A Survey of Data-Intensive Scientific Workflow Management
Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution...
Uložené v:
| Vydané v: | Journal of grid computing Ročník 13; číslo 4; s. 457 - 493 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.12.2015
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 1570-7873, 1572-9184 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A
data-intensive scientific workflow
is useful for modeling such process. Since the sequential execution of data-intensive scientific workflows may take much time,
Scientific Workflow Management Systems
(
SWfMSs
) should enable the parallel execution of data-intensive scientific workflows and exploit the resources distributed in different infrastructures such as grid and cloud. This paper provides a survey of data-intensive scientific workflow management in SWfMSs and their parallelization techniques. Based on a SWfMS functional architecture, we give a comparative analysis of the existing solutions. Finally, we identify research issues for improving the execution of data-intensive scientific workflows in a multisite cloud. |
|---|---|
| AbstractList | Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution of data-intensive scientific workflows may take much time, Scientific Workflow Management Systems (SWfMSs) should enable the parallel execution of data-intensive scientific workflows and exploit the resources distributed in different infrastructures such as grid and cloud. This paper provides a survey of data-intensive scientific workflow management in SWfMSs and their parallelization techniques. Based on a SWfMS functional architecture, we give a comparative analysis of the existing solutions. Finally, we identify research issues for improving the execution of data-intensive scientific workflows in a multisite cloud. Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution of data-intensive scientific workflows may take much time, Scientific Workflow Management Systems ( SWfMSs ) should enable the parallel execution of data-intensive scientific workflows and exploit the resources distributed in different infrastructures such as grid and cloud. This paper provides a survey of data-intensive scientific workflow management in SWfMSs and their parallelization techniques. Based on a SWfMS functional architecture, we give a comparative analysis of the existing solutions. Finally, we identify research issues for improving the execution of data-intensive scientific workflows in a multisite cloud. |
| Author | Liu, Ji Mattoso, Marta Pacitti, Esther Valduriez, Patrick |
| Author_xml | – sequence: 1 givenname: Ji surname: Liu fullname: Liu, Ji email: jiliuwork@gmail.com organization: MSR-Inria Joint Centre, Inria and LIRMM and University of Montpellier – sequence: 2 givenname: Esther surname: Pacitti fullname: Pacitti, Esther organization: Inria and LIRMM, University of Montpellier – sequence: 3 givenname: Patrick surname: Valduriez fullname: Valduriez, Patrick organization: MSR-Inria Joint Centre, Inria and LIRMM and University of Montpellier – sequence: 4 givenname: Marta surname: Mattoso fullname: Mattoso, Marta organization: COPPE/Federal University of Rio de Janeiro |
| BackLink | https://hal-lirmm.ccsd.cnrs.fr/lirmm-01144760$$DView record in HAL |
| BookMark | eNp9kF1LHDEUhkNRqB_9Ab0b6E1BYs_JzOTjclFbF1a8UPEyZDKZbXQmscnsFv99Z51SQahXCeF5znnzHpK9EIMj5DPCKQKIbxlBsJIC1lSVTFH5gRxgLRhVKKu9lztQIUX5kRzm_ADAagnsgKhFcbNJW_dcxK44N6OhyzC6kP3WFTfWuzD6ztviPqbHro-_iysTzNoN0_sx2e9Mn92nv-cRuft-cXt2SVfXP5ZnixW1lZIjtVjxWjaiq8C0suFSNRVXwpXWmrIB1doS0HBna245gGxKoxBabHnVMsuxPCIn89yfptdPyQ8mPetovL5crHTv0zBoQKwqwWG7o7_O9FOKvzYuj3rw2bq-N8HFTdYokQMXsmYT-uUN-hA3KUx_0YzVSgiUSk0UzpRNMefkun8ZEPSuej1XP4Wo9a56LSdHvHGsH83oYxiT8f27JpvNPG0Ja5deM_1f-gNeEJc_ |
| CitedBy_id | crossref_primary_10_1007_s42979_022_01625_9 crossref_primary_10_1002_dac_4649 crossref_primary_10_1016_j_future_2023_05_015 crossref_primary_10_1016_j_jocs_2022_101840 crossref_primary_10_1016_j_imu_2022_101024 crossref_primary_10_1587_transinf_2016EDP7346 crossref_primary_10_1007_s10723_016_9379_6 crossref_primary_10_1177_1094342019852127 crossref_primary_10_1016_j_future_2021_03_012 crossref_primary_10_1109_TII_2019_2959258 crossref_primary_10_1016_j_future_2017_02_026 crossref_primary_10_1002_cpe_7697 crossref_primary_10_1186_s13326_021_00253_1 crossref_primary_10_7717_peerj_11140 crossref_primary_10_1016_j_jss_2020_110665 crossref_primary_10_1109_TSC_2022_3180067 crossref_primary_10_1007_s10723_024_09771_5 crossref_primary_10_1007_s13222_021_00397_5 crossref_primary_10_1109_MS_2020_2995125 crossref_primary_10_1109_TSC_2019_2963382 crossref_primary_10_1109_TETC_2020_3019202 crossref_primary_10_1109_ACCESS_2024_3509218 crossref_primary_10_1145_3534520 crossref_primary_10_3233_SW_200374 crossref_primary_10_1016_j_jnca_2018_11_007 crossref_primary_10_1109_TPDS_2018_2879603 crossref_primary_10_1109_TSC_2023_3315478 crossref_primary_10_3390_s21217238 crossref_primary_10_1007_s41060_018_0107_0 crossref_primary_10_1007_s10723_016_9390_y crossref_primary_10_1145_3332301 crossref_primary_10_1177_10943420241288242 crossref_primary_10_1145_3503510 crossref_primary_10_1002_widm_1394 crossref_primary_10_7717_peerj_cs_921 crossref_primary_10_1007_s10723_016_9378_7 crossref_primary_10_7717_peerj_cs_527 crossref_primary_10_1007_s10115_022_01664_x crossref_primary_10_3389_fnins_2018_00236 crossref_primary_10_1109_ACCESS_2021_3116716 crossref_primary_10_1109_ACCESS_2023_3272619 crossref_primary_10_1007_s10586_021_03457_3 crossref_primary_10_1016_j_simpat_2024_103034 crossref_primary_10_1016_j_future_2017_02_042 crossref_primary_10_1007_s10723_020_09533_z crossref_primary_10_1109_TII_2017_2779177 crossref_primary_10_1109_TPDS_2021_3059480 crossref_primary_10_1007_s10664_022_10229_z crossref_primary_10_1016_j_compag_2019_01_044 crossref_primary_10_1002_cpe_5972 crossref_primary_10_1016_j_cpc_2021_107844 crossref_primary_10_1007_s10723_018_09471_x crossref_primary_10_1016_j_swevo_2024_101600 crossref_primary_10_1111_brv_12359 crossref_primary_10_1016_j_simpat_2020_102217 crossref_primary_10_1007_s10115_024_02285_2 crossref_primary_10_1007_s11227_019_02764_2 crossref_primary_10_1007_s10270_023_01112_6 crossref_primary_10_1007_s12652_021_03482_5 crossref_primary_10_1109_ACCESS_2022_3193151 crossref_primary_10_1142_S2196888820500104 crossref_primary_10_1002_widm_1206 crossref_primary_10_1145_3331151 crossref_primary_10_1016_j_future_2017_01_020 crossref_primary_10_1007_s12145_016_0280_4 crossref_primary_10_1016_j_future_2023_10_008 crossref_primary_10_1016_j_future_2022_12_014 crossref_primary_10_1007_s10723_022_09625_y crossref_primary_10_1007_s10723_023_09666_x crossref_primary_10_1016_j_future_2025_107974 crossref_primary_10_1007_s10922_021_09599_4 crossref_primary_10_1002_mgea_11 crossref_primary_10_1145_3186266 crossref_primary_10_1016_j_eswa_2019_112998 crossref_primary_10_1145_3311955 crossref_primary_10_1007_s00607_021_00936_8 crossref_primary_10_1038_s41598_021_99288_8 crossref_primary_10_1016_j_future_2023_04_031 crossref_primary_10_1016_j_future_2025_107924 crossref_primary_10_1109_ACCESS_2021_3067815 crossref_primary_10_1016_j_future_2024_07_005 crossref_primary_10_1002_cpe_6193 crossref_primary_10_1002_ece3_5300 crossref_primary_10_1109_TKDE_2018_2867857 crossref_primary_10_1016_j_cosrev_2021_100422 crossref_primary_10_1016_j_future_2017_05_017 crossref_primary_10_3390_philosophies8050075 crossref_primary_10_1108_IJCS_03_2019_0012 crossref_primary_10_1007_s11227_020_03612_4 crossref_primary_10_1007_s10723_020_09511_5 crossref_primary_10_1111_coin_12197 crossref_primary_10_1016_j_future_2018_04_014 crossref_primary_10_1007_s10586_020_03205_z crossref_primary_10_3390_fi13050121 crossref_primary_10_1016_j_future_2018_04_009 crossref_primary_10_7717_peerj_3509 crossref_primary_10_1007_s13218_024_00865_6 crossref_primary_10_1016_j_procs_2020_03_350 crossref_primary_10_1145_3394976 crossref_primary_10_1016_j_future_2025_108047 crossref_primary_10_1017_S0956796817000119 crossref_primary_10_1109_ACCESS_2019_2900738 crossref_primary_10_1016_j_cosrev_2024_100655 crossref_primary_10_1109_TBDATA_2023_3256043 crossref_primary_10_1007_s10664_025_10705_2 crossref_primary_10_1016_j_simpat_2017_03_001 crossref_primary_10_33317_ssurj_561 crossref_primary_10_1007_s10723_017_9420_4 crossref_primary_10_1016_j_future_2019_06_016 crossref_primary_10_1109_ACCESS_2021_3070785 |
| Cites_doi | 10.1109/CloudCom.2011.13 10.1109/ICDE.2000.839442 10.1007/978-1-84628-757-2_27 10.1002/cpe.3032 10.1007/978-3-319-11268-8_13 10.1186/1471-2105-15-S1-S12 10.1109/SC.Companion.2012.29 10.1109/WETICE.2012.51 10.1109/GRID.2009.5353075 10.14806/ej.19.B.727 10.1007/978-1-84628-757-2_20 10.1007/978-1-4419-8834-8 10.1186/1471-2105-13-77 10.1109/SSDM.2004.1311241 10.1007/978-3-319-11268-8_2 10.1109/eScience.2013.40 10.1007/s10723-012-9227-2 10.1016/j.future.2014.10.008 10.1016/j.future.2012.12.019 10.1186/gb-2010-11-8-r86 10.1007/s10723-013-9261-8 10.1109/eScience.2012.6404442 10.1145/1376616.1376726 10.1109/WORKS.2006.5282349 10.1109/CLOUD.2010.64 10.1109/SC.2008.5217932 10.1109/TCC.2014.2303077 10.1109/CCGRID.2007.76 10.1109/UCC.2011.25 10.1007/s10723-013-9266-3 10.1109/SC.1998.10018 10.1007/978-3-642-34222-6_12 10.1002/spe.584 10.1109/SC.Companion.2012.131 10.1016/j.jpdc.2013.12.004 10.1007/s10723-012-9240-5 10.1109/MIC.2011.44 10.1109/CCGrid.2012.134 10.14778/3402755.3402766 10.1145/1272366.1272383 10.1007/978-3-642-31500-8_2 10.1007/978-0-85729-049-6_4 10.1007/s13174-010-0007-6 10.1109/SERVICES.2007.63 10.1002/cpe.1228 10.1007/978-3-642-21878-1_38 10.1109/ICPRIME.2013.6496507 10.1007/978-3-319-11268-8_10 10.1109/IPDPS.2010.5470453 10.1007/978-3-319-11268-8_4 10.1109/CCGRID.2005.1558639 10.1109/SC.Companion.2012.28 10.1007/978-3-319-11268-8_3 10.1186/1471-2105-11-S12-S4 10.1093/bioinformatics/bth361 10.1109/CCGrid.2012.57 10.1002/cpe.1880 10.1145/2457317.2457365 10.1007/978-3-319-11268-8_12 10.1109/SC.2012.38 10.1109/HCW.1999.765094 10.1007/978-3-319-11268-8_19 10.1504/IJBPIM.2010.033176 10.1109/BigData.2013.6691567 10.1016/j.future.2013.09.018 10.1016/j.procs.2012.04.179 10.1007/978-3-642-23291-6_4 10.1016/j.parco.2011.05.005 10.1109/MCSE.2008.79 10.1007/978-3-319-11268-8_11 10.1007/978-3-319-11268-8_7 10.1002/cpe.994 10.1145/2043164.2018448 10.1109/DCS.1988.12507 10.1109/SERVICES.2011.32 10.1109/SC.Companion.2012.228 10.1109/eScience.2012.6404431 10.1007/978-3-319-11268-8_17 10.1109/CCGRID.2007.101 10.1093/nar/gkt328 10.1007/11890850_14 10.1524/itit.2011.0640 10.1016/j.future.2014.02.016 10.1145/1341811.1341822 10.1145/1996130.1996173 10.1145/2443416.2443417 10.1109/HPCC.2011.55 10.1007/978-3-540-68111-3_78 10.1007/978-3-642-22825-4_9 10.1145/2110497.2110501 10.1109/eScience.2011.15 10.1145/1272996.1273005 10.1504/IJCSE.2009.026999 10.1016/j.future.2008.06.012 10.1109/SERVICES-I.2009.60 10.1007/978-1-4614-1614-2 10.1002/cpe.1654 10.1002/1096-9128(200009)12:11<1019::AID-CPE518>3.0.CO;2-G 10.1016/j.future.2014.11.017 10.1145/1645164.1645176 10.1007/978-3-319-11268-8_16 10.1145/2443416.2443421 10.1109/DASC.2011.102 10.1007/978-1-84628-757-2_19 10.1109/CloudCom.2013.48 10.1145/2465848.2465852 10.1109/71.993206 10.1007/s10723-005-9010-8 10.1109/SERVICES-1.2008.79 10.1109/IPDPS.2008.4536445 10.1145/2457317.2457374 10.5220/0003958901270134 10.1109/ICSAI.2012.6223147 10.1007/978-0-85729-439-5_12 10.2200/S00414ED1V01Y201204DTM025 10.1007/978-3-642-31927-3_16 10.1145/2443416.2443418 10.1109/HPDC.2001.945176 10.1007/978-3-319-11268-8_9 10.1109/eScience.2012.6404479 10.1007/978-3-642-13818-8_33 10.1109/IPDPS.2007.370305 10.1109/SC.Companion.2012.26 10.1007/978-3-319-14325-5_10 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2015 Journal of Grid Computing is a copyright of Springer, (2015). All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2015 – notice: Journal of Grid Computing is a copyright of Springer, (2015). All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1007/s10723-015-9329-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1572-9184 |
| EndPage | 493 |
| ExternalDocumentID | oai:HAL:lirmm-01144760v1 10_1007_s10723_015_9329_8 |
| GroupedDBID | -59 -5G -BR -D3 -D4 -D8 -DT -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KZ1 LAK LLZTM LMP M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7SC 8FD JQ2 L7M L~C L~D PUEGO 1XC VOOES |
| ID | FETCH-LOGICAL-c498t-c14658b7f40ad8b689b4697e3cca3b09dc301a6ec56c6008b3a910d1d64d2c613 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368725500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-7873 |
| IngestDate | Tue Oct 14 20:45:23 EDT 2025 Thu Oct 02 05:40:16 EDT 2025 Tue Nov 04 23:04:25 EST 2025 Sat Nov 29 07:52:00 EST 2025 Tue Nov 18 21:19:23 EST 2025 Fri Feb 21 02:36:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Scientific workflow management system Grid Cloud Multisite cloud Scheduling Distributed and parallel data management Scientific workflow Parallelization |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c498t-c14658b7f40ad8b689b4697e3cca3b09dc301a6ec56c6008b3a910d1d64d2c613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4710-5697 0000-0002-0870-3371 0000-0001-6506-7538 0000-0003-1370-9943 |
| OpenAccessLink | https://hal-lirmm.ccsd.cnrs.fr/lirmm-01144760 |
| PQID | 2259771899 |
| PQPubID | 2043852 |
| PageCount | 37 |
| ParticipantIDs | hal_primary_oai_HAL_lirmm_01144760v1 proquest_miscellaneous_1816067852 proquest_journals_2259771899 crossref_primary_10_1007_s10723_015_9329_8 crossref_citationtrail_10_1007_s10723_015_9329_8 springer_journals_10_1007_s10723_015_9329_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-12-01 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | From Grids to Cloud Federations |
| PublicationTitle | Journal of grid computing |
| PublicationTitleAbbrev | J Grid Computing |
| PublicationYear | 2015 |
| Publisher | Springer Netherlands Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer Verlag |
| References | Chen, W., Silva, R.D., Deelman, E., Sakellariou, R.: Balanced task clustering in scientific workflows. In: IEEE 9th Int. Conf. on e-Science, pp. 188–195 (2013) ChowdhuryMZahariaMMaJJordanMIStoicaIManaging data transfers in computer clusters with orchestraACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications20114149810910.1145/2043164.2018448 Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained provisioning for scientific workflow ensembles in iaas clouds. In: Supercomputing (SC) Conf. on High Performance Computing Networking, Storage and Analysis, pp. 1–11 (2012) de OliveiraDOcañaKACSBaiãoFMattosoMA provenance-based adaptive scheduling heuristic for parallel scientific workflows in cloudsJ. Grid Comput.201210352155210.1007/s10723-012-9227-2 GoecksJNekrutenkoATaylorJGalaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciencesGenome Biol.201011811310.1186/gb-2010-11-8-r86 GuYWuCLiuXYuDDistributed throughput optimization for large-scale scientific workflows under fault-tolerance constraintJournal of Grid Computing201311336137910.1007/s10723-013-9266-3 Olabarriaga, S., Benabdelkader, A., Caan, M., Jaghoori, M., Krüger, J., de la Garza, L., Mohr, C., Schubert, B., Danezi, A., Kiss, T.: Ws-pgrade/guse-based science gateways in teaching. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 223–234. Springer International Publishing (2014) Bergmann, R., Gil, Y.: Retrieval of semantic workflows with knowledge intensive similarity measures. In: 19th International Conference on Case-Based Reasoning Research and Development, pp. 17–31 (2011) Holl, S., Zimmermann, O., Hofmann-Apitius, M.: A new optimization phase for scientific workflow management systems. In: 8th IEEE Int. Conf. on E-Science, pp. 1–8 (2012) Tanaka, M., Tatebe, O.: Workflow scheduling to minimize data movement using multi-constraint graph partitioning. In: 12th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid Computing (Ccgrid), pp. 65–72 (2012) Chervenak, A. L., Smith, D. E., Chen, W., Deelman, E.: Integrating policy with scientific workflow management for data-intensive applications. In: Supercomputing (SC) Companion: High Performance Computing, Networking Storage and Analysis, pp. 140–149 (2012) Terstyánszky, G., Michniak, E., Kiss, T., Balaskó, Á.: Sharing science gateway artefacts through repositories. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 123–135. Springer International Publishing (2014) Costa, F., de Oliveira, D., Ocala, K., Ogasawara, E., Dias, J., Mattoso, M.: Handling failures in parallel scientific workflows using clouds. In: Supercomputing (SC) Companion: High Performance Computing, Networking Storage and Analysis, pp. 129–139 (2012) Hernández, F., Fahringer, T.: Towards workflow sharing and reusein the askalon grid environment. In: Proceedings of Cracow Grid Workshops (CGW), pp. 111–119 (2008) Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing (2012) Korf, I., Yandell, M., Bedell, J.A.: BLAST - an essential guide to the basic local alignment search tool. O’Reilly (2003) Gesing, S., Krüger, J., Grunzke, R., de la Garza, L., Herres-Pawlis, S., Hoffmann, A.: Molecular simulation grid (mosgrid): A science gateway tailored to the molecular simulation community. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 151–165. Springer International Publishing (2014) Ostermann, S., Plankensteiner, K., Prodan, R., Fahringer, T.: Groudsim: An event-based simulation framework for computational grids and clouds. In: European Conf. on Parallel Processing (Euro-Par) Workshops, pp. 305–313 (2011) Shahand, S., Jaghoori, M., Benabdelkader, A., Font-Calvo, J., Huguet, J., Caan, M., van Kampen, A., Olabarriaga, S.: Computational neuroscience gateway: A science gateway based on the ws-pgrade/guse. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 139–149. Springer International Publishing (2014) Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Complete Reference, Volume 1: The MPI Core. MIT Press (1998) Gadelha Jr., L.M.R., Wilde, M., Mattoso, M., Foster, I.: Provenance traces of the swift parallel scripting system, pp. 325–326 (2013) Chen, W., Deelman, E.: Integration of workflow partitioning and resource provisioning. In: IEEE/ACM Int. Symposium on Cluster Computing and the Grid (CCGRID), pp. 764–768 (2012) FardHMProdanRFahringerTMulti-objective list scheduling of workflow applications in distributed computing infrastructuresJ. Parallel Distrib. Comput.20147432152216510.1016/j.jpdc.2013.12.0041283.68111 KacsukPP-grade portal family for grid infrastructuresConcurrency and Computation: Practice and Experience201123323524510.1002/cpe.1654 AfganEBakerDCoraorNChapmanBNekrutenkoATaylorJGalaxy cloudman: delivering cloud compute clustersBMC Bioinforma.201011Suppl 12S410.1186/1471-2105-11-S12-S4 Nguyen, D., Thoai, N.: Ebc: Application-level migration on multi-site cloud. In: Int. Conf. on Systems and Informatics (ICSAI), pp. 876–880 (2012) Taylor, I., Shields, M., Wang, I., Harrison, A.: The triana workflow environment: Architecture and applications. In: Workflows for e-Science, pp. 320–339. Springer (2007) Chirigati, F., Silva, V., Ogasawara, E., de Oliveira, D., Dias, J., Porto, F., Valduriez, P., Mattoso, M.: Evaluating parameter sweep workflows in high performance computing. In: 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pp. 2:1–2:10 (2012) BrandicIDustdarSGrid vs cloud - A technology comparison.IT - Inf. Technol.201153417317910.1524/itit.2011.0640 Deelman, E., Juve, G., Berriman, G.B.: Using clouds for science, is it just kicking the can down the road? In: Cloud Computing and Services Science (CLOSER), 2nd Int. Conf. on Cloud Computing and Services Science, pp. 127–134 (2012) OliveiraDDOcañaKACSOgasawaraEDiasJGonçalvesJBaiãoFMattosoMPerformance evaluation of parallel strategies in public clouds: A study with phylogenomic workflowsFutur. Gener. Comput. Syst.20132971816182510.1016/j.future.2012.12.019 White, T.: Hadoop: The Definitive Guide, O’Reilly Media, Inc. (2009) FreireJKoopDSantosESilvaCTProvenance for computational tasks: A surveyComputing in Science and Engineering2008103112110.1109/MCSE.2008.79 Amazon cloud (2015). http://aws.amazon.com Fard, H.M., Fahringer, T., Prodan, R.: Budget-constrained resource provisioning for scientific applications in clouds. In: IEEE 5th Int. Conf. on Cloud Computing Technology and Science (CloudCom), vol. 1, pp. 315–322 (2013) Cohen-BoulakiaSChenJMissierPGobleCAWilliamsARFroidevauxCDistilling structure in taverna scientific workflows: a refactoring approachBMC Bioinformatics201415S-1S1210.1186/1471-2105-15-S1-S12 Samak, T., Gunter, D., Goode, M., Deelman, E., Juve, G., Mehta, G., Silva, F., Vahi, K.: Online fault and anomaly detection for large-scale scientific workflows. In: 13th IEEE Int. Conf. on High Performance Computing and Communications (HPCC), pp. 373–381 (2011) Grid’5000 project (2015). https://www.grid5000.fr/mediawiki/index.php Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate data storage in scientific cloud workflow systems. In: IEEE Int. Symposium on Parallel Distributed Processing (IPDPS), pp. 1–12 (2010) OgasawaraESDiasJSilvaVChirigatiFSde OliveiraDPortoFValduriezPMattosoMChiron: a parallel engine for algebraic scientific workflowsConcurrency and Computation: Practice and Experience201325162327234110.1002/cpe.3032 Juve, G., Deelman, E.: Wrangler: Virtual cluster provisioning for the cloud. In: 20th Int. Symposium on High Performance Distributed Computing, pp. 277–278 (2011) Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning. In: ACM/IEEE Conf. on Supercomputing, pp. 1–13 (1998) Liu, J., Silva, V., Pacitti, E., Valduriez, P., Mattoso, M.: Scientific workflow partitioning in multisite cloud. In: Parallel Processing Workshops - Euro-Par 2014 Int. Workshops, pp. 105–116 (2014) Ocaña, K.A., Oliveira, D., Ogasawara, E., Dávila, A.M., Lima, A.A., Mattoso, M.: Sciphy: A cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In: Advances in Bioinformatics and Computational Biology, vol. 6832, pp. 66–70 (2011) AalstWMPvdWeskeMWirtzGAdvanced topics in workflow management: Issues, requirements, and solutionsTrans. SDPS2003734977 Mattoso, M., Werner, C., Travassos, G., Braganholo, V., Ogasawara, E., Oliveira, D., Cruz, S., Martinho, W., Murta, L.: Towards supporting the life cycle of large scale scientific experiments. In: Int. J. Business Process Integration and Management, vol. 5, pp. 79–82 (2010) LudäscherBAltintasIBerkleyCHigginsDJaegerEJonesMBLeeEATaoJZhaoYScientific workflow management and the kepler systemConcurrency and Computation: Practice and Experience200618101039106510.1002/cpe.994 YuJBuyyaRA taxonomy of workflow management systems for grid computingJ. Grid Comput.2005317120010.1007/s10723-005-9010-8 WildeMHateganMWozniakJMCliffordBKatzDSFosterISwift: A language for distributed parallel scriptingParallel Comput.201137963365210.1016/j.parco.2011.05.005 Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the cloud: The montage example. In: ACM/IEEE Conf. on High Performance Computing, pp. 1–12 (2008) Anglano, C., Canonico, M.: Scheduling algorithms for multiple bag-of-task applications on desktop grids: A knowledge-free approach. In: 22nd IEEE Int. Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–8 (2008) DeelmanEGannonDShieldsMTaylorIWorkflows and e-science: An overview of workflow system features and capabilitiesFutur. Gener. Comput. Syst.200925552854010.1016/j.future.2008.06.012 DeelmanESinghGSuM-HBlytheJGilYKesselmanCMehtaGVahiKBerrimanGBGoodJLaityAJacobJCKatzDSPegasus: A framework for mapping complex scientific workflows onto distributed 9329_CR34 M Chowdhury (9329_CR26) 2011; 41 9329_CR32 9329_CR30 9329_CR31 R Duan (9329_CR46) 2014; 2 ES Ogasawara (9329_CR102) 2013; 25 9329_CR39 9329_CR36 B Ludäscher (9329_CR90) 2006; 18 9329_CR37 HM Fard (9329_CR49) 2014; 74 9329_CR23 J Goecks (9329_CR60) 2010; 11 9329_CR24 9329_CR21 9329_CR22 E Deelman (9329_CR38) 2009; 25 Y Gu (9329_CR65) 2013; 11 E Afgan (9329_CR6) 2010; 11 M Wilde (9329_CR135) 2011; 37 9329_CR29 9329_CR27 9329_CR25 I Brandic (9329_CR18) 2011; 53 9329_CR56 9329_CR119 9329_CR54 H Topcuouglu (9329_CR128) 2002; 13 9329_CR55 9329_CR52 9329_CR115 9329_CR116 9329_CR50 9329_CR117 9329_CR118 9329_CR111 9329_CR112 9329_CR114 Q Zhang (9329_CR143) 2010; 1 9329_CR110 J Yu (9329_CR139) 2005; 3 K Wolstencroft (9329_CR136) 2013; 41 9329_CR58 9329_CR59 9329_CR45 9329_CR108 9329_CR109 9329_CR43 9329_CR44 9329_CR42 9329_CR105 9329_CR40 9329_CR107 9329_CR100 9329_CR103 WMPvd Aalst (9329_CR129) 2003; 7 J Freire (9329_CR53) 2008; 10 JC Jacob (9329_CR74) 2009; 4 D Garijo (9329_CR57) 2014; 36 9329_CR47 E Deelman (9329_CR41) 2005; 13 9329_CR48 9329_CR79 9329_CR76 S Cohen-Boulakia (9329_CR28) 2014; 15 P Kacsuk (9329_CR77) 2011; 23 9329_CR137 9329_CR75 9329_CR138 9329_CR72 9329_CR73 9329_CR70 9329_CR133 9329_CR134 9329_CR130 9329_CR131 9329_CR132 D de Oliveira (9329_CR35) 2012; 24 D de Oliveira (9329_CR33) 2012; 10 9329_CR67 9329_CR68 9329_CR66 9329_CR63 9329_CR64 9329_CR127 9329_CR61 9329_CR62 J Felsenstein (9329_CR51) 1989; 5 9329_CR122 9329_CR123 9329_CR124 9329_CR125 9329_CR120 9329_CR121 P Kacsuk (9329_CR78) 2012; 10 E Huedo (9329_CR71) 2004; 34 9329_CR69 9329_CR12 9329_CR13 9329_CR10 DS Milojicic (9329_CR95) 2011; 15 9329_CR98 9329_CR11 9329_CR99 9329_CR96 ES Ogasawara (9329_CR101) 2011; 4 9329_CR97 9329_CR94 9329_CR92 K Plankensteiner (9329_CR113) 2013; 11 9329_CR93 M Abouelhoda (9329_CR5) 2012; 13 9329_CR91 DD Oliveira (9329_CR106) 2013; 29 B Carpenter (9329_CR20) 2000; 12 G Terstyánszky (9329_CR126) 2014; 37 9329_CR19 9329_CR16 9329_CR17 9329_CR14 9329_CR15 9329_CR89 9329_CR87 9329_CR88 9329_CR3 9329_CR85 9329_CR4 9329_CR86 9329_CR1 9329_CR83 9329_CR2 9329_CR84 9329_CR7 9329_CR144 9329_CR8 9329_CR82 TM Oinn (9329_CR104) 2004; 20 9329_CR145 9329_CR80 9329_CR140 9329_CR141 9329_CR9 J Kim (9329_CR81) 2008; 20 9329_CR142 |
| References_xml | – reference: Hernández, F., Fahringer, T.: Towards workflow sharing and reusein the askalon grid environment. In: Proceedings of Cracow Grid Workshops (CGW), pp. 111–119 (2008) – reference: Gottdank, T.: Introduction to the ws-pgrade/guse science gateway framework. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp.. 19–32. Springer International Publishing (2014) – reference: Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Complete Reference, Volume 1: The MPI Core. MIT Press (1998) – reference: Olabarriaga, S., Benabdelkader, A., Caan, M., Jaghoori, M., Krüger, J., de la Garza, L., Mohr, C., Schubert, B., Danezi, A., Kiss, T.: Ws-pgrade/guse-based science gateways in teaching. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 223–234. Springer International Publishing (2014) – reference: Prodan, R.: Online analysis and runtime steering of dynamic workflows in the askalon grid environment. In: 7th IEEE Int. Symposium on Cluster Computing and the Grid (CCGRID), pp. 389–400 (2007) – reference: Chen, W., Deelman, E.: Integration of workflow partitioning and resource provisioning. In: IEEE/ACM Int. Symposium on Cluster Computing and the Grid (CCGRID), pp. 764–768 (2012) – reference: Juve, G., Deelman, E.: Wrangler: Virtual cluster provisioning for the cloud. In: 20th Int. Symposium on High Performance Distributed Computing, pp. 277–278 (2011) – reference: FelsensteinJPhylip - phylogeny inference package (version 3.2)Cladistics19895164166 – reference: Gil, Y., Kim, J., Ratnakar, V., Deelman, E.: Wings for pegasus: A semantic approach to creating very large scientific workflows. In: OWLED*06 Workshop on OWL: Experiences and Directions, vol. 216 (2006) – reference: WolstencroftKHainesRFellowsDWilliamsARWithersDOwenSSoiland-ReyesSDunlopINenadicAFisherPBhagatJBelhajjameKBacallFHardistyAde la HidalgaANVargasMPBSufiSGobleCAThe taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloudNucleic Acids Res.201341Webserver-Issue55756110.1093/nar/gkt328 – reference: Gadelha Jr., L.M.R., Wilde, M., Mattoso, M., Foster, I.: Provenance traces of the swift parallel scripting system, pp. 325–326 (2013) – reference: ChowdhuryMZahariaMMaJJordanMIStoicaIManaging data transfers in computer clusters with orchestraACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications20114149810910.1145/2043164.2018448 – reference: Coalition, W.M.: Workflow management coalition terminology and glossary (1999) – reference: Bux, M., Leser, U.: Parallelization in scientific workflow management systems. The Computing Research Repository (CoRR), abs/1303.7195 (2013) – reference: Mattoso, M., Werner, C., Travassos, G., Braganholo, V., Ogasawara, E., Oliveira, D., Cruz, S., Martinho, W., Murta, L.: Towards supporting the life cycle of large scale scientific experiments. In: Int. J. Business Process Integration and Management, vol. 5, pp. 79–82 (2010) – reference: Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the kepler scientific workflow system. In: International Conference on Provenance and Annotation of Data, pp. 118–132 (2006) – reference: Samak, T., Gunter, D., Goode, M., Deelman, E., Juve, G., Mehta, G., Silva, F., Vahi, K.: Online fault and anomaly detection for large-scale scientific workflows. In: 13th IEEE Int. Conf. on High Performance Computing and Communications (HPCC), pp. 373–381 (2011) – reference: Balaskó, Á. Workflow concept of ws-pgrade/guse. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 33–50. Springer International Publishing (2014) – reference: Bergmann, R., Gil, Y.: Retrieval of semantic workflows with knowledge intensive similarity measures. In: 19th International Conference on Case-Based Reasoning Research and Development, pp. 17–31 (2011) – reference: Gonçalves, J.A.R., Oliveira, D., Ocaña, K., Ogasawara, E., Mattoso, M.: Using domain-specific data to enhance scientific workflow steering queries. In: Provenance and Annotation of Data and Processes, vol. 7525, pp. 152–167 (2012) – reference: Wozniak, J.M., Armstrong, T.G., Maheshwari, K., Lusk, E.L., Katz, D.S., Wilde, M., Foster, I.T.: Turbine: A distributed-memory dataflow engine for extreme-scale many-task applications. In: 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pp. 5:1–5:12 (2012) – reference: Amazon cloud (2015). http://aws.amazon.com/ – reference: MilojicicDSLlorenteIMMonteroRSOpennebula: A cloud management toolIEEE Internet Computing2011152111410.1109/MIC.2011.44 – reference: Farkas, Z., Hajnal, Á., Kacsuk, P.: Ws-pgrade/guse and clouds. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 97–109. Springer International Publishing (2014) – reference: Yu, Z., Shi, W.: An adaptive rescheduling strategy for grid workflow applications. In: IEEE Int. Parallel and Distributed Processing Symposium (IPDPS), pp. 1–8 (2007) – reference: GoecksJNekrutenkoATaylorJGalaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciencesGenome Biol.201011811310.1186/gb-2010-11-8-r86 – reference: Nguyen, D., Thoai, N.: Ebc: Application-level migration on multi-site cloud. In: Int. Conf. on Systems and Informatics (ICSAI), pp. 876–880 (2012) – reference: de OliveiraDOcañaKACSBaiãoFMattosoMA provenance-based adaptive scheduling heuristic for parallel scientific workflows in cloudsJ. Grid Comput.201210352155210.1007/s10723-012-9227-2 – reference: Kocair, Ç., Şener, C., Akkaya, A. Statistical seismology science gateway. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 167–180. Springer International Publishing (2014) – reference: Tanaka, M., Tatebe, O.: Workflow scheduling to minimize data movement using multi-constraint graph partitioning. In: 12th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid Computing (Ccgrid), pp. 65–72 (2012) – reference: Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: 6th Symposium on Operating System Design and Implementation (OSDI 2004), pp. 137–150 (2004) – reference: Ganga, K., Karthik, S.: A fault tolerent approach in scientific workflow systems based on cloud computing. In: Int. Conf. on Pattern Recognition, Informatics and Mobile Engineering (PRIME), pp. 387–390 (2013) – reference: Ramakrishnan, A., Singh, G., Zhao, H., Deelman, E., Sakellariou, R., Vahi, K., Blackburn, K., Meyers, D., Samidi, M.: Scheduling data-intensiveworkflows onto storage-constrained distributed resources. In: 7th IEEE Int. Symposium on Cluster Computing and the Grid (CCGRID), pp. 401–409 (2007) – reference: White, T.: Hadoop: The Definitive Guide, O’Reilly Media, Inc. (2009) – reference: Grid’5000 project (2015). https://www.grid5000.fr/mediawiki/index.php – reference: HuedoEMonteroRSLlorenteIMA framework for adaptive execution in gridsSoftware - Practice and Experience (SPE)200434763165110.1002/spe.584 – reference: Critchlow, T., Jr, G.C.: Supercomputing and scientific workflows gaps and requirements. In: World Congress on Services, pp. 208–211 (2011) – reference: Chen, W., Deelman, E.: Partitioning and scheduling workflows across multiple sites with storage constraints. In: 9th Int. Conf. on Parallel Processing and Applied Mathematics - Volume Part II, vol. 7204, pp. 11–20 (2012) – reference: KimJDeelmanEGilYMehtaGRatnakarVProvenance trails in the wings-pegasus systemConcurrency and Computation: Practice and Experience20082058759710.1002/cpe.1228 – reference: Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: 16th International Conference on Scientific and Statistical Database Management (SSDBM), pp. 423–424 (2004) – reference: GarijoDAlperPBelhajjameKCorchoÓGilYGobleCACommon motifs in scientific workflows: An empirical analysisFutur. Gener. Comput. Syst.20143633835110.1016/j.future.2013.09.018 – reference: OgasawaraESde OliveiraDValduriezPDiasJPortoFMattosoMAn algebraic approach for data-centric scientific workflowsProceedings of the VLDB Endowment (PVLDB)201141213281339 – reference: Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the cloud: The montage example. In: ACM/IEEE Conf. on High Performance Computing, pp. 1–12 (2008) – reference: Gunter, D., Deelman, E., Samak, T., Brooks, C., Goode, M., Juve, G., Mehta, G., Moraes, P., Silva, F., Swany, M., Vahi, K.: Online workflow management and performance analysis with stampede. In: 7th Int. Conf. on Network and Service Management (CNSM), pp. 1–10 (2011) – reference: Pegasus 4.4.1 user guide (2015). https://pegasus.isi.edu/wms/docs/latest/ – reference: DeelmanESinghGSuM-HBlytheJGilYKesselmanCMehtaGVahiKBerrimanGBGoodJLaityAJacobJCKatzDSPegasus: A framework for mapping complex scientific workflows onto distributed systemsSci. Program.2005133219237 – reference: Zhao, Y., Raicu, I., Foster, I.T.: Scientific workflow systems for 21st century, new bottle or new wine? In: IEEE Congress on Services, Part I, Services I, pp 467–471 (2008) – reference: AbouelhodaMIssaSGhanemMTavaxy: Integrating taverna and galaxy workflows with cloud computing supportBMC Bioinforma.20121317710.1186/1471-2105-13-77 – reference: FreireJKoopDSantosESilvaCTProvenance for computational tasks: A surveyComputing in Science and Engineering2008103112110.1109/MCSE.2008.79 – reference: Kiss, T., Kacsuk, P., Lovas, R., Balaskó, Á., Spinuso, A., Atkinson, M., D’Agostino, D., Danovaro, E., Schiffers, M. Ws-pgrade/guse in european projects. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp.. 235–254. Springer International Publishing (2014) – reference: Barker, A., Hemert, J.V.: Scientific workflow: A survey and research directions. In: 7th Int. Conf. on Parallel Processing and Applied Mathematics, pp. 746–753 (2008) – reference: CarpenterBGetovVJuddGSkjellumAMpjGFoxMpi-like message passing for javaConcurrency and Computation: Practice and Experience200012111019103810.1002/1096-9128(200009)12:11<1019::AID-CPE518>3.0.CO;2-G0987.68561 – reference: Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing (2012) – reference: Wang, J., Crawl, D., Altintas, I.: Kepler + hadoop: A general architecture facilitating data-intensive applications in scientific workflow systems. In: 4th Workshop on Workflows in Support of Large-Scale Science, pp. 12:1–12:8 (2009) – reference: Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning. In: ACM/IEEE Conf. on Supercomputing, pp. 1–13 (1998) – reference: Holl, S., Zimmermann, O., Hofmann-Apitius, M.: A new optimization phase for scientific workflow management systems. In: 8th IEEE Int. Conf. on E-Science, pp. 1–8 (2012) – reference: Costa, F., Silva, V., de Oliveira, D., Ocaña, K.A.C.S., Ogasawara, E.S., Dias, J., Mattoso, M.: Capturing and querying workflow runtime provenance with prov: a practical approach. In: EDBT/ICDT Workshops, pp. 282–289 (2013) – reference: Dias, J., de Oliveira, D., Mattoso, M., Ocana, K.A.C.S., Ogasawara, E.: Discovering drug targets for neglected diseases using a pharmacophylogenomic cloud workflow. In: IEEE 8th Int. Conf. on E-Science (e-Science), pp. 1–8 (2012) – reference: Kiss, T., Kacsuk, P., Takács, E., Szabó, Á., Tihanyi, P., Taylor, S.: Commercial use of ws-pgrade/guse. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp.. 271–286. Springer International Publishing (2014) – reference: Litzkow, M.J., Livny, M., Mutka, M.W.: Condor-a hunter of idle workstations. In: 8th Int. Conf. on Distributed Computing Systems, pp. 104–111 (1988) – reference: Liu, J., Silva, V., Pacitti, E., Valduriez, P., Mattoso, M.: Scientific workflow partitioning in multisite cloud. In: Parallel Processing Workshops - Euro-Par 2014 Int. Workshops, pp. 105–116 (2014) – reference: Yildiz, U., Guabtni, A., Ngu, A.H.H.: Business versus scientific workflows: A comparative study. In: IEEE Congress on Services, Part I, Services I, pp. 340–343 (2009) – reference: AalstWMPvdWeskeMWirtzGAdvanced topics in workflow management: Issues, requirements, and solutionsTrans. SDPS2003734977 – reference: de Oliveira, D., Viana, V., Ogasawara, E., Ocana, K., Mattoso, M.: Dimensioning the virtual cluster for parallel scientific workflows in clouds. In: 4th ACM Workshop on Scientific Cloud Computing, pp. 5–12 (2013) – reference: Gesing, S., Krüger, J., Grunzke, R., de la Garza, L., Herres-Pawlis, S., Hoffmann, A.: Molecular simulation grid (mosgrid): A science gateway tailored to the molecular simulation community. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 151–165. Springer International Publishing (2014) – reference: Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A., Oinn, T., Goble, C.: Taverna, reloaded. In: Int. Conf. on Scientific and Statistical Database Management, pp. 471–481 (2010) – reference: Anglano, C., Canonico, M.: Scheduling algorithms for multiple bag-of-task applications on desktop grids: A knowledge-free approach. In: 22nd IEEE Int. Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–8 (2008) – reference: TopcuougluHHaririSWuMPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Transactions on Parallel and Distributed Systems200213326027410.1109/71.993206 – reference: Cohen-BoulakiaSChenJMissierPGobleCAWilliamsARFroidevauxCDistilling structure in taverna scientific workflows: a refactoring approachBMC Bioinformatics201415S-1S1210.1186/1471-2105-15-S1-S12 – reference: Juve, G., Deelman, E.: Scientific workflows in the cloud. In: Grids, Clouds and Virtualization, pp. 71–91. Springer (2011) – reference: Sciacca, E., Vitello, F., Becciani, U., Costa, A., Massimino, P. Visivo gateway and visivo mobile for the astrophysics community. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 181–194. Springer International Publishing (2014) – reference: Deng, K., Kong, L., Song, J., Ren, K., Yuan, D.: A weighted k-means clustering based co-scheduling strategy towards efficient execution of scientific workflows in collaborative cloud environments. In: IEEE 9th Int. Conf. on Dependable, Autonomic and Secure Computing (DASC), pp. 547–554 (2011) – reference: Raicu, I., Zhao, Y., Foster, I.T., Szalay, A.S.: Data diffusion: Dynamic resource provision and data-aware scheduling for data intensive applications. The Computing Research Repository (CoRR), abs/0808.3535 (2008) – reference: TerstyánszkyGKuklaTKissTKacsukPBalaskó, Á.FarkasZEnabling scientific workflow sharing through coarse-grained interoperabilityFutur. Gener. Comput. Syst.201437465910.1016/j.future.2014.02.016 – reference: Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate data storage in scientific cloud workflow systems. In: IEEE Int. Symposium on Parallel Distributed Processing (IPDPS), pp. 1–12 (2010) – reference: Zhang, H., Soiland-Reyes, S., Goble, C.A.: Taverna mobile: Taverna workflows on android. The Computing Research Repository (CoRR), abs/1309.2787 (2013) – reference: Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: Towards a Grid-Enabled system for scientific workflows. The Workflow in Grid Systems Workshop in GGF10-The 10th Global Grid Forum (2004) – reference: Pacitti, E., Akbarinia, R., Dick, M.E.: P2P Techniques for Decentralized Applications. Morgan & Claypool Publishers (2012) – reference: Albrecht, M., Donnelly, P., Bui, P., Thain, D.: Makeflow: A portable abstraction for data intensive computing on clusters, clouds, and grids. In: 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pp. 1:1–1:13 (2012) – reference: Deelman, E., Juve, G., Berriman, G.B.: Using clouds for science, is it just kicking the can down the road? In: Cloud Computing and Services Science (CLOSER), 2nd Int. Conf. on Cloud Computing and Services Science, pp. 127–134 (2012) – reference: OinnTMAddisMFerrisJMarvinDSengerMGreenwoodRMCarverTGloverKPocockMRWipatALiPTaverna: a tool for the composition and enactment of bioinformatics workflowsBioinformatics200420173045305410.1093/bioinformatics/bth361 – reference: Crawl, D., Wang, J., Altintas, I.: Provenance for mapreduce-based data-intensive workflows. In: 6th Workshop on Workflows in Support of Large-scale Science, pp. 21–30 (2011) – reference: ZhangQChengLBoutabaRCloud computing: state-of-the-art and research challengesJournal of Internet Services and Applications2010171810.1007/s13174-010-0007-6 – reference: Kozlovszky, M., Karóczkai, K., Márton, I., Kacsuk, P., Gottdank, T.: Dci bridge: Executing ws-pgrade workflows in distributed computing infrastructures. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 51–67. Springer International Publishing (2014) – reference: Mattoso, M., Dias, J., Ocaña, K. A., Ogasawara, E., Costa, F., Horta, F., Silva, V., de Oliveira, D.: Dynamic steering of HPC scientific workflows: A survey. Futur. Gener. Comput. Syst. 0 (2014) – reference: OliveiraDDOcañaKACSOgasawaraEDiasJGonçalvesJBaiãoFMattosoMPerformance evaluation of parallel strategies in public clouds: A study with phylogenomic workflowsFutur. Gener. Comput. Syst.20132971816182510.1016/j.future.2012.12.019 – reference: Horta, F., Dias, J., Ocana, K., de Oliveira, D., Ogasawara, E., Mattoso, M.: Abstract: Using provenance to visualize data from large-scale experiments. In: Supercomputing (SC): High Performance Computing, Networking Storage and Analysis, pp. 1418–1419 (2012) – reference: JacobJCKatzDSBerrimanGBGoodJCLaityACDeelmanEKesselmanCSinghGSuM-HPrinceTAWilliamsRMontage: a grid portal and software toolkit for science-grade astronomical image mosaickingInt. J. Comput. Sci. Eng.200942738710.1504/IJCSE.2009.026999 – reference: FardHMProdanRFahringerTMulti-objective list scheduling of workflow applications in distributed computing infrastructuresJ. Parallel Distrib. Comput.20147432152216510.1016/j.jpdc.2013.12.0041283.68111 – reference: Fard, H.M., Fahringer, T., Prodan, R.: Budget-constrained resource provisioning for scientific applications in clouds. In: IEEE 5th Int. Conf. on Cloud Computing Technology and Science (CloudCom), vol. 1, pp. 315–322 (2013) – reference: KacsukPFarkasZKozlovszkyMHermannGBalaskoAKaroczkaiKMartonIWs-pgrade/guse generic dci gateway framework for a large variety of user communitiesJ. Grid Comput.201210460163010.1007/s10723-012-9240-5 – reference: WildeMHateganMWozniakJMCliffordBKatzDSFosterISwift: A language for distributed parallel scriptingParallel Comput.201137963365210.1016/j.parco.2011.05.005 – reference: Oinn, T., Li, P., Kell, D.B., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens, R., Turi, D., Zhao, J.: Taverna/mygrid: Aligning a workflow system with the life sciences community. In: Workflows for e-Science, pp. 300–319 (2007) – reference: Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task scheduling strategies for workflow-based applications in grids. In: 5th IEEE Int. Symposium on Cluster Computing and the Grid (CCGrid), pp. 759–767 (2005) – reference: Goecks, J., Nekrutenko, A., Taylor, J.: Lessons learned from galaxy, a web-based platform for high-throughput genomic analyses. In: IEEE Int. Conf. on E-Science, e-Science, pp. 1–6 (2012) – reference: LudäscherBAltintasIBerkleyCHigginsDJaegerEJonesMBLeeEATaoJZhaoYScientific workflow management and the kepler systemConcurrency and Computation: Practice and Experience200618101039106510.1002/cpe.994 – reference: Liu, B., Sotomayor, B., Madduri, R., Chard, K., Foster, I.: Deploying bioinformatics workflows on clouds with galaxy and globus provision. In: Supercomputing (SC) Companion: High Performance Computing, Networking, Storage and Analysis (SCC), pp. 1087–1095 (2012) – reference: YuJBuyyaRA taxonomy of workflow management systems for grid computingJ. Grid Comput.2005317120010.1007/s10723-005-9010-8 – reference: Ocaña, K.A.C.S., Oliveira, D., Horta, F., Dias, J., Ogasawara, E., Mattoso, M.: Exploring molecular evolution reconstruction using a parallel cloud based scientific workflow. In: Advances in Bioinformatics and Computational Biology, vol. 7409, pp. 179–191 (2012) – reference: Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained provisioning for scientific workflow ensembles in iaas clouds. In: Supercomputing (SC) Conf. on High Performance Computing Networking, Storage and Analysis, pp. 1–11 (2012) – reference: OgasawaraESDiasJSilvaVChirigatiFSde OliveiraDPortoFValduriezPMattosoMChiron: a parallel engine for algebraic scientific workflowsConcurrency and Computation: Practice and Experience201325162327234110.1002/cpe.3032 – reference: Costa, F., de Oliveira, D., Ocala, K., Ogasawara, E., Dias, J., Mattoso, M.: Handling failures in parallel scientific workflows using clouds. In: Supercomputing (SC) Companion: High Performance Computing, Networking Storage and Analysis, pp. 129–139 (2012) – reference: Terstyánszky, G., Michniak, E., Kiss, T., Balaskó, Á.: Sharing science gateway artefacts through repositories. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 123–135. Springer International Publishing (2014) – reference: Shahand, S., Jaghoori, M., Benabdelkader, A., Font-Calvo, J., Huguet, J., Caan, M., van Kampen, A., Olabarriaga, S.: Computational neuroscience gateway: A science gateway based on the ws-pgrade/guse. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 139–149. Springer International Publishing (2014) – reference: Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: ACM SIGMOD Int. Conf. on Management of Data (SIGMOD), pp. 1099–1110 (2008) – reference: Nagavaram, A., Agrawal, G., Freitas, M.A., Telu, K.H., Mehta, G., Mayani, R. G., Deelman, E.: A cloud-based dynamic workflow for mass spectrometry data analysis. In: IEEE 7th Int. Conf. on E-Science (e-Science), pp. 47–54 (2011) – reference: Wang, J., Altintas, I.: Early cloud experiences with the kepler scientific workflow system. In: Int. Conf. on Computational Science (ICCS), vol. 9, pp. 1630–1634 (2012) – reference: Dias, J., Ogasawara, E.S., de Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: Algebraic dataflows for big data analysis. In: IEEE Int. Conf. on Big Data, pp. 150–155 (2013) – reference: PlankensteinerKProdanRJanetschekMFahringerTMontagnatJRogersDHarveyITaylorIBalaskóÁKacsukPFine-grain interoperability of scientific workflows in distributed computing infrastructuresJ. Grid Comput.201311342945510.1007/s10723-013-9261-8 – reference: Chen, W., Silva, R.D., Deelman, E., Sakellariou, R.: Balanced task clustering in scientific workflows. In: IEEE 9th Int. Conf. on e-Science, pp. 188–195 (2013) – reference: Chervenak, A. L., Smith, D. E., Chen, W., Deelman, E.: Integrating policy with scientific workflow management for data-intensive applications. In: Supercomputing (SC) Companion: High Performance Computing, Networking Storage and Analysis, pp. 140–149 (2012) – reference: Singh, G., Su, M.-H., Vahi, K., Deelman, E., Berriman, B., Good, J., Katz, D. S., Mehta, G.: Workflow task clustering for best effort systems with pegasus. In: 15th ACM Mardi Gras Conf.: From Lightweight Mash-ups to Lambda Grids: Understanding the Spectrum of Distributed Computing Requirements, Applications, Tools, Infrastructures, Interoperability, and the Incremental Adoption of Key Capabilities, pp. 9:1–9:8 (2008) – reference: Ocaña, K.A., Oliveira, D., Ogasawara, E., Dávila, A.M., Lima, A.A., Mattoso, M.: Sciphy: A cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In: Advances in Bioinformatics and Computational Biology, vol. 6832, pp. 66–70 (2011) – reference: Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., Raicu, I., Stef-Praun, T., Wilde, M.: Swift: Fast, reliable, loosely coupled parallel computation. In: IEEE Int. Conf. on Services Computing - Workshops (SCW), pp 199–206 (2007) – reference: GuYWuCLiuXYuDDistributed throughput optimization for large-scale scientific workflows under fault-tolerance constraintJournal of Grid Computing201311336137910.1007/s10723-013-9266-3 – reference: Ostermann, S., Prodan, R., Fahringer, T.: Extending grids with cloud resource management for scientific computing. In: 10th IEEE/ACM Int. Conf. on Grid Computing, pp. 42–49 (2009) – reference: Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R., Chen, W., Silva, R.F.d., Livny, M., Wenger, K.: Pegasus: a workflow management system for science automation. Futur. Gener. Comput. Syst. (2014) – reference: Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H., Villazon, A., Wieczorek, M.: Askalon: A development and grid computing environment for scientific workflows. In: Workflows for e-Science, pp. 450–471. Springer (2007) – reference: Microsoft Azure cloud (2015). http://azure.microsoft.com/ – reference: DeelmanEGannonDShieldsMTaylorIWorkflows and e-science: An overview of workflow system features and capabilitiesFutur. Gener. Comput. Syst.200925552854010.1016/j.future.2008.06.012 – reference: Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel programs from sequential building blocks. In: 2nd ACM SIGOPS/EuroSys European Conf. on Computer Systems, pp. 59–72 (2007) – reference: AfganEBakerDCoraorNChapmanBNekrutenkoATaylorJGalaxy cloudman: delivering cloud compute clustersBMC Bioinforma.201011Suppl 12S410.1186/1471-2105-11-S12-S4 – reference: BrandicIDustdarSGrid vs cloud - A technology comparison.IT - Inf. Technol.201153417317910.1524/itit.2011.0640 – reference: Shankar, S., DeWitt, D.J.: Data driven workflow planning in cluster management systems. In: 16th International Symposium on High-Performance Distributed Computing (HPDC-16), pp. 127–136 (2007) – reference: Belhajjame, K., Cresswell, S., Gil, Y., Golden, R., Groth, P., Klyne, G., McCusker, J., Miles, S., Myers, J., Sahoo, S.: The prov data model and abstract syntax notation (2011). http://www.w3.org/TR/2011/WD-prov-dm-20111215/ – reference: Hategan, M., Wozniak, J., Maheshwari, K.: Coasters: Uniform resource provisioning and access for clouds and grids. In. In: 4th IEEE Int. Conf. on Utility and Cloud Computing, pp. 114–121 (2011) – reference: Reynolds, C.J., Winter, S.C., Terstyánszky, G., Kiss, T., Greenwell, P., Acs, S., Kacsuk, P.: Scientific workflow makespan reduction through cloud augmented desktop grids. In: IEEE 3rd International Conference on Cloud Computing Technology and Science, pp. 18–23 (2011) – reference: Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-g: a computation management agent for multi-institutional grids. In: 10th IEEE Int. Symposium on High Performance Distributed Computing, pp. 55–63 (2001) – reference: Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers Inc. (2003) – reference: Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D., Taylor, I., Goode, M., Silva, F., Al-Shakarchi, E., Mehta, G., Jones, A., Deelman, E.: A general approach to real-time workflow monitoring. In: Supercomputing (SC) Companion: High Performance Computing, Networking, Storage and Analysis (SCC), pp. 108–118 (2012) – reference: Chirigati, F., Silva, V., Ogasawara, E., de Oliveira, D., Dias, J., Porto, F., Valduriez, P., Mattoso, M.: Evaluating parameter sweep workflows in high performance computing. In: 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pp. 2:1–2:10 (2012) – reference: Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems. In: 8th Heterogeneous Computing Workshop, p. 30 (1999) – reference: Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: Dynamic query scheduling in data integration systems. In: International Conference on Data Engineering (ICDE), pp. 425–434 (2000) – reference: de Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: Scicumulus: A lightweight cloud middleware to explore many task computing paradigm in scientific workflows. In: 3rd Int. Conf. on Cloud Computing (CLOUD), pp. 378–385 (2010) – reference: Görlach, K., Sonntag, M., Karastoyanova, D., Leymann, F., Reiter, M.: Conventional workflow technology for scientific simulation. In: Guide to e-Science, pp. 323–352 (2011) – reference: Ostermann, S., Plankensteiner, K., Prodan, R., Fahringer, T.: Groudsim: An event-based simulation framework for computational grids and clouds. In: European Conf. on Parallel Processing (Euro-Par) Workshops, pp. 305–313 (2011) – reference: de OliveiraDOgasawaraEOcañaKBaiãoFMattosoMAn adaptive parallel execution strategy for cloud-based scientific workflowsConcurrency and Computation: Practice & Experience201224131531155010.1002/cpe.1880 – reference: Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer (2011) – reference: KacsukPP-grade portal family for grid infrastructuresConcurrency and Computation: Practice and Experience201123323524510.1002/cpe.1654 – reference: Korf, I., Yandell, M., Bedell, J.A.: BLAST - an essential guide to the basic local alignment search tool. O’Reilly (2003) – reference: Pautasso, C., Alonso, G.: Parallel computing patterns for grid workflows (2006) – reference: Wieder, P., Butler, J.M., Theilmann, W., Yahyapour, R.: Service Level Agreements for Cloud Computing. Springer (2011) – reference: DuanRProdanRLiXMulti-objective game theoretic schedulingof bag-of-tasks workflows on hybrid cloudsIEEE Transactions on Cloud Computing201421294210.1109/TCC.2014.2303077 – reference: Karuna, K., Mangala, N., Janaki, C., Shashi, S., Subrata, C.: Galaxy workflow integration on garuda grid. In: IEEE Int. Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 194–196 (2012) – reference: Taylor, I., Shields, M., Wang, I., Harrison, A.: The triana workflow environment: Architecture and applications. In: Workflows for e-Science, pp. 320–339. Springer (2007) – ident: 9329_CR117 doi: 10.1109/CloudCom.2011.13 – ident: 9329_CR17 doi: 10.1109/ICDE.2000.839442 – ident: 9329_CR47 doi: 10.1007/978-1-84628-757-2_27 – ident: 9329_CR68 – volume: 25 start-page: 2327 issue: 16 year: 2013 ident: 9329_CR102 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.3032 – ident: 9329_CR119 doi: 10.1007/978-3-319-11268-8_13 – volume: 7 start-page: 49 issue: 3 year: 2003 ident: 9329_CR129 publication-title: Trans. SDPS – volume: 15 start-page: S12 issue: S-1 year: 2014 ident: 9329_CR28 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-S1-S12 – ident: 9329_CR24 doi: 10.1109/SC.Companion.2012.29 – ident: 9329_CR79 doi: 10.1109/WETICE.2012.51 – ident: 9329_CR109 doi: 10.1109/GRID.2009.5353075 – ident: 9329_CR142 doi: 10.14806/ej.19.B.727 – ident: 9329_CR125 doi: 10.1007/978-1-84628-757-2_20 – ident: 9329_CR110 doi: 10.1007/978-1-4419-8834-8 – ident: 9329_CR3 – volume: 13 start-page: 77 issue: 1 year: 2012 ident: 9329_CR5 publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-13-77 – ident: 9329_CR9 doi: 10.1109/SSDM.2004.1311241 – ident: 9329_CR59 – ident: 9329_CR64 doi: 10.1007/978-3-319-11268-8_2 – ident: 9329_CR23 doi: 10.1109/eScience.2013.40 – ident: 9329_CR19 – volume: 10 start-page: 521 issue: 3 year: 2012 ident: 9329_CR33 publication-title: J. Grid Comput. doi: 10.1007/s10723-012-9227-2 – ident: 9329_CR42 doi: 10.1016/j.future.2014.10.008 – volume: 29 start-page: 1816 issue: 7 year: 2013 ident: 9329_CR106 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2012.12.019 – volume: 11 start-page: 1 issue: 8 year: 2010 ident: 9329_CR60 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-8-r86 – volume: 11 start-page: 429 issue: 3 year: 2013 ident: 9329_CR113 publication-title: J. Grid Comput. doi: 10.1007/s10723-013-9261-8 – ident: 9329_CR61 doi: 10.1109/eScience.2012.6404442 – ident: 9329_CR107 doi: 10.1145/1376616.1376726 – ident: 9329_CR112 doi: 10.1109/WORKS.2006.5282349 – ident: 9329_CR34 doi: 10.1109/CLOUD.2010.64 – ident: 9329_CR40 doi: 10.1109/SC.2008.5217932 – volume: 2 start-page: 29 issue: 1 year: 2014 ident: 9329_CR46 publication-title: IEEE Transactions on Cloud Computing doi: 10.1109/TCC.2014.2303077 – ident: 9329_CR114 doi: 10.1109/CCGRID.2007.76 – ident: 9329_CR67 doi: 10.1109/UCC.2011.25 – volume: 11 start-page: 361 issue: 3 year: 2013 ident: 9329_CR65 publication-title: Journal of Grid Computing doi: 10.1007/s10723-013-9266-3 – ident: 9329_CR10 – ident: 9329_CR80 doi: 10.1109/SC.1998.10018 – ident: 9329_CR62 doi: 10.1007/978-3-642-34222-6_12 – volume: 34 start-page: 631 issue: 7 year: 2004 ident: 9329_CR71 publication-title: Software - Practice and Experience (SPE) doi: 10.1002/spe.584 – ident: 9329_CR88 doi: 10.1109/SC.Companion.2012.131 – volume: 74 start-page: 2152 issue: 3 year: 2014 ident: 9329_CR49 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2013.12.004 – volume: 10 start-page: 601 issue: 4 year: 2012 ident: 9329_CR78 publication-title: J. Grid Comput. doi: 10.1007/s10723-012-9240-5 – volume: 15 start-page: 11 issue: 2 year: 2011 ident: 9329_CR95 publication-title: IEEE Internet Computing doi: 10.1109/MIC.2011.44 – ident: 9329_CR133 – ident: 9329_CR124 doi: 10.1109/CCGrid.2012.134 – volume: 4 start-page: 1328 issue: 12 year: 2011 ident: 9329_CR101 publication-title: Proceedings of the VLDB Endowment (PVLDB) doi: 10.14778/3402755.3402766 – ident: 9329_CR121 doi: 10.1145/1272366.1272383 – ident: 9329_CR22 doi: 10.1007/978-3-642-31500-8_2 – ident: 9329_CR75 doi: 10.1007/978-0-85729-049-6_4 – volume: 1 start-page: 7 year: 2010 ident: 9329_CR143 publication-title: Journal of Internet Services and Applications doi: 10.1007/s13174-010-0007-6 – ident: 9329_CR144 doi: 10.1109/SERVICES.2007.63 – ident: 9329_CR66 – volume: 20 start-page: 587 year: 2008 ident: 9329_CR81 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.1228 – ident: 9329_CR108 doi: 10.1007/978-3-642-21878-1_38 – ident: 9329_CR56 doi: 10.1109/ICPRIME.2013.6496507 – ident: 9329_CR1 – ident: 9329_CR120 doi: 10.1007/978-3-319-11268-8_10 – ident: 9329_CR141 doi: 10.1109/IPDPS.2010.5470453 – ident: 9329_CR86 doi: 10.1007/978-3-319-11268-8_4 – ident: 9329_CR16 doi: 10.1109/CCGRID.2005.1558639 – ident: 9329_CR29 doi: 10.1109/SC.Companion.2012.28 – volume: 5 start-page: 164 year: 1989 ident: 9329_CR51 publication-title: Cladistics – ident: 9329_CR27 – ident: 9329_CR12 doi: 10.1007/978-3-319-11268-8_3 – volume: 11 start-page: S4 issue: Suppl 12 year: 2010 ident: 9329_CR6 publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-11-S12-S4 – volume: 20 start-page: 3045 issue: 17 year: 2004 ident: 9329_CR104 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth361 – ident: 9329_CR21 doi: 10.1109/CCGrid.2012.57 – volume: 24 start-page: 1531 issue: 13 year: 2012 ident: 9329_CR35 publication-title: Concurrency and Computation: Practice & Experience doi: 10.1002/cpe.1880 – ident: 9329_CR30 doi: 10.1145/2457317.2457365 – ident: 9329_CR84 doi: 10.1007/978-3-319-11268-8_12 – ident: 9329_CR92 doi: 10.1109/SC.2012.38 – ident: 9329_CR91 doi: 10.1109/HCW.1999.765094 – ident: 9329_CR83 doi: 10.1007/978-3-319-11268-8_19 – ident: 9329_CR94 doi: 10.1504/IJBPIM.2010.033176 – ident: 9329_CR45 doi: 10.1109/BigData.2013.6691567 – volume: 36 start-page: 338 year: 2014 ident: 9329_CR57 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2013.09.018 – ident: 9329_CR131 doi: 10.1016/j.procs.2012.04.179 – ident: 9329_CR15 doi: 10.1007/978-3-642-23291-6_4 – volume: 37 start-page: 633 issue: 9 year: 2011 ident: 9329_CR135 publication-title: Parallel Comput. doi: 10.1016/j.parco.2011.05.005 – volume: 10 start-page: 11 issue: 3 year: 2008 ident: 9329_CR53 publication-title: Computing in Science and Engineering doi: 10.1109/MCSE.2008.79 – ident: 9329_CR58 doi: 10.1007/978-3-319-11268-8_11 – ident: 9329_CR50 doi: 10.1007/978-3-319-11268-8_7 – volume: 18 start-page: 1039 issue: 10 year: 2006 ident: 9329_CR90 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.994 – volume: 41 start-page: 98 issue: 4 year: 2011 ident: 9329_CR26 publication-title: ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications doi: 10.1145/2043164.2018448 – ident: 9329_CR87 doi: 10.1109/DCS.1988.12507 – ident: 9329_CR32 doi: 10.1109/SERVICES.2011.32 – ident: 9329_CR70 doi: 10.1109/SC.Companion.2012.228 – ident: 9329_CR44 doi: 10.1109/eScience.2012.6404431 – ident: 9329_CR82 doi: 10.1007/978-3-319-11268-8_17 – ident: 9329_CR116 doi: 10.1109/CCGRID.2007.101 – volume: 41 start-page: 557 issue: Webserver-Issue year: 2013 ident: 9329_CR136 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt328 – ident: 9329_CR8 doi: 10.1007/11890850_14 – volume: 53 start-page: 173 issue: 4 year: 2011 ident: 9329_CR18 publication-title: IT - Inf. Technol. doi: 10.1524/itit.2011.0640 – volume: 37 start-page: 46 year: 2014 ident: 9329_CR126 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2014.02.016 – ident: 9329_CR122 doi: 10.1145/1341811.1341822 – ident: 9329_CR76 doi: 10.1145/1996130.1996173 – ident: 9329_CR7 doi: 10.1145/2443416.2443417 – volume: 13 start-page: 219 issue: 3 year: 2005 ident: 9329_CR41 publication-title: Sci. Program. – ident: 9329_CR118 doi: 10.1109/HPCC.2011.55 – ident: 9329_CR123 – ident: 9329_CR13 doi: 10.1007/978-3-540-68111-3_78 – ident: 9329_CR73 – ident: 9329_CR99 doi: 10.1007/978-3-642-22825-4_9 – ident: 9329_CR31 doi: 10.1145/2110497.2110501 – ident: 9329_CR97 doi: 10.1109/eScience.2011.15 – ident: 9329_CR72 doi: 10.1145/1272996.1273005 – ident: 9329_CR52 – ident: 9329_CR4 – volume: 4 start-page: 73 issue: 2 year: 2009 ident: 9329_CR74 publication-title: Int. J. Comput. Sci. Eng. doi: 10.1504/IJCSE.2009.026999 – volume: 25 start-page: 528 issue: 5 year: 2009 ident: 9329_CR38 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2008.06.012 – ident: 9329_CR138 doi: 10.1109/SERVICES-I.2009.60 – ident: 9329_CR14 – ident: 9329_CR134 doi: 10.1007/978-1-4614-1614-2 – volume: 23 start-page: 235 issue: 3 year: 2011 ident: 9329_CR77 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.1654 – volume: 12 start-page: 1019 issue: 11 year: 2000 ident: 9329_CR20 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/1096-9128(200009)12:11<1019::AID-CPE518>3.0.CO;2-G – ident: 9329_CR85 – ident: 9329_CR93 doi: 10.1016/j.future.2014.11.017 – ident: 9329_CR132 doi: 10.1145/1645164.1645176 – ident: 9329_CR105 doi: 10.1007/978-3-319-11268-8_16 – ident: 9329_CR137 doi: 10.1145/2443416.2443421 – ident: 9329_CR43 doi: 10.1109/DASC.2011.102 – ident: 9329_CR103 doi: 10.1007/978-1-84628-757-2_19 – ident: 9329_CR48 doi: 10.1109/CloudCom.2013.48 – ident: 9329_CR36 doi: 10.1145/2465848.2465852 – volume: 13 start-page: 260 issue: 3 year: 2002 ident: 9329_CR128 publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/71.993206 – volume: 3 start-page: 171 year: 2005 ident: 9329_CR139 publication-title: J. Grid Comput. doi: 10.1007/s10723-005-9010-8 – ident: 9329_CR145 doi: 10.1109/SERVICES-1.2008.79 – ident: 9329_CR11 doi: 10.1109/IPDPS.2008.4536445 – ident: 9329_CR55 doi: 10.1145/2457317.2457374 – ident: 9329_CR39 doi: 10.5220/0003958901270134 – ident: 9329_CR98 doi: 10.1109/ICSAI.2012.6223147 – ident: 9329_CR63 doi: 10.1007/978-0-85729-439-5_12 – ident: 9329_CR111 doi: 10.2200/S00414ED1V01Y201204DTM025 – ident: 9329_CR100 doi: 10.1007/978-3-642-31927-3_16 – ident: 9329_CR115 – ident: 9329_CR25 doi: 10.1145/2443416.2443418 – ident: 9329_CR54 doi: 10.1109/HPDC.2001.945176 – ident: 9329_CR127 doi: 10.1007/978-3-319-11268-8_9 – ident: 9329_CR69 doi: 10.1109/eScience.2012.6404479 – ident: 9329_CR96 doi: 10.1007/978-3-642-13818-8_33 – ident: 9329_CR140 doi: 10.1109/IPDPS.2007.370305 – ident: 9329_CR37 – ident: 9329_CR130 doi: 10.1109/SC.Companion.2012.26 – ident: 9329_CR2 – ident: 9329_CR89 doi: 10.1007/978-3-319-14325-5_10 |
| SSID | ssj0025802 |
| Score | 2.529089 |
| Snippet | Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 457 |
| SubjectTerms | Clouds Computation Computational grids Computer Science Data processing Distributed, Parallel, and Cluster Computing Handles Management of Computing and Information Systems Mathematical models Parallel processing Processor Architectures User Interfaces and Human Computer Interaction Workflow Workflow management systems Workflow software |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c9MEX5ydWp1TYkxLo1qRJHoc69iBDnMreQpumONiH7Ev87710bTdFBX3uNZS7y93vml_uAGoBi7UfJgnBSOcRSqUmgsacJFRozLgYHk2UDpvgnY7o9eR9do97mrPd8yPJNFKvXXbjDcv9YQQxhySiBJuY7YSd1_DQfS6qLCaWREPGLVWO-_lR5ndLfEpGpRdLhVzDmV-ORtOM06r861t3YScDmG5z6RF7sGFG-1DJhze42V4-ANl0u_PJwry748S9CWchKdjsS6GUROTan-nJYPzmrngyh_DUun28bpNsjgLRVIoZ0RgNmYh4Qr0wFlEgZIRFMTc-Ws-PPInW8uphYDQLNOIfEfkhgoi4Hgc0bmjM90dQHo1H5hhcGvg-lt-RlDymzEQyNCLhLKEITDBSSge8XKFKZ03G7ayLgVq1R7aqUagaZVWjhAOXxSuvyw4bvwnX0EqFnO2N3W7eqUF_MhwqW9tRHniLugPV3Iwq25NThZELwW4dC0wHLorHuJvsEUk4MuP5VCHeCayDsoYDV7lpV0v8-F0nf5I-he2G9Y2UFVOF8mwyN2ewpRez_nRynrrzB7_x7AU priority: 102 providerName: Springer Nature |
| Title | A Survey of Data-Intensive Scientific Workflow Management |
| URI | https://link.springer.com/article/10.1007/s10723-015-9329-8 https://www.proquest.com/docview/2259771899 https://www.proquest.com/docview/1816067852 https://hal-lirmm.ccsd.cnrs.fr/lirmm-01144760 |
| Volume | 13 |
| WOSCitedRecordID | wos000368725500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9184 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: P5Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9184 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: BENPR dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1572-9184 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: RSV dateStart: 20030301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwEC2xHebCMsOIsClInGZkke7YsX1CzSYOqNWCASEuVuI4AqnpQG-Iv6cqWw9IcOGSS5xFeeXyK9dLFcB-JFIbxlnG0NMFjHNtmeKpZBlXFldcdI8uKZpNyG5X3d7qXrXhNqpklbVPLBx1mlvaIz9Au0Oq0sLw4PDpmVHXKMquVi005mGRqiRQ64aeuGsCLqFKzaGQpJqTYZ3VLH-dk21SEgmGDEYz9W5dmr8nVeR_lPNDlrRYfM5Wvvvaq7Bc0U6_U9rJGsy5wU9YqVs6-NUM_wW6419NhlP36ueZfxKPY9Zo3MtBhbTIpy32rJ-_-DP1zDpcn53-Oz5nVXcFZrlWY2bRRwqVyIwHcaqSSOkEQ2XpQsQ0TAKNGAatOHJWRBZZkUrCGKlF2kojnrYtsoDfsDDIB24DfB6FIQblidYy5cIlOnYqkyLjSFfQf2oPgvrbGluVHqcOGH0zK5pMcBiEwxAcRnnwp7nkqay78dXgfQSsGUcVs887F6b_MHx8NBTxcRkF05YH2zVGppqpIzMDyIO95jTOMUqcxAOXT0YGWVBEZivaHvytLWF2i0_fa_PrB27BjzYZYCGO2YaF8XDidmDJTscPo-EuLB6ddnuXu4VJ4_Hy6uYNWqv5iA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrdReSp8iLbRGgksrq9nEju0DQqtStIhlhQSVUC9u7DgCadnQfSH-VH8j47y2IJUbh57jOE7m8zwyn2cAthKe2TjNc4qaLqSMKUslywTNmbRocVE9OlM2mxCDgTw7U8dL8Kc5C-NplY1OLBV1Vlj_j_wr4g5dlQ6GB7tXv6nvGuWzq00LjQoWh-7mGkO2yc7BHsp3O4r2v59-69G6qwC1TMkptagbuDQiZ2GaSZNIZTBEFC7Gd4lNqHDtYSdNnOWJRW9AmjhFk5p1soRlkUXrh_MuwxPGotDvomP-sw3wuKw4jlx4lp6ImyxqdVRPRJ65xCl6TIrKO3Zw-dyzMP9yce9lZUtjt7_6v32ml_CidqtJt9oHr2DJjV7DatOygtQa7A2oLjmZjefuhhQ52UunKW05_NWgkjpFfAohHxbXZMEOegs_HuUF3sHKqBi5NSAsiWNnYqOUyBh3RqVO5oLnDN0xtA8qgLCRpbZ1aXXf4WOoF0Whvfg1il978WsZwOf2lquqrshDg7cQIO04XxG81-3r4cX48lL7iJaJJJx3AlhvMKFrTTTRC0AEsNleRh3iE0PpyBWziUYvL_HbkkcBfGmQt5jin-t6__ADP8Gz3ulRX_cPBocf4HnkwV8SgdZhZTqeuQ14aufTi8n4Y7mNCPx6bEDeAi2PU3I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_Wboy9NPtk7sfmQZ42RBxbsqTH0DRkLIRAtpE3YcsSLaROSZyM_fc7-Svp2Apjzz4Lc3c6_c730x1AN2aZjhJrCUa6gFAqNRE048RSofHExfBo0nLYBJ9OxWIhZ_Wc003Ddm9KktWdBtelKS96d5ntHVx846HjATGC-EMScQSPqePRu3R9_r3NuJioSIeMO9ocj5qy5p-WuHcwHV07WuQB5vytTFqePqPOf3_3czipgac_qDzlBTwy-UvoNEMd_HqPvwI58Ofb9c789FfWHyZFQlqWeyVUkot895PdLlc__D1_5jV8G119vRyTer4C0VSKgmiMkkyk3NIgyUQaC5lissxNhFaN0kCiFYN-EhvNYo24SKRRguAi62cxzUKNOOANHOer3LwFn8ZRhGl5KiXPKDOpTIywnFmKgAUjqPQgaJSrdN183M3AWKp922SnGoWqUU41SnjwsX3lruq88ZBwFy3Wyrme2ePBRC1v1re3yuV8lMfBru_BeWNSVe_VjcKIhiC4j4mnBx_ax7jLXOkkyc1qu1GIg2LnuCz04FNj5v0Sf_2u03-Sfg9PZ8ORmnyefjmDZ6Fzk5I4cw7HxXprLuCJ3hU3m_W70st_AQFW980 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Data-Intensive+Scientific+Workflow+Management&rft.jtitle=Journal+of+grid+computing&rft.au=Liu%2C+Ji&rft.au=Pacitti%2C+Esther&rft.au=Valduriez%2C+Patrick&rft.au=Mattoso%2C+Marta&rft.date=2015-12-01&rft.pub=Springer+Verlag&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=13&rft.issue=4&rft.spage=457&rft.epage=493&rft_id=info:doi/10.1007%2Fs10723-015-9329-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Alirmm-01144760v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon |