SAPPHIRE: a neural network based classifier for σ70 promoter prediction in Pseudomonas

Background In silico promoter prediction represents an important challenge in bioinformatics as it provides a first-line approach to identifying regulatory elements to support wet-lab experiments. Historically, available promoter prediction software have focused on sigma factor-associated promoters...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 21; číslo 1; s. 1 - 7
Hlavní autoři: Coppens, Lucas, Lavigne, Rob
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 22.09.2020
Springer Nature B.V
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Background In silico promoter prediction represents an important challenge in bioinformatics as it provides a first-line approach to identifying regulatory elements to support wet-lab experiments. Historically, available promoter prediction software have focused on sigma factor-associated promoters in the model organism E. coli. As a consequence, traditional promoter predictors yield suboptimal predictions when applied to other prokaryotic genera, such as Pseudomonas, a Gram-negative bacterium of crucial medical and biotechnological importance. Results We developed SAPPHIRE, a promoter predictor for σ70 promoters in Pseudomonas. This promoter prediction relies on an artificial neural network that evaluates sequences on their similarity to the − 35 and − 10 boxes of σ70 promoters found experimentally in P. aeruginosa and P. putida . SAPPHIRE currently outperforms established predictive software when classifying Pseudomonas σ70 promoters and was built to allow further expansion in the future. Conclusions SAPPHIRE is the first predictive tool for bacterial σ70 promoters in Pseudomonas . SAPPHIRE is free, publicly available and can be accessed online at www.biosapphire.com . Alternatively, users can download the tool as a Python 3 script for local application from this site.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-020-03730-z