Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction

[Display omitted] Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting mat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta biomaterialia Ročník 11; s. 543 - 553
Hlavní autoři: Brown, Andrew, Zaky, Samer, Ray, Herbert, Sfeir, Charles
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.01.2015
Témata:
ISSN:1742-7061, 1878-7568, 1878-7568
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma–atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium’s impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.
AbstractList Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.
Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.
[Display omitted] Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma–atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium’s impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.
Author Ray, Herbert
Brown, Andrew
Zaky, Samer
Sfeir, Charles
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0002-8669-3439
  surname: Brown
  fullname: Brown, Andrew
  organization: Department of Oral Biology, 598 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
– sequence: 2
  givenname: Samer
  surname: Zaky
  fullname: Zaky, Samer
  organization: Department of Oral Biology, 598 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
– sequence: 3
  givenname: Herbert
  surname: Ray
  fullname: Ray, Herbert
  organization: The Center for Craniofacial Regeneration, 598 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
– sequence: 4
  givenname: Charles
  surname: Sfeir
  fullname: Sfeir, Charles
  email: csfeir@pitt.edu
  organization: Department of Oral Biology, 598 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25234156$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvFDEQhC2UiDzgHyDkI5eZtD0P2xyQoggC0krJAc6Wx9Oz8WrGXmxvgH-Pl00uHJKcbKm_KnVXnZEjHzwS8o5BzYD1F5va2Dy4UHNgbQ2qBpCvyCmTQlai6-VR-YuWVwJ6dkLOUtoANJJx-Zqc8I43Lev6U2JvQwy7RBez9pjcbrm4XV1fUhuWbUguI03WTFOYx0SnECn6O-MtjnQoy9CIa_QYTXbBl_E8h1_Or2kOId9R_J1j2bCM3pDjycwJ3z685-THl8_fr75Wq5vrb1eXq8q2SuZqHI0UPXJojBLIhtZwhQ0gZwMHKaEDPqph7BtgUjHAiUtsDMrJgpU4qeacfDj4bmP4ucOU9eKSxXk2HsuNmvV9yaiT5fjn0VYAdKqVL0C5UoJzJgr6_gHdDQuOehvdYuIf_Rh3AT4eABtDShEnbV3-F1_Jys2agd53qzf60K3ed6tB6bJ3Ebf_iR_9n5F9OsiwRH_vMOpkHe5LdBFt1mNwTxv8BYkMv_Q
CitedBy_id crossref_primary_10_1002_jbm_b_34131
crossref_primary_10_1016_j_bioactmat_2021_12_032
crossref_primary_10_1007_s11431_020_1689_3
crossref_primary_10_1016_j_actbio_2019_05_026
crossref_primary_10_1088_1758_5090_ac73b8
crossref_primary_10_1016_j_addma_2019_05_031
crossref_primary_10_1016_j_actbio_2019_04_061
crossref_primary_10_3390_jcs8010006
crossref_primary_10_1016_j_coco_2024_102024
crossref_primary_10_3390_ijms19030826
crossref_primary_10_1007_s11837_021_04992_5
crossref_primary_10_1016_j_colsurfb_2018_10_081
crossref_primary_10_1016_j_biomaterials_2020_119962
crossref_primary_10_1039_D0BM00834F
crossref_primary_10_1016_j_jmbbm_2019_06_022
crossref_primary_10_1371_journal_pone_0228247
crossref_primary_10_1016_j_polymertesting_2018_03_042
crossref_primary_10_1002_adhm_202304060
crossref_primary_10_1016_j_addr_2016_03_012
crossref_primary_10_1007_s10973_020_09759_9
crossref_primary_10_1016_j_actbio_2017_08_004
crossref_primary_10_1016_j_compositesb_2025_112363
crossref_primary_10_1002_adhm_202000211
crossref_primary_10_1016_j_ceramint_2024_05_327
crossref_primary_10_1016_j_biomaterials_2021_120950
crossref_primary_10_1007_s00339_016_0538_1
crossref_primary_10_1038_s41467_021_23005_2
crossref_primary_10_1002_jbm_a_35657
crossref_primary_10_1063_1_5045339
crossref_primary_10_1016_j_matchemphys_2024_129911
crossref_primary_10_1016_j_jallcom_2025_182336
crossref_primary_10_3390_ma17235680
crossref_primary_10_1016_j_actbio_2015_12_037
crossref_primary_10_3390_jfb14030159
crossref_primary_10_1016_j_heliyon_2023_e22552
crossref_primary_10_1016_j_jmbbm_2024_106421
crossref_primary_10_2147_IJN_S390500
crossref_primary_10_1007_s40005_019_00439_x
crossref_primary_10_1016_j_eurpolymj_2019_07_036
crossref_primary_10_1007_s40089_020_00318_6
crossref_primary_10_1007_s42114_020_00177_x
crossref_primary_10_1016_j_ijbiomac_2019_09_020
crossref_primary_10_1002_jbm_a_35625
crossref_primary_10_1016_j_matlet_2015_09_039
crossref_primary_10_1007_s10439_018_2058_y
crossref_primary_10_1080_17568919_2025_2458457
crossref_primary_10_1016_j_jmbbm_2021_104768
crossref_primary_10_1016_j_jobcr_2016_03_001
crossref_primary_10_1016_j_jddst_2021_102558
crossref_primary_10_1002_jbm_a_37767
crossref_primary_10_1007_s10856_021_06561_3
crossref_primary_10_3390_met12122074
crossref_primary_10_1016_j_ijbiomac_2019_12_249
crossref_primary_10_1002_jbm_a_37660
crossref_primary_10_1007_s10904_025_03833_1
crossref_primary_10_1016_j_bioactmat_2021_10_019
crossref_primary_10_1016_j_matdes_2018_09_019
crossref_primary_10_3389_fbioe_2020_00564
crossref_primary_10_1016_j_bioactmat_2020_02_012
crossref_primary_10_1016_j_jconrel_2022_08_036
crossref_primary_10_3390_gels10020140
crossref_primary_10_1016_j_jmbbm_2018_08_002
crossref_primary_10_1177_15353702211052927
crossref_primary_10_1007_s10934_017_0450_x
crossref_primary_10_1155_2016_1239842
crossref_primary_10_1002_jbm_a_36446
crossref_primary_10_1007_s10856_017_5908_5
crossref_primary_10_1016_j_actbio_2018_08_030
crossref_primary_10_1016_j_compositesb_2021_109270
crossref_primary_10_1016_j_actbio_2018_12_017
crossref_primary_10_1007_s40195_018_0841_2
crossref_primary_10_1080_09506608_2018_1460943
crossref_primary_10_1016_j_cej_2025_161315
crossref_primary_10_1002_mabi_201600057
crossref_primary_10_1016_j_actbio_2021_03_067
crossref_primary_10_1016_j_jtice_2024_105619
crossref_primary_10_1007_s10934_017_0467_1
crossref_primary_10_1016_j_jma_2018_02_003
crossref_primary_10_3390_molecules27175529
crossref_primary_10_1088_1748_605X_aadb47
crossref_primary_10_1016_j_polymdegradstab_2020_109427
crossref_primary_10_1016_j_proeng_2016_06_688
crossref_primary_10_1016_j_jconrel_2015_07_031
crossref_primary_10_1016_j_apsusc_2015_12_243
crossref_primary_10_3390_polym15081907
crossref_primary_10_3390_polym14122422
crossref_primary_10_1038_srep11194
crossref_primary_10_3389_fbioe_2022_859280
crossref_primary_10_3390_jfb13040267
crossref_primary_10_3390_ma15030827
crossref_primary_10_1016_j_jddst_2025_106806
crossref_primary_10_3390_polym13071061
crossref_primary_10_1002_adma_202005140
crossref_primary_10_1016_j_matdes_2023_112351
crossref_primary_10_1016_j_bioactmat_2021_01_011
crossref_primary_10_1080_09205063_2025_2515953
crossref_primary_10_1007_s10965_023_03542_8
crossref_primary_10_3390_polym14245460
crossref_primary_10_1002_jbm_b_35246
crossref_primary_10_1016_j_eurpolymj_2018_10_012
crossref_primary_10_1155_2017_4585401
crossref_primary_10_3390_nano11051129
crossref_primary_10_1108_RPJ_06_2021_0152
crossref_primary_10_3389_fbioe_2021_718718
crossref_primary_10_1016_j_matpr_2017_01_101
crossref_primary_10_1088_1748_605X_aaaa29
crossref_primary_10_1016_j_optlastec_2025_112549
crossref_primary_10_1039_C9BM00664H
crossref_primary_10_1097_SCS_0000000000009750
crossref_primary_10_1186_s12938_020_0755_x
crossref_primary_10_1016_j_addma_2020_101142
crossref_primary_10_3390_ma15165669
crossref_primary_10_1007_s11665_024_10242_x
crossref_primary_10_1016_j_biomaterials_2015_10_042
crossref_primary_10_1038_srep34029
crossref_primary_10_1016_j_mtla_2020_100661
crossref_primary_10_1016_j_biomaterials_2016_01_046
crossref_primary_10_1016_j_jallcom_2022_166377
crossref_primary_10_1016_j_compositesb_2021_109461
crossref_primary_10_1016_j_matdes_2016_06_080
crossref_primary_10_1177_08853282251324799
crossref_primary_10_3390_jfb15080233
crossref_primary_10_1007_s41745_019_00124_w
crossref_primary_10_5812_jcrps_124080
crossref_primary_10_1002_jbm_a_35959
crossref_primary_10_3233_BME_161568
crossref_primary_10_1016_j_biomaterials_2024_122975
crossref_primary_10_3390_app14041512
crossref_primary_10_3390_ma12162581
crossref_primary_10_1002_agt2_176
Cites_doi 10.1902/jop.2008.070502
10.1016/j.actbio.2009.07.016
10.1016/j.biomaterials.2006.01.039
10.1007/BF02628418
10.1016/j.matlet.2012.01.134
10.1111/j.1600-0501.2010.02064.x
10.1111/j.1600-0501.2009.01821.x
10.1007/s10856-009-3727-z
10.1902/jop.2007.060048
10.1902/jop.2003.74.7.965
10.1902/jop.2003.74.7.990
10.1016/j.biomaterials.2005.10.003
10.1902/jop.1996.67.10.1025
10.1007/s10856-011-4354-z
10.1111/j.1600-051X.2005.00642.x
10.1111/j.1600-0501.2010.01937.x
10.1089/ten.2006.12.3545
10.1023/A:1007513425337
10.1016/j.biomaterials.2004.09.049
10.1007/s00264-007-0418-6
10.1073/pnas.97.7.3213
10.1016/0022-3913(67)90046-7
10.1111/j.1600-051X.2010.01691.x
10.1097/01.scs.0000179662.38172.dd
10.1111/clr.12132
10.1111/j.1600-0501.2008.01575.x
10.1111/j.1600-051X.2005.00729.x
10.1097/00003086-200202000-00009
10.1016/j.biomaterials.2009.11.111
10.1902/jop.1998.69.9.1044
10.1111/j.1600-0501.2007.01311.x
10.1111/j.1600-0501.2010.01918.x
10.1016/j.actbio.2014.02.002
10.1111/j.1600-0501.2010.01922.x
10.1016/j.mseb.2011.04.008
10.1016/0032-3861(94)90953-9
10.1634/stemcells.20-6-530
10.1016/0142-9612(96)85754-1
10.3390/polym3031377
10.1111/j.1600-0501.2010.02068.x
10.22203/eCM.v011a06
10.1055/s-0039-1697860
10.1007/s10856-012-4773-5
10.1038/71916
10.1016/j.polymer.2005.02.120
ContentType Journal Article
Copyright 2014
Copyright © 2014. Published by Elsevier Ltd.
Copyright_xml – notice: 2014
– notice: Copyright © 2014. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7QF
7SR
7TB
7U5
8BQ
F28
JG9
L7M
DOI 10.1016/j.actbio.2014.09.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Aluminium Industry Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 553
ExternalDocumentID 25234156
10_1016_j_actbio_2014_09_008
S1742706114003912
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SEW
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7QO
8FD
FR3
P64
7QF
7SR
7TB
7U5
8BQ
F28
JG9
L7M
ID FETCH-LOGICAL-c498t-dda876e203a97e1b4a29e30e21b20880502d9bd63018910ef28e3ae8fc0c8ef93
ISICitedReferencesCount 182
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347747900052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-7061
1878-7568
IngestDate Sun Sep 28 06:49:40 EDT 2025
Tue Oct 07 09:23:52 EDT 2025
Thu Sep 25 08:32:42 EDT 2025
Mon Jul 21 06:04:41 EDT 2025
Sat Nov 29 02:34:42 EST 2025
Tue Nov 18 21:03:47 EST 2025
Fri Feb 23 02:35:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PLGA
Magnesium
Bone regeneration
Dental implant
Socket preservation
Language English
License Copyright © 2014. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c498t-dda876e203a97e1b4a29e30e21b20880502d9bd63018910ef28e3ae8fc0c8ef93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8669-3439
PMID 25234156
PQID 1629972217
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1660085852
proquest_miscellaneous_1647005948
proquest_miscellaneous_1629972217
pubmed_primary_25234156
crossref_citationtrail_10_1016_j_actbio_2014_09_008
crossref_primary_10_1016_j_actbio_2014_09_008
elsevier_sciencedirect_doi_10_1016_j_actbio_2014_09_008
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rezwan, QZ, JJ, AR (b0195) 2006; 27
Zubillaga, Von Hagen, Simon, Deasy (b0095) 2003; 74
LeGeros (b0110) 2002; 395
Witte, Hort, Vogt, Cohen, Kainer, Willumeit (b0170) 2009
Battistella, Varoni, Cochis, Palazzo, Rimondini (b0140) 2011; 9
Ten Heggeler, Slot, Van der Weijden (b0035) 2011; 22
Pietrokovski, Massler (b0025) 1967; 17
Knedler, Ham (b0255) 1987; 23
Mikos, Thorsen, Czerwonka, Bao, Langer, Winslow (b0230) 1994; 35
Wong, Yeung, Lam, Tam, Chu, Luk (b0220) 2010; 31
Araujo, Lindhe (b0085) 2011; 22
Athanasiou, Niederauer, Agarwal (b0150) 1996; 17
Shen, Hu, Yang, Bei, Wang (b0155) 2010; 6
Staiger, Pietak, Huadmai, Dias (b0165) 2006
Serino, Rao, Iezzi, Piattelli (b0120) 2008; 19
Shaw (b0240) 2003
Wallace, Froum, Cho, Elian, Monteiro, Kim (b0045) 2005; 25
Hoffmann, Bartee, Beaumont, Kasaj, Deli, Zafiropoulos (b0070) 2008; 79
Kim, Choi, Cho, Chai, Wikesjo, Kim (b0010) 2005; 32
Lekovic, Camargo, Klokkevold, Weinlaender, Kenney, Dimitrijevic (b0075) 1998; 69
Fickl, Zuhr, Wachtel, Bolz, Huerzeler (b0040) 2008; 19
Jung, Kokovic, Jurisic, Yaman, Subramani, Weber (b0135) 2011; 22
Mardas, Chadha, Donos (b0065) 2010; 21
Fischer, Profrock, Hort, Willumeit, Feyerabend (b0235) 2011; 176
Schneider, Weber, Grunder, Andreoni, Burkhardt, Jung (b0130) 2014; 25
Retzepi, Donos (b0080) 2009; 21
Colter, Class, DiGirolamo, Prockop (b0015) 2000; 97
Keles, Sumer, Cetinkaya, Tutkum, Simsek (b0005) 2010; 4
Eppley, Pietrzak, Blanton (b0105) 2005; 16
McKay, Peckham, Badura (b0160) 2007; 31
Lim, Poh, Wang (b0250) 2009; 20
Min, Wikesjo, Park, Chae, Pippig, Bastone (b0125) 2011; 38
Frenken, Bouwman, Bravenboer, Zijderveld, Schulten, Ten Bruggenkate (b0115) 2010; 21
Zhang, Wu, Jing, Ding (b0245) 2005; 46
Feyerabend, Witte, Kammal, Willumeit (b0185) 2006; 12
Yoshizawa, Brown, Barchowsky, Sfeir (b0180) 2014
Araujo, Lindhe (b0030) 2005; 32
McAllister, Haghighat (b0060) 2007; 78
Lasella, Greenwell, Miller, Hill, Drisko, Bohra (b0100) 2003; 74
Ostrowski, Lee, Roy, Ramanathan, Kumta (b0210) 2013; 24
Buser, Dula, Hirt, Schenk (b0050) 1996; 10
Guo, Cao, Lu, Liu, Xu (b0215) 2011; 22
Sekiya, Larson, Smith, OPochampally, Cui, Prockop (b0020) 2002; 20
Proussaefs, Lozada (b0055) 2005; 25
Zhu, Mallery, Schwendeman (b0200) 2000; 18
Wahl, Czernuszka (b0190) 2006; 11
Cifuentes, Frutos, Gonzalez-Carrasco, Munoz, Multigner, Chao (b0225) 2012; 74
Becker, Urist, Becker, Jackson, Parry, Bartold (b0090) 1996; 67
Zhu, Schwendeman (b0205) 2000; 17
Witte, Kaese, Haferkamp, Switzer, Meyer-Lindenberg, Wirth (b0175) 2005; 26
Makadia, Siegel (b0145) 2011; 3
Makadia (10.1016/j.actbio.2014.09.008_b0145) 2011; 3
Lekovic (10.1016/j.actbio.2014.09.008_b0075) 1998; 69
Araujo (10.1016/j.actbio.2014.09.008_b0030) 2005; 32
Knedler (10.1016/j.actbio.2014.09.008_b0255) 1987; 23
Zhang (10.1016/j.actbio.2014.09.008_b0245) 2005; 46
Wong (10.1016/j.actbio.2014.09.008_b0220) 2010; 31
Staiger (10.1016/j.actbio.2014.09.008_b0165) 2006
Sekiya (10.1016/j.actbio.2014.09.008_b0020) 2002; 20
LeGeros (10.1016/j.actbio.2014.09.008_b0110) 2002; 395
Cifuentes (10.1016/j.actbio.2014.09.008_b0225) 2012; 74
McKay (10.1016/j.actbio.2014.09.008_b0160) 2007; 31
Hoffmann (10.1016/j.actbio.2014.09.008_b0070) 2008; 79
Becker (10.1016/j.actbio.2014.09.008_b0090) 1996; 67
Frenken (10.1016/j.actbio.2014.09.008_b0115) 2010; 21
Shaw (10.1016/j.actbio.2014.09.008_b0240) 2003
Witte (10.1016/j.actbio.2014.09.008_b0170) 2009
Fickl (10.1016/j.actbio.2014.09.008_b0040) 2008; 19
Witte (10.1016/j.actbio.2014.09.008_b0175) 2005; 26
Proussaefs (10.1016/j.actbio.2014.09.008_b0055) 2005; 25
Schneider (10.1016/j.actbio.2014.09.008_b0130) 2014; 25
Yoshizawa (10.1016/j.actbio.2014.09.008_b0180) 2014
Retzepi (10.1016/j.actbio.2014.09.008_b0080) 2009; 21
Jung (10.1016/j.actbio.2014.09.008_b0135) 2011; 22
Fischer (10.1016/j.actbio.2014.09.008_b0235) 2011; 176
Shen (10.1016/j.actbio.2014.09.008_b0155) 2010; 6
Feyerabend (10.1016/j.actbio.2014.09.008_b0185) 2006; 12
Araujo (10.1016/j.actbio.2014.09.008_b0085) 2011; 22
Wahl (10.1016/j.actbio.2014.09.008_b0190) 2006; 11
Rezwan (10.1016/j.actbio.2014.09.008_b0195) 2006; 27
Min (10.1016/j.actbio.2014.09.008_b0125) 2011; 38
Serino (10.1016/j.actbio.2014.09.008_b0120) 2008; 19
Lim (10.1016/j.actbio.2014.09.008_b0250) 2009; 20
Ten Heggeler (10.1016/j.actbio.2014.09.008_b0035) 2011; 22
Zhu (10.1016/j.actbio.2014.09.008_b0200) 2000; 18
Wallace (10.1016/j.actbio.2014.09.008_b0045) 2005; 25
Eppley (10.1016/j.actbio.2014.09.008_b0105) 2005; 16
Pietrokovski (10.1016/j.actbio.2014.09.008_b0025) 1967; 17
Keles (10.1016/j.actbio.2014.09.008_b0005) 2010; 4
Kim (10.1016/j.actbio.2014.09.008_b0010) 2005; 32
Zhu (10.1016/j.actbio.2014.09.008_b0205) 2000; 17
Guo (10.1016/j.actbio.2014.09.008_b0215) 2011; 22
Mardas (10.1016/j.actbio.2014.09.008_b0065) 2010; 21
Mikos (10.1016/j.actbio.2014.09.008_b0230) 1994; 35
McAllister (10.1016/j.actbio.2014.09.008_b0060) 2007; 78
Battistella (10.1016/j.actbio.2014.09.008_b0140) 2011; 9
Lasella (10.1016/j.actbio.2014.09.008_b0100) 2003; 74
Buser (10.1016/j.actbio.2014.09.008_b0050) 1996; 10
Ostrowski (10.1016/j.actbio.2014.09.008_b0210) 2013; 24
Athanasiou (10.1016/j.actbio.2014.09.008_b0150) 1996; 17
Colter (10.1016/j.actbio.2014.09.008_b0015) 2000; 97
Zubillaga (10.1016/j.actbio.2014.09.008_b0095) 2003; 74
References_xml – volume: 22
  start-page: 9
  year: 2011
  end-page: 13
  ident: b0085
  article-title: Socket grafting with the use of autologous bone: an experimental study in the dog
  publication-title: Clin Oral Implant Res
– volume: 17
  start-page: 21
  year: 1967
  end-page: 27
  ident: b0025
  article-title: Alveolar ridge resorption following tooth extraction
  publication-title: J Prosthet Dent
– volume: 25
  start-page: 551
  year: 2005
  end-page: 559
  ident: b0045
  article-title: Sinus augmentation utilizing anorganic bovine bone (Bio-Oss) with absorbable and nonabsorbable membranes placed over the lateral window: histomorphometric and clinical analyses
  publication-title: Int J Periodontics Restorative Dent
– volume: 19
  start-page: 16
  year: 2008
  end-page: 31
  ident: b0120
  article-title: Polylactide and polyglycolide sponge used in human extraction sockets: bone formation following 3 months after its application
  publication-title: Clin Oral Implant Res
– volume: 31
  start-page: 729
  year: 2007
  end-page: 734
  ident: b0160
  article-title: A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft)
  publication-title: Int Orthop
– volume: 97
  start-page: 3213
  year: 2000
  end-page: 3218
  ident: b0015
  article-title: Rapid expansion of recycling stem cells in culture of plastic adherent cells from human bone marrow
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 351
  year: 2005
  end-page: 363
  ident: b0055
  article-title: The use of intraorally harvested autogenous block grafts for vertical alveolar ridge augmentation: a human study
  publication-title: Int J Periodontics Restorative Dent
– volume: 18
  start-page: 52
  year: 2000
  end-page: 57
  ident: b0200
  article-title: Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide)
  publication-title: Nat Biotechnol
– volume: 19
  start-page: 1111
  year: 2008
  end-page: 1118
  ident: b0040
  article-title: Hard tissue alterations after socket preservation: an experimental study in the beagle dog
  publication-title: Clin Oral Implant Res
– volume: 22
  start-page: 802
  year: 2011
  end-page: 807
  ident: b0135
  article-title: Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs
  publication-title: Clin Oral Implant Res
– volume: 4
  start-page: 403
  year: 2010
  end-page: 411
  ident: b0005
  article-title: Effect of autogenous cortical bone grafting in conjunction with guided tissue regeneration in the treatment of intraosseous periodontal defects
  publication-title: Eur J Dent
– volume: 20
  start-page: 1669
  year: 2009
  end-page: 1675
  ident: b0250
  article-title: Poly (lactic-co-glycolic acid) as a controlled release delivery device
  publication-title: J Mater Sci - Mater Med
– volume: 17
  start-page: 351
  year: 2000
  end-page: 357
  ident: b0205
  article-title: Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: mechanism of stabilization by basic additives
  publication-title: Pharm Res
– volume: 46
  start-page: 4979
  year: 2005
  end-page: 4985
  ident: b0245
  article-title: A comparative study of porous scaffolds with cubic and spherical macropores
  publication-title: Polymer
– volume: 6
  start-page: 455
  year: 2010
  end-page: 465
  ident: b0155
  article-title: An injectable scaffold: rhBMP-2-loaded poly(lactide-co-glycolide)/hydroxyapatite composite microspheres
  publication-title: Acta Biomater
– volume: 395
  start-page: 81
  year: 2002
  end-page: 98
  ident: b0110
  article-title: Properties of osteoconductive biomaterials: calcium phosphates
  publication-title: Clin Orthop Relat Res
– volume: 3
  start-page: 1377
  year: 2011
  end-page: 1397
  ident: b0145
  article-title: Poly Lactic-co-Glycolic Acid (PLGA) as a biodegradable controlled drug delivery carrier
  publication-title: Polymers
– volume: 17
  start-page: 92
  year: 1996
  end-page: 102
  ident: b0150
  article-title: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers
  publication-title: Biomaterials
– year: 2014
  ident: b0180
  article-title: Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation
  publication-title: Acta Biomater
– volume: 22
  start-page: 1735
  year: 2011
  end-page: 1740
  ident: b0215
  article-title: Anticorrosion and cytocompatibility behavior of MAO/PLLA modified magnesium alloy WE42
  publication-title: J Mater Sci - Mater Med
– volume: 24
  start-page: 85
  year: 2013
  end-page: 96
  ident: b0210
  article-title: Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications
  publication-title: J Mater Sci - Mater Med
– volume: 20
  start-page: 530
  year: 2002
  end-page: 541
  ident: b0020
  article-title: Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality
  publication-title: Stem Cells
– volume: 74
  start-page: 239
  year: 2012
  end-page: 242
  ident: b0225
  article-title: Novel PLLA/magnesium composite for orthopedic applications: a proof of concept
  publication-title: Mater Lett
– volume: 38
  start-page: 261
  year: 2011
  end-page: 268
  ident: b0125
  article-title: Wound healing/regeneration using recombinant human growth/differentiation factor-5 in an injectable poly-lactide-co-glycolide-acid composite carrier and a one-wall intra-bony defect model in dogs
  publication-title: J Clin Periodontol
– volume: 31
  start-page: 2084
  year: 2010
  end-page: 2096
  ident: b0220
  article-title: A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants
  publication-title: Biomaterials
– year: 2003
  ident: b0240
  publication-title: Corrosion resistance of magnesium alloys
– volume: 25
  start-page: 150
  year: 2014
  end-page: 158
  ident: b0130
  article-title: A randomized controlled clinical multicenter trial comparing the clinical and histological performance of a new, modified polylactide-co-glycolide acid membrane to an expanded polytetrafluorethylene membrane in guided bone regeneration procedures
  publication-title: Clin Oral Implant Res
– volume: 11
  start-page: 43
  year: 2006
  end-page: 56
  ident: b0190
  article-title: Collagen-hydroxyapatite composites for hard tissue repair
  publication-title: Eur Cells Mater
– start-page: 1728
  year: 2006
  end-page: 1734
  ident: b0165
  article-title: Magnesium and its alloys as orthopedic biomaterials: a review
  publication-title: Biomaterials
– volume: 67
  start-page: 1025
  year: 1996
  end-page: 1033
  ident: b0090
  article-title: Clinical and histological observations of sites implanted with intraoral autologous bone grafts or allografts. 15 human case reports
  publication-title: J Periodontol
– volume: 35
  start-page: 1068
  year: 1994
  end-page: 1077
  ident: b0230
  article-title: Preparation and characterization of poly(l-lactic acid) foams
  publication-title: Polymer
– volume: 176
  start-page: 830
  year: 2011
  end-page: 834
  ident: b0235
  article-title: Improved cytotoxicity testing of magnesium materials
  publication-title: Mater Sci Eng, B
– volume: 26
  start-page: 3557
  year: 2005
  end-page: 3563
  ident: b0175
  article-title: In vivo corrosion of four magnesium alloys and the associated bone response
  publication-title: Biomaterials
– volume: 78
  start-page: 377
  year: 2007
  end-page: 396
  ident: b0060
  article-title: Bone augmentation techniques
  publication-title: J Periodontol
– volume: 21
  start-page: 567
  year: 2009
  end-page: 576
  ident: b0080
  article-title: Guided bone regeneration: biological principle and therapeutic applications
  publication-title: Clin Oral Implant Res
– volume: 21
  start-page: 688
  year: 2010
  end-page: 698
  ident: b0065
  article-title: Alveolar ridge preservation with guided bone regeneration and a synthetic bone substitute or a bovine-derived xenograft: a randomized, controlled clinical trial
  publication-title: Clin Oral Implant Res
– volume: 69
  start-page: 1044
  year: 1998
  end-page: 1049
  ident: b0075
  article-title: Preservation of alveolar bone in extraction sockets using bioabsorbable membranes
  publication-title: J Periodontol
– volume: 32
  start-page: 212
  year: 2005
  end-page: 218
  ident: b0030
  article-title: Dimensional ridge alterations following tooth extraction. An experimental study in the dog
  publication-title: J Clin Periodontol
– volume: 74
  start-page: 965
  year: 2003
  end-page: 975
  ident: b0095
  article-title: Changes in alveolar bone height and width following post-extraction ridge augmentation using a fixed bioabsorbable membrane and demineralized freeze-dried bone osteoinductive graft
  publication-title: J Periodontol
– volume: 10
  start-page: 312
  year: 1996
  end-page: 318
  ident: b0050
  article-title: Lateral ridge augmentation using autografts and barrier membranes: a clinical study with 40 partially edentulous patients
  publication-title: J Oral Maxillofac Surg
– volume: 9
  start-page: 223
  year: 2011
  end-page: 231
  ident: b0140
  article-title: Degradable polymers may improve dental practice
  publication-title: J Appl Biomater Biomech
– volume: 22
  start-page: 779
  year: 2011
  end-page: 788
  ident: b0035
  article-title: Effect of socket preservation therapies following tooth extraction in non-molar regions in humans: a systematic review
  publication-title: Clin Oral Implant Res
– volume: 27
  start-page: 3413
  year: 2006
  end-page: 3431
  ident: b0195
  article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
– volume: 74
  start-page: 990
  year: 2003
  end-page: 999
  ident: b0100
  article-title: Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans
  publication-title: J Periodontol
– volume: 12
  start-page: 3545
  year: 2006
  end-page: 3556
  ident: b0185
  article-title: Unphysiologically High Magnesium Concentrations Support Chondrocyte Proliferation and Redifferentiation
  publication-title: Tissue Eng
– volume: 23
  start-page: 481
  year: 1987
  end-page: 491
  ident: b0255
  article-title: Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum
  publication-title: Vitro Cell Dev Biol
– volume: 79
  start-page: 1355
  year: 2008
  end-page: 1369
  ident: b0070
  article-title: Alveolar bone preservation in extraction sockets using non-resorbable dPTFE membranes: a retrospective non-randomized study
  publication-title: J Periodontol
– volume: 16
  start-page: 981
  year: 2005
  end-page: 989
  ident: b0105
  article-title: Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon
  publication-title: J Craniofac Surg
– year: 2009
  ident: b0170
  article-title: Degradable biomaterials based on magnesium corrosion
  publication-title: Curr Opin Solid State Mater Sci
– volume: 21
  start-page: 201
  year: 2010
  end-page: 208
  ident: b0115
  article-title: The use of Straumann Bone Cermaic in a maxillary sinus floor elevation procedure: a clinical, radiological, histological and histomorphometric evaluation with a 6-month healing period
  publication-title: Clin Oral Implant Res
– volume: 32
  start-page: 583
  year: 2005
  end-page: 589
  ident: b0010
  article-title: Periodontal healing in one-wall intra-bony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial
  publication-title: J Clin Periodontol
– volume: 79
  start-page: 1355
  issue: 8
  year: 2008
  ident: 10.1016/j.actbio.2014.09.008_b0070
  article-title: Alveolar bone preservation in extraction sockets using non-resorbable dPTFE membranes: a retrospective non-randomized study
  publication-title: J Periodontol
  doi: 10.1902/jop.2008.070502
– volume: 6
  start-page: 455
  issue: 2
  year: 2010
  ident: 10.1016/j.actbio.2014.09.008_b0155
  article-title: An injectable scaffold: rhBMP-2-loaded poly(lactide-co-glycolide)/hydroxyapatite composite microspheres
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2009.07.016
– volume: 27
  start-page: 3413
  issue: 18
  year: 2006
  ident: 10.1016/j.actbio.2014.09.008_b0195
  article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.039
– volume: 23
  start-page: 481
  issue: 7
  year: 1987
  ident: 10.1016/j.actbio.2014.09.008_b0255
  article-title: Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum
  publication-title: Vitro Cell Dev Biol
  doi: 10.1007/BF02628418
– volume: 74
  start-page: 239
  issue: 1
  year: 2012
  ident: 10.1016/j.actbio.2014.09.008_b0225
  article-title: Novel PLLA/magnesium composite for orthopedic applications: a proof of concept
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2012.01.134
– volume: 22
  start-page: 779
  year: 2011
  ident: 10.1016/j.actbio.2014.09.008_b0035
  article-title: Effect of socket preservation therapies following tooth extraction in non-molar regions in humans: a systematic review
  publication-title: Clin Oral Implant Res
  doi: 10.1111/j.1600-0501.2010.02064.x
– volume: 25
  start-page: 551
  issue: 6
  year: 2005
  ident: 10.1016/j.actbio.2014.09.008_b0045
  article-title: Sinus augmentation utilizing anorganic bovine bone (Bio-Oss) with absorbable and nonabsorbable membranes placed over the lateral window: histomorphometric and clinical analyses
  publication-title: Int J Periodontics Restorative Dent
– volume: 21
  start-page: 201
  issue: 2
  year: 2010
  ident: 10.1016/j.actbio.2014.09.008_b0115
  article-title: The use of Straumann Bone Cermaic in a maxillary sinus floor elevation procedure: a clinical, radiological, histological and histomorphometric evaluation with a 6-month healing period
  publication-title: Clin Oral Implant Res
  doi: 10.1111/j.1600-0501.2009.01821.x
– volume: 20
  start-page: 1669
  issue: 8
  year: 2009
  ident: 10.1016/j.actbio.2014.09.008_b0250
  article-title: Poly (lactic-co-glycolic acid) as a controlled release delivery device
  publication-title: J Mater Sci - Mater Med
  doi: 10.1007/s10856-009-3727-z
– volume: 78
  start-page: 377
  issue: 3
  year: 2007
  ident: 10.1016/j.actbio.2014.09.008_b0060
  article-title: Bone augmentation techniques
  publication-title: J Periodontol
  doi: 10.1902/jop.2007.060048
– volume: 74
  start-page: 965
  year: 2003
  ident: 10.1016/j.actbio.2014.09.008_b0095
  article-title: Changes in alveolar bone height and width following post-extraction ridge augmentation using a fixed bioabsorbable membrane and demineralized freeze-dried bone osteoinductive graft
  publication-title: J Periodontol
  doi: 10.1902/jop.2003.74.7.965
– volume: 74
  start-page: 990
  issue: 7
  year: 2003
  ident: 10.1016/j.actbio.2014.09.008_b0100
  article-title: Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans
  publication-title: J Periodontol
  doi: 10.1902/jop.2003.74.7.990
– start-page: 1728
  year: 2006
  ident: 10.1016/j.actbio.2014.09.008_b0165
  article-title: Magnesium and its alloys as orthopedic biomaterials: a review
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.003
– volume: 67
  start-page: 1025
  issue: 10
  year: 1996
  ident: 10.1016/j.actbio.2014.09.008_b0090
  article-title: Clinical and histological observations of sites implanted with intraoral autologous bone grafts or allografts. 15 human case reports
  publication-title: J Periodontol
  doi: 10.1902/jop.1996.67.10.1025
– year: 2009
  ident: 10.1016/j.actbio.2014.09.008_b0170
  article-title: Degradable biomaterials based on magnesium corrosion
  publication-title: Curr Opin Solid State Mater Sci
– volume: 22
  start-page: 1735
  issue: 7
  year: 2011
  ident: 10.1016/j.actbio.2014.09.008_b0215
  article-title: Anticorrosion and cytocompatibility behavior of MAO/PLLA modified magnesium alloy WE42
  publication-title: J Mater Sci - Mater Med
  doi: 10.1007/s10856-011-4354-z
– volume: 32
  start-page: 212
  issue: 2
  year: 2005
  ident: 10.1016/j.actbio.2014.09.008_b0030
  article-title: Dimensional ridge alterations following tooth extraction. An experimental study in the dog
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.2005.00642.x
– volume: 22
  start-page: 9
  issue: 1
  year: 2011
  ident: 10.1016/j.actbio.2014.09.008_b0085
  article-title: Socket grafting with the use of autologous bone: an experimental study in the dog
  publication-title: Clin Oral Implant Res
  doi: 10.1111/j.1600-0501.2010.01937.x
– volume: 12
  start-page: 3545
  issue: 12
  year: 2006
  ident: 10.1016/j.actbio.2014.09.008_b0185
  article-title: Unphysiologically High Magnesium Concentrations Support Chondrocyte Proliferation and Redifferentiation
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.12.3545
– volume: 17
  start-page: 351
  issue: 3
  year: 2000
  ident: 10.1016/j.actbio.2014.09.008_b0205
  article-title: Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: mechanism of stabilization by basic additives
  publication-title: Pharm Res
  doi: 10.1023/A:1007513425337
– volume: 26
  start-page: 3557
  issue: 17
  year: 2005
  ident: 10.1016/j.actbio.2014.09.008_b0175
  article-title: In vivo corrosion of four magnesium alloys and the associated bone response
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.049
– volume: 31
  start-page: 729
  year: 2007
  ident: 10.1016/j.actbio.2014.09.008_b0160
  article-title: A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft)
  publication-title: Int Orthop
  doi: 10.1007/s00264-007-0418-6
– volume: 97
  start-page: 3213
  year: 2000
  ident: 10.1016/j.actbio.2014.09.008_b0015
  article-title: Rapid expansion of recycling stem cells in culture of plastic adherent cells from human bone marrow
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.7.3213
– volume: 17
  start-page: 21
  year: 1967
  ident: 10.1016/j.actbio.2014.09.008_b0025
  article-title: Alveolar ridge resorption following tooth extraction
  publication-title: J Prosthet Dent
  doi: 10.1016/0022-3913(67)90046-7
– volume: 38
  start-page: 261
  issue: 3
  year: 2011
  ident: 10.1016/j.actbio.2014.09.008_b0125
  article-title: Wound healing/regeneration using recombinant human growth/differentiation factor-5 in an injectable poly-lactide-co-glycolide-acid composite carrier and a one-wall intra-bony defect model in dogs
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.2010.01691.x
– year: 2003
  ident: 10.1016/j.actbio.2014.09.008_b0240
– volume: 16
  start-page: 981
  issue: 6
  year: 2005
  ident: 10.1016/j.actbio.2014.09.008_b0105
  article-title: Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon
  publication-title: J Craniofac Surg
  doi: 10.1097/01.scs.0000179662.38172.dd
– volume: 25
  start-page: 150
  issue: 2
  year: 2014
  ident: 10.1016/j.actbio.2014.09.008_b0130
  article-title: A randomized controlled clinical multicenter trial comparing the clinical and histological performance of a new, modified polylactide-co-glycolide acid membrane to an expanded polytetrafluorethylene membrane in guided bone regeneration procedures
  publication-title: Clin Oral Implant Res
  doi: 10.1111/clr.12132
– volume: 19
  start-page: 1111
  year: 2008
  ident: 10.1016/j.actbio.2014.09.008_b0040
  article-title: Hard tissue alterations after socket preservation: an experimental study in the beagle dog
  publication-title: Clin Oral Implant Res
  doi: 10.1111/j.1600-0501.2008.01575.x
– volume: 32
  start-page: 583
  issue: 6
  year: 2005
  ident: 10.1016/j.actbio.2014.09.008_b0010
  article-title: Periodontal healing in one-wall intra-bony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.2005.00729.x
– volume: 395
  start-page: 81
  year: 2002
  ident: 10.1016/j.actbio.2014.09.008_b0110
  article-title: Properties of osteoconductive biomaterials: calcium phosphates
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-200202000-00009
– volume: 9
  start-page: 223
  issue: 3
  year: 2011
  ident: 10.1016/j.actbio.2014.09.008_b0140
  article-title: Degradable polymers may improve dental practice
  publication-title: J Appl Biomater Biomech
– volume: 31
  start-page: 2084
  issue: 8
  year: 2010
  ident: 10.1016/j.actbio.2014.09.008_b0220
  article-title: A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.111
– volume: 69
  start-page: 1044
  issue: 9
  year: 1998
  ident: 10.1016/j.actbio.2014.09.008_b0075
  article-title: Preservation of alveolar bone in extraction sockets using bioabsorbable membranes
  publication-title: J Periodontol
  doi: 10.1902/jop.1998.69.9.1044
– volume: 19
  start-page: 16
  issue: 1
  year: 2008
  ident: 10.1016/j.actbio.2014.09.008_b0120
  article-title: Polylactide and polyglycolide sponge used in human extraction sockets: bone formation following 3 months after its application
  publication-title: Clin Oral Implant Res
  doi: 10.1111/j.1600-0501.2007.01311.x
– volume: 21
  start-page: 688
  issue: 7
  year: 2010
  ident: 10.1016/j.actbio.2014.09.008_b0065
  article-title: Alveolar ridge preservation with guided bone regeneration and a synthetic bone substitute or a bovine-derived xenograft: a randomized, controlled clinical trial
  publication-title: Clin Oral Implant Res
  doi: 10.1111/j.1600-0501.2010.01918.x
– year: 2014
  ident: 10.1016/j.actbio.2014.09.008_b0180
  article-title: Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2014.02.002
– volume: 10
  start-page: 312
  year: 1996
  ident: 10.1016/j.actbio.2014.09.008_b0050
  article-title: Lateral ridge augmentation using autografts and barrier membranes: a clinical study with 40 partially edentulous patients
  publication-title: J Oral Maxillofac Surg
– volume: 21
  start-page: 567
  year: 2009
  ident: 10.1016/j.actbio.2014.09.008_b0080
  article-title: Guided bone regeneration: biological principle and therapeutic applications
  publication-title: Clin Oral Implant Res
  doi: 10.1111/j.1600-0501.2010.01922.x
– volume: 176
  start-page: 830
  issue: 11
  year: 2011
  ident: 10.1016/j.actbio.2014.09.008_b0235
  article-title: Improved cytotoxicity testing of magnesium materials
  publication-title: Mater Sci Eng, B
  doi: 10.1016/j.mseb.2011.04.008
– volume: 35
  start-page: 1068
  issue: 5
  year: 1994
  ident: 10.1016/j.actbio.2014.09.008_b0230
  article-title: Preparation and characterization of poly(l-lactic acid) foams
  publication-title: Polymer
  doi: 10.1016/0032-3861(94)90953-9
– volume: 20
  start-page: 530
  year: 2002
  ident: 10.1016/j.actbio.2014.09.008_b0020
  article-title: Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality
  publication-title: Stem Cells
  doi: 10.1634/stemcells.20-6-530
– volume: 17
  start-page: 92
  issue: 2
  year: 1996
  ident: 10.1016/j.actbio.2014.09.008_b0150
  article-title: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)85754-1
– volume: 3
  start-page: 1377
  issue: 3
  year: 2011
  ident: 10.1016/j.actbio.2014.09.008_b0145
  article-title: Poly Lactic-co-Glycolic Acid (PLGA) as a biodegradable controlled drug delivery carrier
  publication-title: Polymers
  doi: 10.3390/polym3031377
– volume: 22
  start-page: 802
  issue: 8
  year: 2011
  ident: 10.1016/j.actbio.2014.09.008_b0135
  article-title: Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs
  publication-title: Clin Oral Implant Res
  doi: 10.1111/j.1600-0501.2010.02068.x
– volume: 11
  start-page: 43
  year: 2006
  ident: 10.1016/j.actbio.2014.09.008_b0190
  article-title: Collagen-hydroxyapatite composites for hard tissue repair
  publication-title: Eur Cells Mater
  doi: 10.22203/eCM.v011a06
– volume: 4
  start-page: 403
  issue: 4
  year: 2010
  ident: 10.1016/j.actbio.2014.09.008_b0005
  article-title: Effect of autogenous cortical bone grafting in conjunction with guided tissue regeneration in the treatment of intraosseous periodontal defects
  publication-title: Eur J Dent
  doi: 10.1055/s-0039-1697860
– volume: 24
  start-page: 85
  issue: 1
  year: 2013
  ident: 10.1016/j.actbio.2014.09.008_b0210
  article-title: Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications
  publication-title: J Mater Sci - Mater Med
  doi: 10.1007/s10856-012-4773-5
– volume: 18
  start-page: 52
  year: 2000
  ident: 10.1016/j.actbio.2014.09.008_b0200
  article-title: Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide)
  publication-title: Nat Biotechnol
  doi: 10.1038/71916
– volume: 46
  start-page: 4979
  issue: 13
  year: 2005
  ident: 10.1016/j.actbio.2014.09.008_b0245
  article-title: A comparative study of porous scaffolds with cubic and spherical macropores
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.02.120
– volume: 25
  start-page: 351
  year: 2005
  ident: 10.1016/j.actbio.2014.09.008_b0055
  article-title: The use of intraorally harvested autogenous block grafts for vertical alveolar ridge augmentation: a human study
  publication-title: Int J Periodontics Restorative Dent
SSID ssj0038128
Score 2.532645
Snippet [Display omitted] Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement....
Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 543
SubjectTerms Animals
Bone regeneration
Bone Regeneration - physiology
Bones
Degradation
Dental implant
Dental materials
Devices
Dogs
Equipment Design
Equipment Failure Analysis
Female
Guided Tissue Regeneration, Periodontal - instrumentation
Guided Tissue Regeneration, Periodontal - methods
Lactic Acid - chemistry
Magnesium
Magnesium - chemistry
PLGA
Polyglycolic Acid - chemistry
Porosity
Scaffolds
Socket preservation
Sockets
Surgical implants
Tissue Scaffolds
Tooth Extraction - methods
Title Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction
URI https://dx.doi.org/10.1016/j.actbio.2014.09.008
https://www.ncbi.nlm.nih.gov/pubmed/25234156
https://www.proquest.com/docview/1629972217
https://www.proquest.com/docview/1647005948
https://www.proquest.com/docview/1660085852
Volume 11
WOSCitedRecordID wos000347747900052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038128
  issn: 1742-7061
  databaseCode: AIEXJ
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4f2UHSvuwQs0JshVKIWkkejSLogCIwmLXwjKIpKHShSICvLH_S3OxQlWqgRpzn0IhgCJYia59n0ZgahD6DzSQrxv5doM8IsiognWU69hKqYagkuQTsl4ucBPTxkiwWfj0a_-1qYy4KWJbu-5uf_VdRwDoRtSmfvIG53UzgBv0HocASxw_GfBD-vakNrPZMnoMWWZozx_vzg86wljxuGlp6ulMzzqshWtt93-cuyANKqNDNUTtpG1B0FsSiqq7agqgKJTkGR17YQYujTzlQjp6aMXzbt_pabMf6ANmmS1NImbI_k2Zob_F3aWgkQs64dF-co18t6QAsYJimCeJCksHoVInCP-rbvulO8wUBzxrZbU2eEY9tBeEO_21TDKWCtgX0ZZp5tU-uztT3rv-H_ZeYc-bDntZ0Kexdh7iJ8Ltqi8R1CY87GaGf2dW_xrTfq4Ne0Y3rdPvoqzJYquPk0N3k5N0UxrTdz_Bg96sIQPLPweYJGunyKHg6aUz5DygIJOyB9NDDCDkbYwQgDjHAPI2xghIcwwg5GuIURXsPoOfqxv3f86YvXjeTwVMRZ42WZBPOpiR9KTnWQRpJwHfqaBCkBe-XHPsl4miVgNhg4ojonTIdSs1z5iumchy_QuITHeIVwyvNcySxKQwKGQ4EDQHIVZjwGpzmlKZugsH-FQnX96s3YlEJsE-AEee6qc9uv5Zb1tJeO6HxO60sKgNwtV77vhSlAJZvvbLLUIBcRJMSUo0Owv21NRG2vpG1rEhMRsZhM0EuLFrcnEpPQ5F5e33G_b9CD9f_zLRo39YV-h-6ry2a5qnfRPbpgux32_wCmkNTH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+magnesium%2FPLGA+composite+scaffolds+for+enhanced+bone+regeneration+following+tooth+extraction&rft.jtitle=Acta+biomaterialia&rft.au=Brown%2C+Andrew&rft.au=Zaky%2C+Samer&rft.au=Ray%2C+Herbert&rft.au=Sfeir%2C+Charles&rft.date=2015-01-01&rft.issn=1742-7061&rft.volume=11&rft.spage=543&rft.epage=553&rft_id=info:doi/10.1016%2Fj.actbio.2014.09.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actbio_2014_09_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon