1111_gwat_12957
crossref_primary_10_1007_s11242_022_01822_3
crossref_primary_10_4102_jamba_v17i1_1798
crossref_primary_10_5194_hess_28_5107_2024
crossref_primary_10_1111_gwat_13129
crossref_primary_10_1007_s10040_021_02385_1
crossref_primary_10_1029_2017WR021531
crossref_primary_10_5194_hess_25_2261_2021
crossref_primary_10_1029_2020WR029463
crossref_primary_10_1016_j_jhydrol_2025_133842
crossref_primary_10_1111_gwat_13025
crossref_primary_10_1111_gwat_13144
crossref_primary_10_1007_s10040_021_02347_7
crossref_primary_10_5802_crgeos_160
crossref_primary_10_1111_gwat_13017
crossref_primary_10_1111_gwat_13259
crossref_primary_10_1016_j_apenergy_2022_118587
crossref_primary_10_3389_frai_2021_624629
crossref_primary_10_1016_j_enggeo_2019_105259
crossref_primary_10_1016_j_geothermics_2024_103152
crossref_primary_10_1007_s10230_025_01070_z
crossref_primary_10_20965_jaciii_2023_p0012
crossref_primary_10_3389_feart_2022_975156
crossref_primary_10_3390_w17172617
crossref_primary_10_1016_j_envsoft_2024_106114
crossref_primary_10_3389_frwa_2021_799738
crossref_primary_10_1038_s41558_020_0874_1
crossref_primary_10_1111_gwat_12581
crossref_primary_10_1016_j_jsames_2024_104781
crossref_primary_10_1016_j_advwatres_2025_105103
crossref_primary_10_1016_j_jsames_2025_105512
crossref_primary_10_1002_2016WR020039
crossref_primary_10_1016_j_envsoft_2020_104693
crossref_primary_10_1016_j_jhydrol_2019_04_003
crossref_primary_10_1111_gwat_12577
crossref_primary_10_1016_j_watres_2024_122141
crossref_primary_10_1016_j_jhydrol_2018_03_029
crossref_primary_10_1016_j_eswa_2025_128820
crossref_primary_10_1029_2023WR035280
crossref_primary_10_1016_j_geothermics_2021_102072
crossref_primary_10_3390_w11112311
crossref_primary_10_1016_j_envsoft_2018_07_020
crossref_primary_10_1016_j_watres_2025_123194
crossref_primary_10_1007_s10040_019_02004_0
crossref_primary_10_1029_2021WR030635
crossref_primary_10_1016_j_envsoft_2024_106120
crossref_primary_10_1029_2024WR038468
crossref_primary_10_1029_2022WR032712
crossref_primary_10_3389_frwa_2022_828099
crossref_primary_10_1016_j_advwatres_2024_104763
crossref_primary_10_1016_j_advwatres_2024_104884
crossref_primary_10_1016_j_cageo_2021_104705
crossref_primary_10_1111_gwat_12588
crossref_primary_10_2166_ws_2022_280
crossref_primary_10_1002_hyp_15167
crossref_primary_10_1029_2024GL113428
crossref_primary_10_1007_s11242_018_1094_2
crossref_primary_10_1016_j_jhydrol_2024_131714
crossref_primary_10_3389_feart_2023_1302828
crossref_primary_10_3390_w15020365
crossref_primary_10_1002_2017GL075238
crossref_primary_10_5194_hess_28_505_2024
crossref_primary_10_1007_s10040_020_02246_3
crossref_primary_10_1016_j_scitotenv_2021_149216
crossref_primary_10_1016_j_jhydrol_2024_132368
crossref_primary_10_5194_piahs_379_1_2018
crossref_primary_10_1029_2019JB018962
crossref_primary_10_1111_gwat_13331
crossref_primary_10_1016_j_gsd_2023_100953
crossref_primary_10_1029_2022WR032295
crossref_primary_10_3389_frwa_2023_1028922
crossref_primary_10_1016_j_envsoft_2018_06_007
crossref_primary_10_1029_2019WR026777
crossref_primary_10_3389_feart_2022_903965
crossref_primary_10_1111_gwat_13327
crossref_primary_10_11648_j_ajbes_20251103_11
crossref_primary_10_1051_e3sconf_202560702002
crossref_primary_10_1016_j_envsoft_2018_06_009
crossref_primary_10_1016_j_jhydrol_2022_127657
crossref_primary_10_1061_JWRMD5_WRENG_6415
crossref_primary_10_5194_hess_23_4397_2019
crossref_primary_10_1007_s40899_024_01137_9
crossref_primary_10_5194_tc_19_1513_2025
crossref_primary_10_1016_j_jhydrol_2020_125441
crossref_primary_10_1016_j_jhydrol_2020_124909
crossref_primary_10_1016_j_envsoft_2024_106266
crossref_primary_10_1111_gwat_13224
crossref_primary_10_3390_w16111515
crossref_primary_10_1029_2024WR038364
crossref_primary_10_1111_gwat_13221
crossref_primary_10_1111_gwat_12925
crossref_primary_10_1111_gwat_12803
crossref_primary_10_1016_j_geothermics_2023_102889
crossref_primary_10_3390_app14093675
crossref_primary_10_1016_j_jhydrol_2024_132010
crossref_primary_10_1111_gwat_13459
crossref_primary_10_1016_j_scitotenv_2019_07_284
crossref_primary_10_1016_j_jhydrol_2020_125568
crossref_primary_10_3390_agronomy13061534
crossref_primary_10_3389_feart_2022_904271
crossref_primary_10_1029_2020WR027591
crossref_primary_10_3390_w11101989
crossref_primary_10_1016_j_cageo_2022_105210
crossref_primary_10_1016_j_jhydrol_2024_131411
crossref_primary_10_2166_wpt_2024_299
crossref_primary_10_3390_hydrology11050060
crossref_primary_10_1016_j_jhydrol_2024_131416
crossref_primary_10_1016_j_jhydrol_2025_133439
crossref_primary_10_1016_j_apenergy_2019_03_110
crossref_primary_10_1029_2023WR036610
crossref_primary_10_1029_2023WR036059
crossref_primary_10_3389_feart_2023_1168609
crossref_primary_10_1111_gwat_12536
crossref_primary_10_1029_2019WR025983
crossref_primary_10_1111_gwat_12654
crossref_primary_10_1016_j_agwat_2021_107438
crossref_primary_10_1029_2021WR031241
crossref_primary_10_1016_j_scitotenv_2024_177716
crossref_primary_10_1111_gwat_13080
crossref_primary_10_3389_feart_2022_907533
crossref_primary_10_1186_s40517_024_00326_1
crossref_primary_10_1038_s41598_019_48382_z
crossref_primary_10_1111_gwat_12552
crossref_primary_10_1111_gwat_12793
crossref_primary_10_1016_j_advwatres_2020_103632
crossref_primary_10_1016_j_envsoft_2023_105723
crossref_primary_10_5194_hess_28_735_2024
crossref_primary_10_1016_j_jhydrol_2017_10_028
crossref_primary_10_1029_2024GL111325
crossref_primary_10_1007_s13280_024_02068_7
crossref_primary_10_1111_gwat_13095
crossref_primary_10_1016_j_jhydrol_2018_01_043
crossref_primary_10_1016_j_envsoft_2025_106372
crossref_primary_10_1029_2021WR031458
crossref_primary_10_1016_j_advwatres_2024_104637
crossref_primary_10_1029_2020WR027335
crossref_primary_10_1016_j_jhydrol_2023_129151
crossref_primary_10_1007_s10040_021_02430_z
crossref_primary_10_3390_w12010041
crossref_primary_10_1016_j_envsoft_2022_105563
crossref_primary_10_3390_w13101384
crossref_primary_10_1002_hyp_15015
crossref_primary_10_1016_j_jhydrol_2025_133455
crossref_primary_10_1029_2018GL080404
crossref_primary_10_1111_gwat_12558
crossref_primary_10_1111_gwat_13405
crossref_primary_10_3390_hydrology9030049
crossref_primary_10_5194_hess_20_3739_2016
crossref_primary_10_1007_s12145_024_01568_0
crossref_primary_10_1029_2020WR029509
crossref_primary_10_1111_gwat_13403
crossref_primary_10_1111_gwat_12797
crossref_primary_10_1007_s00477_020_01943_5
crossref_primary_10_1029_2023WR036394
crossref_primary_10_3390_w13030306
crossref_primary_10_1016_j_cageo_2017_11_013
crossref_primary_10_1016_j_jhydrol_2022_128159
crossref_primary_10_1016_j_jconhyd_2020_103638
crossref_primary_10_1029_2023WR035625
crossref_primary_10_5194_os_21_1407_2025
crossref_primary_10_1029_2024WR037474
crossref_primary_10_1016_j_jhydrol_2019_02_024
crossref_primary_10_1007_s11004_023_10074_w
crossref_primary_10_1016_j_envsoft_2022_105452
crossref_primary_10_1016_j_agwat_2024_109109
crossref_primary_10_1016_j_jhydrol_2021_127205
crossref_primary_10_5194_hess_27_3221_2023
crossref_primary_10_1016_j_jhydrol_2024_132308
crossref_primary_10_1029_2021WR031438
crossref_primary_10_5194_hess_25_3351_2021
crossref_primary_10_1016_j_jconhyd_2022_103980
crossref_primary_10_1111_gwat_13270
crossref_primary_10_2166_hydro_2025_046
crossref_primary_10_1016_j_jhydrol_2021_126780
crossref_primary_10_1111_gwat_13390
crossref_primary_10_1016_j_agwat_2021_106947
crossref_primary_10_1029_2021WR031554
crossref_primary_10_1029_2023GL106964
crossref_primary_10_3390_w16182609
crossref_primary_10_1111_gwat_13159
crossref_primary_10_1016_j_advwatres_2023_104538
crossref_primary_10_1029_2020WR029339
crossref_primary_10_1007_s12665_023_10877_4
crossref_primary_10_1111_gwat_12979
crossref_primary_10_1007_s11269_021_02828_0
crossref_primary_10_1525_elementa_2020_00182
crossref_primary_10_1016_j_envsoft_2021_105022
crossref_primary_10_1029_2019WR025269
crossref_primary_10_1007_s13137_022_00202_9
crossref_primary_10_1016_j_advwatres_2019_103381
crossref_primary_10_1111_gwat_13161
crossref_primary_10_1016_j_advwatres_2019_04_010
crossref_primary_10_1016_j_envsoft_2019_01_006
crossref_primary_10_1016_j_advwatres_2021_103976
crossref_primary_10_1111_gwat_13164
crossref_primary_10_1007_s10040_021_02442_9
crossref_primary_10_1007_s12665_018_7469_4
crossref_primary_10_1029_2023WR035446
crossref_primary_10_1111_gwat_13163
crossref_primary_10_1016_j_envsoft_2021_105257
crossref_primary_10_1016_j_jhydrol_2022_127807
crossref_primary_10_3389_frwa_2022_989440
crossref_primary_10_3390_en14237958
crossref_primary_10_5194_hess_23_3481_2019
crossref_primary_10_1007_s10040_019_02095_9
crossref_primary_10_1007_s10040_024_02854_3
crossref_primary_10_1016_j_jconhyd_2024_104410
crossref_primary_10_1016_j_advwatres_2024_104714
crossref_primary_10_1016_j_jhydrol_2024_132641
crossref_primary_10_1016_j_jhydrol_2024_132645
crossref_primary_10_3389_feart_2022_916198
crossref_primary_10_1007_s41748_025_00583_5
crossref_primary_10_1016_j_jhydrol_2020_125715
crossref_primary_10_3390_app131910707
crossref_primary_10_3389_feart_2020_00050
crossref_primary_10_1002_hyp_70141
crossref_primary_10_1016_j_jhydrol_2020_125163
crossref_primary_10_1007_s12665_024_11899_2
crossref_primary_10_1016_j_envsoft_2023_105828
crossref_primary_10_1016_j_envsoft_2022_105406
crossref_primary_10_2166_hydro_2024_275
crossref_primary_10_1016_j_jconhyd_2020_103713
crossref_primary_10_3390_hydrology10090188
crossref_primary_10_1080_10934529_2020_1724503
crossref_primary_10_1016_j_advwatres_2024_104821
crossref_primary_10_1111_gwat_13185
crossref_primary_10_3389_feart_2022_884075
crossref_primary_10_1016_j_scitotenv_2025_178679
crossref_primary_10_1007_s00521_022_07507_8
crossref_primary_10_1016_j_jconhyd_2019_103520
crossref_primary_10_5194_hess_29_1469_2025
Cites_doi 10.1109/MCSE.2007.53
10.3133/tm6A16
10.3133/tm6A22
10.1111/gwat.12320
10.1109/MCSE.2010.119
10.1111/gwat.12269
10.3133/ofr200092
10.1111/j.1745-6584.2010.00701.x
10.3133/tm6A41
10.3133/sir20065228
10.1109/MCSE.2007.55
10.1111/j.1745-6584.2009.00583.x
ContentType Journal Article
Copyright 2016, National Ground Water Association.
Copyright_xml – notice: 2016, National Ground Water Association.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7ST
7UA
C1K
F1W
H96
H97
L.G
SOI
7S9
L.6
DOI 10.1111/gwat.12413
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1745-6584
EndPage 739
ExternalDocumentID 27027984
10_1111_gwat_12413
GWAT12413
ark_67375_WNG_S248FXFG_Q
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
186
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X2
7X7
7XC
8-0
8-1
8-3
8-4
8-5
88E
88I
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPPZ
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AETEA
AEUYN
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCR
BCU
BDRZF
BEC
BENPR
BES
BFHJK
BGLVJ
BHBCM
BHPHI
BKOMP
BKSAR
BLC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
D1J
D1K
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
GUQSH
H.T
H.X
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZI
HZ~
IAG
IAO
IEA
IEP
IOF
ITC
IX1
J0M
K48
K6-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK5
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M1P
M2O
M2P
M7R
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PEA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
R.K
R05
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJFOW
SUPJJ
TAE
TN5
UB1
UKHRP
V8K
VH1
VJK
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZCA
ZZTAW
~02
~IA
~KM
~WT
3V.
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
ALUQN
WRC
YCJ
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7ST
7UA
C1K
F1W
H96
H97
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c4993-87ccd8d0f70c4e541ad9ad9fd65a77be05b2c85eb2cac5a93a8bd94ba1c4ce983
IEDL.DBID DRFUL
ISICitedReferencesCount 297
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388719400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-467X
1745-6584
IngestDate Fri Sep 05 17:32:22 EDT 2025
Tue Oct 07 09:28:05 EDT 2025
Sun Nov 09 13:11:03 EST 2025
Mon Jul 21 06:04:52 EDT 2025
Sat Nov 29 06:58:43 EST 2025
Tue Nov 18 22:23:11 EST 2025
Wed Jan 22 16:52:33 EST 2025
Tue Nov 11 03:33:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016, National Ground Water Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4993-87ccd8d0f70c4e541ad9ad9fd65a77be05b2c85eb2cac5a93a8bd94ba1c4ce983
Notes istex:46D77A834C13B16EB7C4F625AD0469DFDA349A9E
ArticleID:GWAT12413
ark:/67375/WNG-S248FXFG-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27027984
PQID 1826670077
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000499722
proquest_miscellaneous_1837341896
proquest_miscellaneous_1826670077
pubmed_primary_27027984
crossref_citationtrail_10_1111_gwat_12413
crossref_primary_10_1111_gwat_12413
wiley_primary_10_1111_gwat_12413_GWAT12413
istex_primary_ark_67375_WNG_S248FXFG_Q
PublicationCentury 2000
PublicationDate September/October 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September/October 2016
PublicationDecade 2010
PublicationPlace Malden, US
PublicationPlace_xml – name: Malden, US
– name: United States
PublicationTitle Ground water
PublicationTitleAlternate Groundwater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References McKinney, W. 2012. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. Sebastopol, California: O'Reilly Media Sebastopol, CA.
Leake, S.A., H.W. Reeves, and J.E. Dickinson. 2010. A new capture fraction method to map how pumpage affects surface water flow. Ground Water 48, no. 5: 690-700.
Pérez, F., and B.E. Granger. 2007. IPython: A system for interactive scientific computing. Computing in Science & Engineering 9, no. 3: 21-29.
Bakker, M., and V.A. Kelson. 2009. Writing analytic element programs in python. Ground Water 47, no. 6: 828-834.
Oliphant, T.E. 2006. Guide to NumPy. USA: Trelgol Publishing.
Pérez, F., B.E. Granger, and J.D. Hunter. 2011. Python: An ecosystem for scientific computing. Computing in Science & Engineering 13, no. 2: 13-21.
Fienen, M.N., and R.J. Hunt. 2015. High-throughput computing versus high-performance computing for groundwater applications. Ground Water 53, no. 2: 180-184.
Hunter, J. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9, no. 3: 90-95.
Bakker, M. 2014. Python scripting: The return to programming. Ground Water 52, no. 6: 821-822.
2009; 47
2010; 48
2001
2012
2000
2015; 53
2007; 9
2008
2007
2006
2005
2011; 13
2014
2013
2014; 52
1999
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
Oliphant T.E. (e_1_2_8_14_1) 2006
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
McKinney W. (e_1_2_8_13_1) 2012
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – reference: Fienen, M.N., and R.J. Hunt. 2015. High-throughput computing versus high-performance computing for groundwater applications. Ground Water 53, no. 2: 180-184.
– reference: Hunter, J. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9, no. 3: 90-95.
– reference: McKinney, W. 2012. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. Sebastopol, California: O'Reilly Media Sebastopol, CA.
– reference: Bakker, M., and V.A. Kelson. 2009. Writing analytic element programs in python. Ground Water 47, no. 6: 828-834.
– reference: Oliphant, T.E. 2006. Guide to NumPy. USA: Trelgol Publishing.
– reference: Leake, S.A., H.W. Reeves, and J.E. Dickinson. 2010. A new capture fraction method to map how pumpage affects surface water flow. Ground Water 48, no. 5: 690-700.
– reference: Pérez, F., B.E. Granger, and J.D. Hunter. 2011. Python: An ecosystem for scientific computing. Computing in Science & Engineering 13, no. 2: 13-21.
– reference: Pérez, F., and B.E. Granger. 2007. IPython: A system for interactive scientific computing. Computing in Science & Engineering 9, no. 3: 21-29.
– reference: Bakker, M. 2014. Python scripting: The return to programming. Ground Water 52, no. 6: 821-822.
– volume: 13
  start-page: 13
  issue: 2
  year: 2011
  end-page: 21
  article-title: Python: An ecosystem for scientific computing
  publication-title: Computing in Science & Engineering
– volume: 47
  start-page: 828
  issue: 6
  year: 2009
  end-page: 834
  article-title: Writing analytic element programs in python
  publication-title: Ground Water
– year: 2005
– volume: 52
  start-page: 821
  issue: 6
  year: 2014
  end-page: 822
  article-title: Python scripting: The return to programming
  publication-title: Ground Water
– volume: 48
  start-page: 690
  issue: 5
  year: 2010
  end-page: 700
  article-title: A new capture fraction method to map how pumpage affects surface water flow
  publication-title: Ground Water
– volume: 53
  start-page: 180
  issue: 2
  year: 2015
  end-page: 184
  article-title: High‐throughput computing versus high‐performance computing for groundwater applications
  publication-title: Ground Water
– year: 2001
– year: 2008
– year: 2007
– year: 2006
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  end-page: 95
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Computing in Science & Engineering
– year: 2000
– volume: 9
  start-page: 21
  issue: 3
  year: 2007
  end-page: 29
  article-title: IPython: A system for interactive scientific computing
  publication-title: Computing in Science & Engineering
– year: 2014
– year: 2013
– year: 2012
– year: 1999
– ident: e_1_2_8_5_1
– ident: e_1_2_8_10_1
– ident: e_1_2_8_15_1
  doi: 10.1109/MCSE.2007.53
– ident: e_1_2_8_6_1
– ident: e_1_2_8_7_1
  doi: 10.3133/tm6A16
– ident: e_1_2_8_19_1
– ident: e_1_2_8_11_1
  doi: 10.3133/tm6A22
– volume-title: Guide to NumPy
  year: 2006
  ident: e_1_2_8_14_1
– ident: e_1_2_8_4_1
  doi: 10.1111/gwat.12320
– volume-title: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
  year: 2012
  ident: e_1_2_8_13_1
– ident: e_1_2_8_16_1
  doi: 10.1109/MCSE.2010.119
– ident: e_1_2_8_2_1
  doi: 10.1111/gwat.12269
– ident: e_1_2_8_8_1
  doi: 10.3133/ofr200092
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1745-6584.2010.00701.x
– ident: e_1_2_8_17_1
  doi: 10.3133/tm6A41
– ident: e_1_2_8_18_1
  doi: 10.3133/sir20065228
– ident: e_1_2_8_9_1
  doi: 10.1109/MCSE.2007.55
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1745-6584.2009.00583.x
SSID ssj0003909
Score 2.587964
Snippet Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 733
SubjectTerms computer software
Groundwater
groundwater flow
Humans
hydrologic models
Models, Theoretical
Programming Languages
Python
Water Movements
Title Scripting MODFLOW Model Development Using Python and FloPy
URI https://api.istex.fr/ark:/67375/WNG-S248FXFG-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgwat.12413
https://www.ncbi.nlm.nih.gov/pubmed/27027984
https://www.proquest.com/docview/1826670077
https://www.proquest.com/docview/1837341896
https://www.proquest.com/docview/2000499722
Volume 54
WOSCitedRecordID wos000388719400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1745-6584
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003909
  issn: 0017-467X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6CdtLGw9jYhTCGPG1CYlKmJHVie-IFwdI9sFIGqHmzfCubqFLUlo3--9m5USRAmpDy4IcvknNuPic-F4BPZEgxG2LtB0QlvhUK6ssgpL4N4gITRTqxi2LYBOn1aJax_hLs1rUwZX-I5oeb04zCXjsFF3K6oOTnf8XsS-iuhZahHVnBxS1oH_xMzw4bS2zjeVZbYmsQsqo9qcvkuXn71oHUdrS9vsvbvO28FqdPuvq4fb-A55XXifZKMXkJSyZfg5WFXoRr8LQah_5r_gq-npS2JD9HP44O0sOjAXIz00ZoIcUIFckGqD93zQeQyDVKR-P-_DWcpd9O97_71ZAFX2GXu0eJUprqYEgChU2MQ6GZfYY6iQUh0gSxjBSNLcuUULFgHUGlZliKUGFlGO28gVY-zs06IClZEGtsqCDGemEJtd5nJxBShkoZGTMPdmpKc1V1IHeDMEa8jkQcbXhBGw8-NtjLsu_GnajtgmENREwuXKYaifmg1-UnEaZplnb5sQcfao5yqz_uUkTkZnw15S6-cqVKhDyE6RB72lOW3I-JyuiRRJEHb0uRaXblav4Io9iDz4VkPPBFvDvYOy1WG_8DfgfPrCeXlMlvm9CaTa7Me3ii_sx-TydbsEwyulVpxz872RA8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFmnwsMEYkDHACIQEUqYktWN7b9NGOkTXFdapfbP81YGo0qnrBv3vsZM066QxCSHlwQ9nybkv39k_3wG8oyOG-QibMKI6DZ1SsFBFMQtdEhfZJDGpGxTNJmi3y4ZD3quwOf4tTFkfoj5w85ZR-Gtv4P5AesnKz37J2U7s74XuQRM7PSINaB58y047tSt2CT1fuGLnEYZVfVIP5bmefWNHanrm_r4t3LwZvRbbT7b-nwt_BGtV3In2SkV5DCs234CHS9UIN2C1aoj-ff4Edk9Kb5KfoaPjg6xzPEC-a9oYLYGMUAE3QL25Lz-AZG5QNp705ptwmn3q7x-GVZuFUGOP3mNUa8NMNKKRxpbgWBruvpFJiaRU2YioRDPihKalJpK3JFOGYyVjjbXlrPUUGvkkt88BKcUjYrBlkloXh6XMxZ-tSCoVa20V4QF8WLBa6KoGuW-FMRaLXMTzRhS8CeBtTXteVt64lep9IbGaRE5_eqwaJWLQbYuTBLNsmLXF1wDeLEQqnAX5axGZ28nlhfAZln-sROldNC3q9nvG07_TJGX-SJMkgGelztSr8q_-KGc4gI-FatzxR6I92OsXo61_IX4Nq4f9o47ofO5-eQEPXFyXllC4bWjMppf2JdzXV7MfF9NXlZH8ARkAE0Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_Bivh4GDAGhLFhBJrEpKAktWN7bxNdCqJ0hW1q3yx_ZSCqdOo6oP_97CQNnTQmoUl58MNFcu7Ld_Hv7gDe0pxhnmMTRlSnoVMKFqooZqFL4iKbJCZ1i3LYBO332WjEBzU2x9fCVP0hmh9u3jJKf-0N3J6afMnKT37L2fvY3wvdhhYmPHV22ep8y457jSt2CT1fuGLnEUZ1f1IP5fn79qUTqeWZ--eqcPNy9FoeP9nDG278EazWcSfaqxTlMdyyxRo8WOpGuAb36oHo3-dPYPew8ibFCfpy0Ml6B0Pkp6aN0RLICJVwAzSY-_YDSBYGZePJYL4Ox9n-0YePYT1mIdTYo_cY1dowE-U00tgSHEvD3ZOblEhKlY2ISjQjTmhaaiJ5WzJlOFYy1lhbztpPYaWYFPY5IKV4RAy2TFLr4rCUufizHUmlYq2tIjyAdwtWC133IPejMMZikYt43oiSNwG8aWhPq84bV1JtlxJrSOT0p8eqUSKG_a44TDDLRllXfA3g9UKkwlmQvxaRhZ2cnwmfYfliJUqvo2lTd94znv6bJqnyR5okATyrdKbZla_6o5zhAHZK1bjmi0R3uHdUrl78D_EruDvoZKL3qf95A-67sC6tkHAvYWU2PbebcEf_mv04m27VNnIBh_MSvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scripting+MODFLOW+Model+Development+Using+Python+and+FloPy&rft.jtitle=Ground+water&rft.au=Bakker%2C+M&rft.au=Post%2C+V&rft.au=Langevin%2C+C+D&rft.au=Hughes%2C+J+D&rft.date=2016-09-01&rft.issn=0017-467X&rft.eissn=1745-6584&rft.volume=54&rft.issue=5&rft.spage=733&rft.epage=739&rft_id=info:doi/10.1111%2Fgwat.12413&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-467X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-467X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-467X&client=summon