A Survey of Data-Intensive Scientific Workflow Management

Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of grid computing Ročník 13; číslo 4; s. 457 - 493
Hlavní autori: Liu, Ji, Pacitti, Esther, Valduriez, Patrick, Mattoso, Marta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.12.2015
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:1570-7873, 1572-9184
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution of data-intensive scientific workflows may take much time, Scientific Workflow Management Systems ( SWfMSs ) should enable the parallel execution of data-intensive scientific workflows and exploit the resources distributed in different infrastructures such as grid and cloud. This paper provides a survey of data-intensive scientific workflow management in SWfMSs and their parallelization techniques. Based on a SWfMS functional architecture, we give a comparative analysis of the existing solutions. Finally, we identify research issues for improving the execution of data-intensive scientific workflows in a multisite cloud.
AbstractList Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution of data-intensive scientific workflows may take much time, Scientific Workflow Management Systems (SWfMSs) should enable the parallel execution of data-intensive scientific workflows and exploit the resources distributed in different infrastructures such as grid and cloud. This paper provides a survey of data-intensive scientific workflow management in SWfMSs and their parallelization techniques. Based on a SWfMS functional architecture, we give a comparative analysis of the existing solutions. Finally, we identify research issues for improving the execution of data-intensive scientific workflows in a multisite cloud.
Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution of data-intensive scientific workflows may take much time, Scientific Workflow Management Systems ( SWfMSs ) should enable the parallel execution of data-intensive scientific workflows and exploit the resources distributed in different infrastructures such as grid and cloud. This paper provides a survey of data-intensive scientific workflow management in SWfMSs and their parallelization techniques. Based on a SWfMS functional architecture, we give a comparative analysis of the existing solutions. Finally, we identify research issues for improving the execution of data-intensive scientific workflows in a multisite cloud.
Author Liu, Ji
Mattoso, Marta
Pacitti, Esther
Valduriez, Patrick
Author_xml – sequence: 1
  givenname: Ji
  surname: Liu
  fullname: Liu, Ji
  email: jiliuwork@gmail.com
  organization: MSR-Inria Joint Centre, Inria and LIRMM and University of Montpellier
– sequence: 2
  givenname: Esther
  surname: Pacitti
  fullname: Pacitti, Esther
  organization: Inria and LIRMM, University of Montpellier
– sequence: 3
  givenname: Patrick
  surname: Valduriez
  fullname: Valduriez, Patrick
  organization: MSR-Inria Joint Centre, Inria and LIRMM and University of Montpellier
– sequence: 4
  givenname: Marta
  surname: Mattoso
  fullname: Mattoso, Marta
  organization: COPPE/Federal University of Rio de Janeiro
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01144760$$DView record in HAL
BookMark eNp9kF1LHDEUhkNRqB_9Ab0b6E1BYs_JzOTjclFbF1a8UPEyZDKZbXQmscnsFv99Z51SQahXCeF5znnzHpK9EIMj5DPCKQKIbxlBsJIC1lSVTFH5gRxgLRhVKKu9lztQIUX5kRzm_ADAagnsgKhFcbNJW_dcxK44N6OhyzC6kP3WFTfWuzD6ztviPqbHro-_iysTzNoN0_sx2e9Mn92nv-cRuft-cXt2SVfXP5ZnixW1lZIjtVjxWjaiq8C0suFSNRVXwpXWmrIB1doS0HBna245gGxKoxBabHnVMsuxPCIn89yfptdPyQ8mPetovL5crHTv0zBoQKwqwWG7o7_O9FOKvzYuj3rw2bq-N8HFTdYokQMXsmYT-uUN-hA3KUx_0YzVSgiUSk0UzpRNMefkun8ZEPSuej1XP4Wo9a56LSdHvHGsH83oYxiT8f27JpvNPG0Ja5deM_1f-gNeEJc_
CitedBy_id crossref_primary_10_1007_s42979_022_01625_9
crossref_primary_10_1002_dac_4649
crossref_primary_10_1016_j_future_2023_05_015
crossref_primary_10_1016_j_jocs_2022_101840
crossref_primary_10_1016_j_imu_2022_101024
crossref_primary_10_1587_transinf_2016EDP7346
crossref_primary_10_1007_s10723_016_9379_6
crossref_primary_10_1177_1094342019852127
crossref_primary_10_1016_j_future_2021_03_012
crossref_primary_10_1109_TII_2019_2959258
crossref_primary_10_1016_j_future_2017_02_026
crossref_primary_10_1002_cpe_7697
crossref_primary_10_1186_s13326_021_00253_1
crossref_primary_10_7717_peerj_11140
crossref_primary_10_1016_j_jss_2020_110665
crossref_primary_10_1109_TSC_2022_3180067
crossref_primary_10_1007_s10723_024_09771_5
crossref_primary_10_1007_s13222_021_00397_5
crossref_primary_10_1109_MS_2020_2995125
crossref_primary_10_1109_TSC_2019_2963382
crossref_primary_10_1109_TETC_2020_3019202
crossref_primary_10_1109_ACCESS_2024_3509218
crossref_primary_10_1145_3534520
crossref_primary_10_3233_SW_200374
crossref_primary_10_1016_j_jnca_2018_11_007
crossref_primary_10_1109_TPDS_2018_2879603
crossref_primary_10_1109_TSC_2023_3315478
crossref_primary_10_3390_s21217238
crossref_primary_10_1007_s41060_018_0107_0
crossref_primary_10_1007_s10723_016_9390_y
crossref_primary_10_1145_3332301
crossref_primary_10_1177_10943420241288242
crossref_primary_10_1145_3503510
crossref_primary_10_1002_widm_1394
crossref_primary_10_7717_peerj_cs_921
crossref_primary_10_1007_s10723_016_9378_7
crossref_primary_10_7717_peerj_cs_527
crossref_primary_10_1007_s10115_022_01664_x
crossref_primary_10_3389_fnins_2018_00236
crossref_primary_10_1109_ACCESS_2021_3116716
crossref_primary_10_1109_ACCESS_2023_3272619
crossref_primary_10_1007_s10586_021_03457_3
crossref_primary_10_1016_j_simpat_2024_103034
crossref_primary_10_1016_j_future_2017_02_042
crossref_primary_10_1007_s10723_020_09533_z
crossref_primary_10_1109_TII_2017_2779177
crossref_primary_10_1109_TPDS_2021_3059480
crossref_primary_10_1007_s10664_022_10229_z
crossref_primary_10_1016_j_compag_2019_01_044
crossref_primary_10_1002_cpe_5972
crossref_primary_10_1016_j_cpc_2021_107844
crossref_primary_10_1007_s10723_018_09471_x
crossref_primary_10_1016_j_swevo_2024_101600
crossref_primary_10_1111_brv_12359
crossref_primary_10_1016_j_simpat_2020_102217
crossref_primary_10_1007_s10115_024_02285_2
crossref_primary_10_1007_s11227_019_02764_2
crossref_primary_10_1007_s10270_023_01112_6
crossref_primary_10_1007_s12652_021_03482_5
crossref_primary_10_1109_ACCESS_2022_3193151
crossref_primary_10_1142_S2196888820500104
crossref_primary_10_1002_widm_1206
crossref_primary_10_1145_3331151
crossref_primary_10_1016_j_future_2017_01_020
crossref_primary_10_1007_s12145_016_0280_4
crossref_primary_10_1016_j_future_2023_10_008
crossref_primary_10_1016_j_future_2022_12_014
crossref_primary_10_1007_s10723_022_09625_y
crossref_primary_10_1007_s10723_023_09666_x
crossref_primary_10_1016_j_future_2025_107974
crossref_primary_10_1007_s10922_021_09599_4
crossref_primary_10_1002_mgea_11
crossref_primary_10_1145_3186266
crossref_primary_10_1016_j_eswa_2019_112998
crossref_primary_10_1145_3311955
crossref_primary_10_1007_s00607_021_00936_8
crossref_primary_10_1038_s41598_021_99288_8
crossref_primary_10_1016_j_future_2023_04_031
crossref_primary_10_1016_j_future_2025_107924
crossref_primary_10_1109_ACCESS_2021_3067815
crossref_primary_10_1016_j_future_2024_07_005
crossref_primary_10_1002_cpe_6193
crossref_primary_10_1002_ece3_5300
crossref_primary_10_1109_TKDE_2018_2867857
crossref_primary_10_1016_j_cosrev_2021_100422
crossref_primary_10_1016_j_future_2017_05_017
crossref_primary_10_3390_philosophies8050075
crossref_primary_10_1108_IJCS_03_2019_0012
crossref_primary_10_1007_s11227_020_03612_4
crossref_primary_10_1007_s10723_020_09511_5
crossref_primary_10_1111_coin_12197
crossref_primary_10_1016_j_future_2018_04_014
crossref_primary_10_1007_s10586_020_03205_z
crossref_primary_10_3390_fi13050121
crossref_primary_10_1016_j_future_2018_04_009
crossref_primary_10_7717_peerj_3509
crossref_primary_10_1007_s13218_024_00865_6
crossref_primary_10_1016_j_procs_2020_03_350
crossref_primary_10_1145_3394976
crossref_primary_10_1016_j_future_2025_108047
crossref_primary_10_1017_S0956796817000119
crossref_primary_10_1109_ACCESS_2019_2900738
crossref_primary_10_1016_j_cosrev_2024_100655
crossref_primary_10_1109_TBDATA_2023_3256043
crossref_primary_10_1007_s10664_025_10705_2
crossref_primary_10_1016_j_simpat_2017_03_001
crossref_primary_10_33317_ssurj_561
crossref_primary_10_1007_s10723_017_9420_4
crossref_primary_10_1016_j_future_2019_06_016
crossref_primary_10_1109_ACCESS_2021_3070785
Cites_doi 10.1109/CloudCom.2011.13
10.1109/ICDE.2000.839442
10.1007/978-1-84628-757-2_27
10.1002/cpe.3032
10.1007/978-3-319-11268-8_13
10.1186/1471-2105-15-S1-S12
10.1109/SC.Companion.2012.29
10.1109/WETICE.2012.51
10.1109/GRID.2009.5353075
10.14806/ej.19.B.727
10.1007/978-1-84628-757-2_20
10.1007/978-1-4419-8834-8
10.1186/1471-2105-13-77
10.1109/SSDM.2004.1311241
10.1007/978-3-319-11268-8_2
10.1109/eScience.2013.40
10.1007/s10723-012-9227-2
10.1016/j.future.2014.10.008
10.1016/j.future.2012.12.019
10.1186/gb-2010-11-8-r86
10.1007/s10723-013-9261-8
10.1109/eScience.2012.6404442
10.1145/1376616.1376726
10.1109/WORKS.2006.5282349
10.1109/CLOUD.2010.64
10.1109/SC.2008.5217932
10.1109/TCC.2014.2303077
10.1109/CCGRID.2007.76
10.1109/UCC.2011.25
10.1007/s10723-013-9266-3
10.1109/SC.1998.10018
10.1007/978-3-642-34222-6_12
10.1002/spe.584
10.1109/SC.Companion.2012.131
10.1016/j.jpdc.2013.12.004
10.1007/s10723-012-9240-5
10.1109/MIC.2011.44
10.1109/CCGrid.2012.134
10.14778/3402755.3402766
10.1145/1272366.1272383
10.1007/978-3-642-31500-8_2
10.1007/978-0-85729-049-6_4
10.1007/s13174-010-0007-6
10.1109/SERVICES.2007.63
10.1002/cpe.1228
10.1007/978-3-642-21878-1_38
10.1109/ICPRIME.2013.6496507
10.1007/978-3-319-11268-8_10
10.1109/IPDPS.2010.5470453
10.1007/978-3-319-11268-8_4
10.1109/CCGRID.2005.1558639
10.1109/SC.Companion.2012.28
10.1007/978-3-319-11268-8_3
10.1186/1471-2105-11-S12-S4
10.1093/bioinformatics/bth361
10.1109/CCGrid.2012.57
10.1002/cpe.1880
10.1145/2457317.2457365
10.1007/978-3-319-11268-8_12
10.1109/SC.2012.38
10.1109/HCW.1999.765094
10.1007/978-3-319-11268-8_19
10.1504/IJBPIM.2010.033176
10.1109/BigData.2013.6691567
10.1016/j.future.2013.09.018
10.1016/j.procs.2012.04.179
10.1007/978-3-642-23291-6_4
10.1016/j.parco.2011.05.005
10.1109/MCSE.2008.79
10.1007/978-3-319-11268-8_11
10.1007/978-3-319-11268-8_7
10.1002/cpe.994
10.1145/2043164.2018448
10.1109/DCS.1988.12507
10.1109/SERVICES.2011.32
10.1109/SC.Companion.2012.228
10.1109/eScience.2012.6404431
10.1007/978-3-319-11268-8_17
10.1109/CCGRID.2007.101
10.1093/nar/gkt328
10.1007/11890850_14
10.1524/itit.2011.0640
10.1016/j.future.2014.02.016
10.1145/1341811.1341822
10.1145/1996130.1996173
10.1145/2443416.2443417
10.1109/HPCC.2011.55
10.1007/978-3-540-68111-3_78
10.1007/978-3-642-22825-4_9
10.1145/2110497.2110501
10.1109/eScience.2011.15
10.1145/1272996.1273005
10.1504/IJCSE.2009.026999
10.1016/j.future.2008.06.012
10.1109/SERVICES-I.2009.60
10.1007/978-1-4614-1614-2
10.1002/cpe.1654
10.1002/1096-9128(200009)12:11<1019::AID-CPE518>3.0.CO;2-G
10.1016/j.future.2014.11.017
10.1145/1645164.1645176
10.1007/978-3-319-11268-8_16
10.1145/2443416.2443421
10.1109/DASC.2011.102
10.1007/978-1-84628-757-2_19
10.1109/CloudCom.2013.48
10.1145/2465848.2465852
10.1109/71.993206
10.1007/s10723-005-9010-8
10.1109/SERVICES-1.2008.79
10.1109/IPDPS.2008.4536445
10.1145/2457317.2457374
10.5220/0003958901270134
10.1109/ICSAI.2012.6223147
10.1007/978-0-85729-439-5_12
10.2200/S00414ED1V01Y201204DTM025
10.1007/978-3-642-31927-3_16
10.1145/2443416.2443418
10.1109/HPDC.2001.945176
10.1007/978-3-319-11268-8_9
10.1109/eScience.2012.6404479
10.1007/978-3-642-13818-8_33
10.1109/IPDPS.2007.370305
10.1109/SC.Companion.2012.26
10.1007/978-3-319-14325-5_10
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Journal of Grid Computing is a copyright of Springer, (2015). All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
– notice: Journal of Grid Computing is a copyright of Springer, (2015). All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1007/s10723-015-9329-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1572-9184
EndPage 493
ExternalDocumentID oai:HAL:lirmm-01144760v1
10_1007_s10723_015_9329_8
GroupedDBID -59
-5G
-BR
-D3
-D4
-D8
-DT
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KZ1
LAK
LLZTM
LMP
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
8FD
JQ2
L7M
L~C
L~D
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c498t-c14658b7f40ad8b689b4697e3cca3b09dc301a6ec56c6008b3a910d1d64d2c613
IEDL.DBID P5Z
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368725500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-7873
IngestDate Tue Oct 14 20:45:23 EDT 2025
Thu Oct 02 05:40:16 EDT 2025
Tue Nov 04 23:04:25 EST 2025
Sat Nov 29 07:52:00 EST 2025
Tue Nov 18 21:19:23 EST 2025
Fri Feb 21 02:36:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Scientific workflow management system
Grid
Cloud
Multisite cloud
Scheduling
Distributed and parallel data management
Scientific workflow
Parallelization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-c14658b7f40ad8b689b4697e3cca3b09dc301a6ec56c6008b3a910d1d64d2c613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4710-5697
0000-0002-0870-3371
0000-0001-6506-7538
0000-0003-1370-9943
OpenAccessLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01144760
PQID 2259771899
PQPubID 2043852
PageCount 37
ParticipantIDs hal_primary_oai_HAL_lirmm_01144760v1
proquest_miscellaneous_1816067852
proquest_journals_2259771899
crossref_primary_10_1007_s10723_015_9329_8
crossref_citationtrail_10_1007_s10723_015_9329_8
springer_journals_10_1007_s10723_015_9329_8
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle From Grids to Cloud Federations
PublicationTitle Journal of grid computing
PublicationTitleAbbrev J Grid Computing
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer Verlag
References Chen, W., Silva, R.D., Deelman, E., Sakellariou, R.: Balanced task clustering in scientific workflows. In: IEEE 9th Int. Conf. on e-Science, pp. 188–195 (2013)
ChowdhuryMZahariaMMaJJordanMIStoicaIManaging data transfers in computer clusters with orchestraACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications20114149810910.1145/2043164.2018448
Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained provisioning for scientific workflow ensembles in iaas clouds. In: Supercomputing (SC) Conf. on High Performance Computing Networking, Storage and Analysis, pp. 1–11 (2012)
de OliveiraDOcañaKACSBaiãoFMattosoMA provenance-based adaptive scheduling heuristic for parallel scientific workflows in cloudsJ. Grid Comput.201210352155210.1007/s10723-012-9227-2
GoecksJNekrutenkoATaylorJGalaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciencesGenome Biol.201011811310.1186/gb-2010-11-8-r86
GuYWuCLiuXYuDDistributed throughput optimization for large-scale scientific workflows under fault-tolerance constraintJournal of Grid Computing201311336137910.1007/s10723-013-9266-3
Olabarriaga, S., Benabdelkader, A., Caan, M., Jaghoori, M., Krüger, J., de la Garza, L., Mohr, C., Schubert, B., Danezi, A., Kiss, T.: Ws-pgrade/guse-based science gateways in teaching. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 223–234. Springer International Publishing (2014)
Bergmann, R., Gil, Y.: Retrieval of semantic workflows with knowledge intensive similarity measures. In: 19th International Conference on Case-Based Reasoning Research and Development, pp. 17–31 (2011)
Holl, S., Zimmermann, O., Hofmann-Apitius, M.: A new optimization phase for scientific workflow management systems. In: 8th IEEE Int. Conf. on E-Science, pp. 1–8 (2012)
Tanaka, M., Tatebe, O.: Workflow scheduling to minimize data movement using multi-constraint graph partitioning. In: 12th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid Computing (Ccgrid), pp. 65–72 (2012)
Chervenak, A. L., Smith, D. E., Chen, W., Deelman, E.: Integrating policy with scientific workflow management for data-intensive applications. In: Supercomputing (SC) Companion: High Performance Computing, Networking Storage and Analysis, pp. 140–149 (2012)
Terstyánszky, G., Michniak, E., Kiss, T., Balaskó, Á.: Sharing science gateway artefacts through repositories. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 123–135. Springer International Publishing (2014)
Costa, F., de Oliveira, D., Ocala, K., Ogasawara, E., Dias, J., Mattoso, M.: Handling failures in parallel scientific workflows using clouds. In: Supercomputing (SC) Companion: High Performance Computing, Networking Storage and Analysis, pp. 129–139 (2012)
Hernández, F., Fahringer, T.: Towards workflow sharing and reusein the askalon grid environment. In: Proceedings of Cracow Grid Workshops (CGW), pp. 111–119 (2008)
Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing (2012)
Korf, I., Yandell, M., Bedell, J.A.: BLAST - an essential guide to the basic local alignment search tool. O’Reilly (2003)
Gesing, S., Krüger, J., Grunzke, R., de la Garza, L., Herres-Pawlis, S., Hoffmann, A.: Molecular simulation grid (mosgrid): A science gateway tailored to the molecular simulation community. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 151–165. Springer International Publishing (2014)
Ostermann, S., Plankensteiner, K., Prodan, R., Fahringer, T.: Groudsim: An event-based simulation framework for computational grids and clouds. In: European Conf. on Parallel Processing (Euro-Par) Workshops, pp. 305–313 (2011)
Shahand, S., Jaghoori, M., Benabdelkader, A., Font-Calvo, J., Huguet, J., Caan, M., van Kampen, A., Olabarriaga, S.: Computational neuroscience gateway: A science gateway based on the ws-pgrade/guse. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 139–149. Springer International Publishing (2014)
Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Complete Reference, Volume 1: The MPI Core. MIT Press (1998)
Gadelha Jr., L.M.R., Wilde, M., Mattoso, M., Foster, I.: Provenance traces of the swift parallel scripting system, pp. 325–326 (2013)
Chen, W., Deelman, E.: Integration of workflow partitioning and resource provisioning. In: IEEE/ACM Int. Symposium on Cluster Computing and the Grid (CCGRID), pp. 764–768 (2012)
FardHMProdanRFahringerTMulti-objective list scheduling of workflow applications in distributed computing infrastructuresJ. Parallel Distrib. Comput.20147432152216510.1016/j.jpdc.2013.12.0041283.68111
KacsukPP-grade portal family for grid infrastructuresConcurrency and Computation: Practice and Experience201123323524510.1002/cpe.1654
AfganEBakerDCoraorNChapmanBNekrutenkoATaylorJGalaxy cloudman: delivering cloud compute clustersBMC Bioinforma.201011Suppl 12S410.1186/1471-2105-11-S12-S4
Nguyen, D., Thoai, N.: Ebc: Application-level migration on multi-site cloud. In: Int. Conf. on Systems and Informatics (ICSAI), pp. 876–880 (2012)
Taylor, I., Shields, M., Wang, I., Harrison, A.: The triana workflow environment: Architecture and applications. In: Workflows for e-Science, pp. 320–339. Springer (2007)
Chirigati, F., Silva, V., Ogasawara, E., de Oliveira, D., Dias, J., Porto, F., Valduriez, P., Mattoso, M.: Evaluating parameter sweep workflows in high performance computing. In: 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pp. 2:1–2:10 (2012)
BrandicIDustdarSGrid vs cloud - A technology comparison.IT - Inf. Technol.201153417317910.1524/itit.2011.0640
Deelman, E., Juve, G., Berriman, G.B.: Using clouds for science, is it just kicking the can down the road? In: Cloud Computing and Services Science (CLOSER), 2nd Int. Conf. on Cloud Computing and Services Science, pp. 127–134 (2012)
OliveiraDDOcañaKACSOgasawaraEDiasJGonçalvesJBaiãoFMattosoMPerformance evaluation of parallel strategies in public clouds: A study with phylogenomic workflowsFutur. Gener. Comput. Syst.20132971816182510.1016/j.future.2012.12.019
White, T.: Hadoop: The Definitive Guide, O’Reilly Media, Inc. (2009)
FreireJKoopDSantosESilvaCTProvenance for computational tasks: A surveyComputing in Science and Engineering2008103112110.1109/MCSE.2008.79
Amazon cloud (2015). http://aws.amazon.com
Fard, H.M., Fahringer, T., Prodan, R.: Budget-constrained resource provisioning for scientific applications in clouds. In: IEEE 5th Int. Conf. on Cloud Computing Technology and Science (CloudCom), vol. 1, pp. 315–322 (2013)
Cohen-BoulakiaSChenJMissierPGobleCAWilliamsARFroidevauxCDistilling structure in taverna scientific workflows: a refactoring approachBMC Bioinformatics201415S-1S1210.1186/1471-2105-15-S1-S12
Samak, T., Gunter, D., Goode, M., Deelman, E., Juve, G., Mehta, G., Silva, F., Vahi, K.: Online fault and anomaly detection for large-scale scientific workflows. In: 13th IEEE Int. Conf. on High Performance Computing and Communications (HPCC), pp. 373–381 (2011)
Grid’5000 project (2015). https://www.grid5000.fr/mediawiki/index.php
Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate data storage in scientific cloud workflow systems. In: IEEE Int. Symposium on Parallel Distributed Processing (IPDPS), pp. 1–12 (2010)
OgasawaraESDiasJSilvaVChirigatiFSde OliveiraDPortoFValduriezPMattosoMChiron: a parallel engine for algebraic scientific workflowsConcurrency and Computation: Practice and Experience201325162327234110.1002/cpe.3032
Juve, G., Deelman, E.: Wrangler: Virtual cluster provisioning for the cloud. In: 20th Int. Symposium on High Performance Distributed Computing, pp. 277–278 (2011)
Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning. In: ACM/IEEE Conf. on Supercomputing, pp. 1–13 (1998)
Liu, J., Silva, V., Pacitti, E., Valduriez, P., Mattoso, M.: Scientific workflow partitioning in multisite cloud. In: Parallel Processing Workshops - Euro-Par 2014 Int. Workshops, pp. 105–116 (2014)
Ocaña, K.A., Oliveira, D., Ogasawara, E., Dávila, A.M., Lima, A.A., Mattoso, M.: Sciphy: A cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In: Advances in Bioinformatics and Computational Biology, vol. 6832, pp. 66–70 (2011)
AalstWMPvdWeskeMWirtzGAdvanced topics in workflow management: Issues, requirements, and solutionsTrans. SDPS2003734977
Mattoso, M., Werner, C., Travassos, G., Braganholo, V., Ogasawara, E., Oliveira, D., Cruz, S., Martinho, W., Murta, L.: Towards supporting the life cycle of large scale scientific experiments. In: Int. J. Business Process Integration and Management, vol. 5, pp. 79–82 (2010)
LudäscherBAltintasIBerkleyCHigginsDJaegerEJonesMBLeeEATaoJZhaoYScientific workflow management and the kepler systemConcurrency and Computation: Practice and Experience200618101039106510.1002/cpe.994
YuJBuyyaRA taxonomy of workflow management systems for grid computingJ. Grid Comput.2005317120010.1007/s10723-005-9010-8
WildeMHateganMWozniakJMCliffordBKatzDSFosterISwift: A language for distributed parallel scriptingParallel Comput.201137963365210.1016/j.parco.2011.05.005
Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the cloud: The montage example. In: ACM/IEEE Conf. on High Performance Computing, pp. 1–12 (2008)
Anglano, C., Canonico, M.: Scheduling algorithms for multiple bag-of-task applications on desktop grids: A knowledge-free approach. In: 22nd IEEE Int. Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–8 (2008)
DeelmanEGannonDShieldsMTaylorIWorkflows and e-science: An overview of workflow system features and capabilitiesFutur. Gener. Comput. Syst.200925552854010.1016/j.future.2008.06.012
DeelmanESinghGSuM-HBlytheJGilYKesselmanCMehtaGVahiKBerrimanGBGoodJLaityAJacobJCKatzDSPegasus: A framework for mapping complex scientific workflows onto distributed
9329_CR34
M Chowdhury (9329_CR26) 2011; 41
9329_CR32
9329_CR30
9329_CR31
R Duan (9329_CR46) 2014; 2
ES Ogasawara (9329_CR102) 2013; 25
9329_CR39
9329_CR36
B Ludäscher (9329_CR90) 2006; 18
9329_CR37
HM Fard (9329_CR49) 2014; 74
9329_CR23
J Goecks (9329_CR60) 2010; 11
9329_CR24
9329_CR21
9329_CR22
E Deelman (9329_CR38) 2009; 25
Y Gu (9329_CR65) 2013; 11
E Afgan (9329_CR6) 2010; 11
M Wilde (9329_CR135) 2011; 37
9329_CR29
9329_CR27
9329_CR25
I Brandic (9329_CR18) 2011; 53
9329_CR56
9329_CR119
9329_CR54
H Topcuouglu (9329_CR128) 2002; 13
9329_CR55
9329_CR52
9329_CR115
9329_CR116
9329_CR50
9329_CR117
9329_CR118
9329_CR111
9329_CR112
9329_CR114
Q Zhang (9329_CR143) 2010; 1
9329_CR110
J Yu (9329_CR139) 2005; 3
K Wolstencroft (9329_CR136) 2013; 41
9329_CR58
9329_CR59
9329_CR45
9329_CR108
9329_CR109
9329_CR43
9329_CR44
9329_CR42
9329_CR105
9329_CR40
9329_CR107
9329_CR100
9329_CR103
WMPvd Aalst (9329_CR129) 2003; 7
J Freire (9329_CR53) 2008; 10
JC Jacob (9329_CR74) 2009; 4
D Garijo (9329_CR57) 2014; 36
9329_CR47
E Deelman (9329_CR41) 2005; 13
9329_CR48
9329_CR79
9329_CR76
S Cohen-Boulakia (9329_CR28) 2014; 15
P Kacsuk (9329_CR77) 2011; 23
9329_CR137
9329_CR75
9329_CR138
9329_CR72
9329_CR73
9329_CR70
9329_CR133
9329_CR134
9329_CR130
9329_CR131
9329_CR132
D de Oliveira (9329_CR35) 2012; 24
D de Oliveira (9329_CR33) 2012; 10
9329_CR67
9329_CR68
9329_CR66
9329_CR63
9329_CR64
9329_CR127
9329_CR61
9329_CR62
J Felsenstein (9329_CR51) 1989; 5
9329_CR122
9329_CR123
9329_CR124
9329_CR125
9329_CR120
9329_CR121
P Kacsuk (9329_CR78) 2012; 10
E Huedo (9329_CR71) 2004; 34
9329_CR69
9329_CR12
9329_CR13
9329_CR10
DS Milojicic (9329_CR95) 2011; 15
9329_CR98
9329_CR11
9329_CR99
9329_CR96
ES Ogasawara (9329_CR101) 2011; 4
9329_CR97
9329_CR94
9329_CR92
K Plankensteiner (9329_CR113) 2013; 11
9329_CR93
M Abouelhoda (9329_CR5) 2012; 13
9329_CR91
DD Oliveira (9329_CR106) 2013; 29
B Carpenter (9329_CR20) 2000; 12
G Terstyánszky (9329_CR126) 2014; 37
9329_CR19
9329_CR16
9329_CR17
9329_CR14
9329_CR15
9329_CR89
9329_CR87
9329_CR88
9329_CR3
9329_CR85
9329_CR4
9329_CR86
9329_CR1
9329_CR83
9329_CR2
9329_CR84
9329_CR7
9329_CR144
9329_CR8
9329_CR82
TM Oinn (9329_CR104) 2004; 20
9329_CR145
9329_CR80
9329_CR140
9329_CR141
9329_CR9
J Kim (9329_CR81) 2008; 20
9329_CR142
References_xml – reference: Hernández, F., Fahringer, T.: Towards workflow sharing and reusein the askalon grid environment. In: Proceedings of Cracow Grid Workshops (CGW), pp. 111–119 (2008)
– reference: Gottdank, T.: Introduction to the ws-pgrade/guse science gateway framework. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp.. 19–32. Springer International Publishing (2014)
– reference: Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Complete Reference, Volume 1: The MPI Core. MIT Press (1998)
– reference: Olabarriaga, S., Benabdelkader, A., Caan, M., Jaghoori, M., Krüger, J., de la Garza, L., Mohr, C., Schubert, B., Danezi, A., Kiss, T.: Ws-pgrade/guse-based science gateways in teaching. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 223–234. Springer International Publishing (2014)
– reference: Prodan, R.: Online analysis and runtime steering of dynamic workflows in the askalon grid environment. In: 7th IEEE Int. Symposium on Cluster Computing and the Grid (CCGRID), pp. 389–400 (2007)
– reference: Chen, W., Deelman, E.: Integration of workflow partitioning and resource provisioning. In: IEEE/ACM Int. Symposium on Cluster Computing and the Grid (CCGRID), pp. 764–768 (2012)
– reference: Juve, G., Deelman, E.: Wrangler: Virtual cluster provisioning for the cloud. In: 20th Int. Symposium on High Performance Distributed Computing, pp. 277–278 (2011)
– reference: FelsensteinJPhylip - phylogeny inference package (version 3.2)Cladistics19895164166
– reference: Gil, Y., Kim, J., Ratnakar, V., Deelman, E.: Wings for pegasus: A semantic approach to creating very large scientific workflows. In: OWLED*06 Workshop on OWL: Experiences and Directions, vol. 216 (2006)
– reference: WolstencroftKHainesRFellowsDWilliamsARWithersDOwenSSoiland-ReyesSDunlopINenadicAFisherPBhagatJBelhajjameKBacallFHardistyAde la HidalgaANVargasMPBSufiSGobleCAThe taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloudNucleic Acids Res.201341Webserver-Issue55756110.1093/nar/gkt328
– reference: Gadelha Jr., L.M.R., Wilde, M., Mattoso, M., Foster, I.: Provenance traces of the swift parallel scripting system, pp. 325–326 (2013)
– reference: ChowdhuryMZahariaMMaJJordanMIStoicaIManaging data transfers in computer clusters with orchestraACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications20114149810910.1145/2043164.2018448
– reference: Coalition, W.M.: Workflow management coalition terminology and glossary (1999)
– reference: Bux, M., Leser, U.: Parallelization in scientific workflow management systems. The Computing Research Repository (CoRR), abs/1303.7195 (2013)
– reference: Mattoso, M., Werner, C., Travassos, G., Braganholo, V., Ogasawara, E., Oliveira, D., Cruz, S., Martinho, W., Murta, L.: Towards supporting the life cycle of large scale scientific experiments. In: Int. J. Business Process Integration and Management, vol. 5, pp. 79–82 (2010)
– reference: Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the kepler scientific workflow system. In: International Conference on Provenance and Annotation of Data, pp. 118–132 (2006)
– reference: Samak, T., Gunter, D., Goode, M., Deelman, E., Juve, G., Mehta, G., Silva, F., Vahi, K.: Online fault and anomaly detection for large-scale scientific workflows. In: 13th IEEE Int. Conf. on High Performance Computing and Communications (HPCC), pp. 373–381 (2011)
– reference: Balaskó, Á. Workflow concept of ws-pgrade/guse. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 33–50. Springer International Publishing (2014)
– reference: Bergmann, R., Gil, Y.: Retrieval of semantic workflows with knowledge intensive similarity measures. In: 19th International Conference on Case-Based Reasoning Research and Development, pp. 17–31 (2011)
– reference: Gonçalves, J.A.R., Oliveira, D., Ocaña, K., Ogasawara, E., Mattoso, M.: Using domain-specific data to enhance scientific workflow steering queries. In: Provenance and Annotation of Data and Processes, vol. 7525, pp. 152–167 (2012)
– reference: Wozniak, J.M., Armstrong, T.G., Maheshwari, K., Lusk, E.L., Katz, D.S., Wilde, M., Foster, I.T.: Turbine: A distributed-memory dataflow engine for extreme-scale many-task applications. In: 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pp. 5:1–5:12 (2012)
– reference: Amazon cloud (2015). http://aws.amazon.com/
– reference: MilojicicDSLlorenteIMMonteroRSOpennebula: A cloud management toolIEEE Internet Computing2011152111410.1109/MIC.2011.44
– reference: Farkas, Z., Hajnal, Á., Kacsuk, P.: Ws-pgrade/guse and clouds. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 97–109. Springer International Publishing (2014)
– reference: Yu, Z., Shi, W.: An adaptive rescheduling strategy for grid workflow applications. In: IEEE Int. Parallel and Distributed Processing Symposium (IPDPS), pp. 1–8 (2007)
– reference: GoecksJNekrutenkoATaylorJGalaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciencesGenome Biol.201011811310.1186/gb-2010-11-8-r86
– reference: Nguyen, D., Thoai, N.: Ebc: Application-level migration on multi-site cloud. In: Int. Conf. on Systems and Informatics (ICSAI), pp. 876–880 (2012)
– reference: de OliveiraDOcañaKACSBaiãoFMattosoMA provenance-based adaptive scheduling heuristic for parallel scientific workflows in cloudsJ. Grid Comput.201210352155210.1007/s10723-012-9227-2
– reference: Kocair, Ç., Şener, C., Akkaya, A. Statistical seismology science gateway. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 167–180. Springer International Publishing (2014)
– reference: Tanaka, M., Tatebe, O.: Workflow scheduling to minimize data movement using multi-constraint graph partitioning. In: 12th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid Computing (Ccgrid), pp. 65–72 (2012)
– reference: Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: 6th Symposium on Operating System Design and Implementation (OSDI 2004), pp. 137–150 (2004)
– reference: Ganga, K., Karthik, S.: A fault tolerent approach in scientific workflow systems based on cloud computing. In: Int. Conf. on Pattern Recognition, Informatics and Mobile Engineering (PRIME), pp. 387–390 (2013)
– reference: Ramakrishnan, A., Singh, G., Zhao, H., Deelman, E., Sakellariou, R., Vahi, K., Blackburn, K., Meyers, D., Samidi, M.: Scheduling data-intensiveworkflows onto storage-constrained distributed resources. In: 7th IEEE Int. Symposium on Cluster Computing and the Grid (CCGRID), pp. 401–409 (2007)
– reference: White, T.: Hadoop: The Definitive Guide, O’Reilly Media, Inc. (2009)
– reference: Grid’5000 project (2015). https://www.grid5000.fr/mediawiki/index.php
– reference: HuedoEMonteroRSLlorenteIMA framework for adaptive execution in gridsSoftware - Practice and Experience (SPE)200434763165110.1002/spe.584
– reference: Critchlow, T., Jr, G.C.: Supercomputing and scientific workflows gaps and requirements. In: World Congress on Services, pp. 208–211 (2011)
– reference: Chen, W., Deelman, E.: Partitioning and scheduling workflows across multiple sites with storage constraints. In: 9th Int. Conf. on Parallel Processing and Applied Mathematics - Volume Part II, vol. 7204, pp. 11–20 (2012)
– reference: KimJDeelmanEGilYMehtaGRatnakarVProvenance trails in the wings-pegasus systemConcurrency and Computation: Practice and Experience20082058759710.1002/cpe.1228
– reference: Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: 16th International Conference on Scientific and Statistical Database Management (SSDBM), pp. 423–424 (2004)
– reference: GarijoDAlperPBelhajjameKCorchoÓGilYGobleCACommon motifs in scientific workflows: An empirical analysisFutur. Gener. Comput. Syst.20143633835110.1016/j.future.2013.09.018
– reference: OgasawaraESde OliveiraDValduriezPDiasJPortoFMattosoMAn algebraic approach for data-centric scientific workflowsProceedings of the VLDB Endowment (PVLDB)201141213281339
– reference: Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the cloud: The montage example. In: ACM/IEEE Conf. on High Performance Computing, pp. 1–12 (2008)
– reference: Gunter, D., Deelman, E., Samak, T., Brooks, C., Goode, M., Juve, G., Mehta, G., Moraes, P., Silva, F., Swany, M., Vahi, K.: Online workflow management and performance analysis with stampede. In: 7th Int. Conf. on Network and Service Management (CNSM), pp. 1–10 (2011)
– reference: Pegasus 4.4.1 user guide (2015). https://pegasus.isi.edu/wms/docs/latest/
– reference: DeelmanESinghGSuM-HBlytheJGilYKesselmanCMehtaGVahiKBerrimanGBGoodJLaityAJacobJCKatzDSPegasus: A framework for mapping complex scientific workflows onto distributed systemsSci. Program.2005133219237
– reference: Zhao, Y., Raicu, I., Foster, I.T.: Scientific workflow systems for 21st century, new bottle or new wine? In: IEEE Congress on Services, Part I, Services I, pp 467–471 (2008)
– reference: AbouelhodaMIssaSGhanemMTavaxy: Integrating taverna and galaxy workflows with cloud computing supportBMC Bioinforma.20121317710.1186/1471-2105-13-77
– reference: FreireJKoopDSantosESilvaCTProvenance for computational tasks: A surveyComputing in Science and Engineering2008103112110.1109/MCSE.2008.79
– reference: Kiss, T., Kacsuk, P., Lovas, R., Balaskó, Á., Spinuso, A., Atkinson, M., D’Agostino, D., Danovaro, E., Schiffers, M. Ws-pgrade/guse in european projects. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp.. 235–254. Springer International Publishing (2014)
– reference: Barker, A., Hemert, J.V.: Scientific workflow: A survey and research directions. In: 7th Int. Conf. on Parallel Processing and Applied Mathematics, pp. 746–753 (2008)
– reference: CarpenterBGetovVJuddGSkjellumAMpjGFoxMpi-like message passing for javaConcurrency and Computation: Practice and Experience200012111019103810.1002/1096-9128(200009)12:11<1019::AID-CPE518>3.0.CO;2-G0987.68561
– reference: Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing (2012)
– reference: Wang, J., Crawl, D., Altintas, I.: Kepler + hadoop: A general architecture facilitating data-intensive applications in scientific workflow systems. In: 4th Workshop on Workflows in Support of Large-Scale Science, pp. 12:1–12:8 (2009)
– reference: Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning. In: ACM/IEEE Conf. on Supercomputing, pp. 1–13 (1998)
– reference: Holl, S., Zimmermann, O., Hofmann-Apitius, M.: A new optimization phase for scientific workflow management systems. In: 8th IEEE Int. Conf. on E-Science, pp. 1–8 (2012)
– reference: Costa, F., Silva, V., de Oliveira, D., Ocaña, K.A.C.S., Ogasawara, E.S., Dias, J., Mattoso, M.: Capturing and querying workflow runtime provenance with prov: a practical approach. In: EDBT/ICDT Workshops, pp. 282–289 (2013)
– reference: Dias, J., de Oliveira, D., Mattoso, M., Ocana, K.A.C.S., Ogasawara, E.: Discovering drug targets for neglected diseases using a pharmacophylogenomic cloud workflow. In: IEEE 8th Int. Conf. on E-Science (e-Science), pp. 1–8 (2012)
– reference: Kiss, T., Kacsuk, P., Takács, E., Szabó, Á., Tihanyi, P., Taylor, S.: Commercial use of ws-pgrade/guse. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp.. 271–286. Springer International Publishing (2014)
– reference: Litzkow, M.J., Livny, M., Mutka, M.W.: Condor-a hunter of idle workstations. In: 8th Int. Conf. on Distributed Computing Systems, pp. 104–111 (1988)
– reference: Liu, J., Silva, V., Pacitti, E., Valduriez, P., Mattoso, M.: Scientific workflow partitioning in multisite cloud. In: Parallel Processing Workshops - Euro-Par 2014 Int. Workshops, pp. 105–116 (2014)
– reference: Yildiz, U., Guabtni, A., Ngu, A.H.H.: Business versus scientific workflows: A comparative study. In: IEEE Congress on Services, Part I, Services I, pp. 340–343 (2009)
– reference: AalstWMPvdWeskeMWirtzGAdvanced topics in workflow management: Issues, requirements, and solutionsTrans. SDPS2003734977
– reference: de Oliveira, D., Viana, V., Ogasawara, E., Ocana, K., Mattoso, M.: Dimensioning the virtual cluster for parallel scientific workflows in clouds. In: 4th ACM Workshop on Scientific Cloud Computing, pp. 5–12 (2013)
– reference: Gesing, S., Krüger, J., Grunzke, R., de la Garza, L., Herres-Pawlis, S., Hoffmann, A.: Molecular simulation grid (mosgrid): A science gateway tailored to the molecular simulation community. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 151–165. Springer International Publishing (2014)
– reference: Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A., Oinn, T., Goble, C.: Taverna, reloaded. In: Int. Conf. on Scientific and Statistical Database Management, pp. 471–481 (2010)
– reference: Anglano, C., Canonico, M.: Scheduling algorithms for multiple bag-of-task applications on desktop grids: A knowledge-free approach. In: 22nd IEEE Int. Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–8 (2008)
– reference: TopcuougluHHaririSWuMPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Transactions on Parallel and Distributed Systems200213326027410.1109/71.993206
– reference: Cohen-BoulakiaSChenJMissierPGobleCAWilliamsARFroidevauxCDistilling structure in taverna scientific workflows: a refactoring approachBMC Bioinformatics201415S-1S1210.1186/1471-2105-15-S1-S12
– reference: Juve, G., Deelman, E.: Scientific workflows in the cloud. In: Grids, Clouds and Virtualization, pp. 71–91. Springer (2011)
– reference: Sciacca, E., Vitello, F., Becciani, U., Costa, A., Massimino, P. Visivo gateway and visivo mobile for the astrophysics community. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 181–194. Springer International Publishing (2014)
– reference: Deng, K., Kong, L., Song, J., Ren, K., Yuan, D.: A weighted k-means clustering based co-scheduling strategy towards efficient execution of scientific workflows in collaborative cloud environments. In: IEEE 9th Int. Conf. on Dependable, Autonomic and Secure Computing (DASC), pp. 547–554 (2011)
– reference: Raicu, I., Zhao, Y., Foster, I.T., Szalay, A.S.: Data diffusion: Dynamic resource provision and data-aware scheduling for data intensive applications. The Computing Research Repository (CoRR), abs/0808.3535 (2008)
– reference: TerstyánszkyGKuklaTKissTKacsukPBalaskó, Á.FarkasZEnabling scientific workflow sharing through coarse-grained interoperabilityFutur. Gener. Comput. Syst.201437465910.1016/j.future.2014.02.016
– reference: Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate data storage in scientific cloud workflow systems. In: IEEE Int. Symposium on Parallel Distributed Processing (IPDPS), pp. 1–12 (2010)
– reference: Zhang, H., Soiland-Reyes, S., Goble, C.A.: Taverna mobile: Taverna workflows on android. The Computing Research Repository (CoRR), abs/1309.2787 (2013)
– reference: Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: Towards a Grid-Enabled system for scientific workflows. The Workflow in Grid Systems Workshop in GGF10-The 10th Global Grid Forum (2004)
– reference: Pacitti, E., Akbarinia, R., Dick, M.E.: P2P Techniques for Decentralized Applications. Morgan & Claypool Publishers (2012)
– reference: Albrecht, M., Donnelly, P., Bui, P., Thain, D.: Makeflow: A portable abstraction for data intensive computing on clusters, clouds, and grids. In: 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pp. 1:1–1:13 (2012)
– reference: Deelman, E., Juve, G., Berriman, G.B.: Using clouds for science, is it just kicking the can down the road? In: Cloud Computing and Services Science (CLOSER), 2nd Int. Conf. on Cloud Computing and Services Science, pp. 127–134 (2012)
– reference: OinnTMAddisMFerrisJMarvinDSengerMGreenwoodRMCarverTGloverKPocockMRWipatALiPTaverna: a tool for the composition and enactment of bioinformatics workflowsBioinformatics200420173045305410.1093/bioinformatics/bth361
– reference: Crawl, D., Wang, J., Altintas, I.: Provenance for mapreduce-based data-intensive workflows. In: 6th Workshop on Workflows in Support of Large-scale Science, pp. 21–30 (2011)
– reference: ZhangQChengLBoutabaRCloud computing: state-of-the-art and research challengesJournal of Internet Services and Applications2010171810.1007/s13174-010-0007-6
– reference: Kozlovszky, M., Karóczkai, K., Márton, I., Kacsuk, P., Gottdank, T.: Dci bridge: Executing ws-pgrade workflows in distributed computing infrastructures. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 51–67. Springer International Publishing (2014)
– reference: Mattoso, M., Dias, J., Ocaña, K. A., Ogasawara, E., Costa, F., Horta, F., Silva, V., de Oliveira, D.: Dynamic steering of HPC scientific workflows: A survey. Futur. Gener. Comput. Syst. 0 (2014)
– reference: OliveiraDDOcañaKACSOgasawaraEDiasJGonçalvesJBaiãoFMattosoMPerformance evaluation of parallel strategies in public clouds: A study with phylogenomic workflowsFutur. Gener. Comput. Syst.20132971816182510.1016/j.future.2012.12.019
– reference: Horta, F., Dias, J., Ocana, K., de Oliveira, D., Ogasawara, E., Mattoso, M.: Abstract: Using provenance to visualize data from large-scale experiments. In: Supercomputing (SC): High Performance Computing, Networking Storage and Analysis, pp. 1418–1419 (2012)
– reference: JacobJCKatzDSBerrimanGBGoodJCLaityACDeelmanEKesselmanCSinghGSuM-HPrinceTAWilliamsRMontage: a grid portal and software toolkit for science-grade astronomical image mosaickingInt. J. Comput. Sci. Eng.200942738710.1504/IJCSE.2009.026999
– reference: FardHMProdanRFahringerTMulti-objective list scheduling of workflow applications in distributed computing infrastructuresJ. Parallel Distrib. Comput.20147432152216510.1016/j.jpdc.2013.12.0041283.68111
– reference: Fard, H.M., Fahringer, T., Prodan, R.: Budget-constrained resource provisioning for scientific applications in clouds. In: IEEE 5th Int. Conf. on Cloud Computing Technology and Science (CloudCom), vol. 1, pp. 315–322 (2013)
– reference: KacsukPFarkasZKozlovszkyMHermannGBalaskoAKaroczkaiKMartonIWs-pgrade/guse generic dci gateway framework for a large variety of user communitiesJ. Grid Comput.201210460163010.1007/s10723-012-9240-5
– reference: WildeMHateganMWozniakJMCliffordBKatzDSFosterISwift: A language for distributed parallel scriptingParallel Comput.201137963365210.1016/j.parco.2011.05.005
– reference: Oinn, T., Li, P., Kell, D.B., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens, R., Turi, D., Zhao, J.: Taverna/mygrid: Aligning a workflow system with the life sciences community. In: Workflows for e-Science, pp. 300–319 (2007)
– reference: Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task scheduling strategies for workflow-based applications in grids. In: 5th IEEE Int. Symposium on Cluster Computing and the Grid (CCGrid), pp. 759–767 (2005)
– reference: Goecks, J., Nekrutenko, A., Taylor, J.: Lessons learned from galaxy, a web-based platform for high-throughput genomic analyses. In: IEEE Int. Conf. on E-Science, e-Science, pp. 1–6 (2012)
– reference: LudäscherBAltintasIBerkleyCHigginsDJaegerEJonesMBLeeEATaoJZhaoYScientific workflow management and the kepler systemConcurrency and Computation: Practice and Experience200618101039106510.1002/cpe.994
– reference: Liu, B., Sotomayor, B., Madduri, R., Chard, K., Foster, I.: Deploying bioinformatics workflows on clouds with galaxy and globus provision. In: Supercomputing (SC) Companion: High Performance Computing, Networking, Storage and Analysis (SCC), pp. 1087–1095 (2012)
– reference: YuJBuyyaRA taxonomy of workflow management systems for grid computingJ. Grid Comput.2005317120010.1007/s10723-005-9010-8
– reference: Ocaña, K.A.C.S., Oliveira, D., Horta, F., Dias, J., Ogasawara, E., Mattoso, M.: Exploring molecular evolution reconstruction using a parallel cloud based scientific workflow. In: Advances in Bioinformatics and Computational Biology, vol. 7409, pp. 179–191 (2012)
– reference: Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained provisioning for scientific workflow ensembles in iaas clouds. In: Supercomputing (SC) Conf. on High Performance Computing Networking, Storage and Analysis, pp. 1–11 (2012)
– reference: OgasawaraESDiasJSilvaVChirigatiFSde OliveiraDPortoFValduriezPMattosoMChiron: a parallel engine for algebraic scientific workflowsConcurrency and Computation: Practice and Experience201325162327234110.1002/cpe.3032
– reference: Costa, F., de Oliveira, D., Ocala, K., Ogasawara, E., Dias, J., Mattoso, M.: Handling failures in parallel scientific workflows using clouds. In: Supercomputing (SC) Companion: High Performance Computing, Networking Storage and Analysis, pp. 129–139 (2012)
– reference: Terstyánszky, G., Michniak, E., Kiss, T., Balaskó, Á.: Sharing science gateway artefacts through repositories. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 123–135. Springer International Publishing (2014)
– reference: Shahand, S., Jaghoori, M., Benabdelkader, A., Font-Calvo, J., Huguet, J., Caan, M., van Kampen, A., Olabarriaga, S.: Computational neuroscience gateway: A science gateway based on the ws-pgrade/guse. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp. 139–149. Springer International Publishing (2014)
– reference: Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: ACM SIGMOD Int. Conf. on Management of Data (SIGMOD), pp. 1099–1110 (2008)
– reference: Nagavaram, A., Agrawal, G., Freitas, M.A., Telu, K.H., Mehta, G., Mayani, R. G., Deelman, E.: A cloud-based dynamic workflow for mass spectrometry data analysis. In: IEEE 7th Int. Conf. on E-Science (e-Science), pp. 47–54 (2011)
– reference: Wang, J., Altintas, I.: Early cloud experiences with the kepler scientific workflow system. In: Int. Conf. on Computational Science (ICCS), vol. 9, pp. 1630–1634 (2012)
– reference: Dias, J., Ogasawara, E.S., de Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: Algebraic dataflows for big data analysis. In: IEEE Int. Conf. on Big Data, pp. 150–155 (2013)
– reference: PlankensteinerKProdanRJanetschekMFahringerTMontagnatJRogersDHarveyITaylorIBalaskóÁKacsukPFine-grain interoperability of scientific workflows in distributed computing infrastructuresJ. Grid Comput.201311342945510.1007/s10723-013-9261-8
– reference: Chen, W., Silva, R.D., Deelman, E., Sakellariou, R.: Balanced task clustering in scientific workflows. In: IEEE 9th Int. Conf. on e-Science, pp. 188–195 (2013)
– reference: Chervenak, A. L., Smith, D. E., Chen, W., Deelman, E.: Integrating policy with scientific workflow management for data-intensive applications. In: Supercomputing (SC) Companion: High Performance Computing, Networking Storage and Analysis, pp. 140–149 (2012)
– reference: Singh, G., Su, M.-H., Vahi, K., Deelman, E., Berriman, B., Good, J., Katz, D. S., Mehta, G.: Workflow task clustering for best effort systems with pegasus. In: 15th ACM Mardi Gras Conf.: From Lightweight Mash-ups to Lambda Grids: Understanding the Spectrum of Distributed Computing Requirements, Applications, Tools, Infrastructures, Interoperability, and the Incremental Adoption of Key Capabilities, pp. 9:1–9:8 (2008)
– reference: Ocaña, K.A., Oliveira, D., Ogasawara, E., Dávila, A.M., Lima, A.A., Mattoso, M.: Sciphy: A cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In: Advances in Bioinformatics and Computational Biology, vol. 6832, pp. 66–70 (2011)
– reference: Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., Raicu, I., Stef-Praun, T., Wilde, M.: Swift: Fast, reliable, loosely coupled parallel computation. In: IEEE Int. Conf. on Services Computing - Workshops (SCW), pp 199–206 (2007)
– reference: GuYWuCLiuXYuDDistributed throughput optimization for large-scale scientific workflows under fault-tolerance constraintJournal of Grid Computing201311336137910.1007/s10723-013-9266-3
– reference: Ostermann, S., Prodan, R., Fahringer, T.: Extending grids with cloud resource management for scientific computing. In: 10th IEEE/ACM Int. Conf. on Grid Computing, pp. 42–49 (2009)
– reference: Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R., Chen, W., Silva, R.F.d., Livny, M., Wenger, K.: Pegasus: a workflow management system for science automation. Futur. Gener. Comput. Syst. (2014)
– reference: Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H., Villazon, A., Wieczorek, M.: Askalon: A development and grid computing environment for scientific workflows. In: Workflows for e-Science, pp. 450–471. Springer (2007)
– reference: Microsoft Azure cloud (2015). http://azure.microsoft.com/
– reference: DeelmanEGannonDShieldsMTaylorIWorkflows and e-science: An overview of workflow system features and capabilitiesFutur. Gener. Comput. Syst.200925552854010.1016/j.future.2008.06.012
– reference: Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel programs from sequential building blocks. In: 2nd ACM SIGOPS/EuroSys European Conf. on Computer Systems, pp. 59–72 (2007)
– reference: AfganEBakerDCoraorNChapmanBNekrutenkoATaylorJGalaxy cloudman: delivering cloud compute clustersBMC Bioinforma.201011Suppl 12S410.1186/1471-2105-11-S12-S4
– reference: BrandicIDustdarSGrid vs cloud - A technology comparison.IT - Inf. Technol.201153417317910.1524/itit.2011.0640
– reference: Shankar, S., DeWitt, D.J.: Data driven workflow planning in cluster management systems. In: 16th International Symposium on High-Performance Distributed Computing (HPDC-16), pp. 127–136 (2007)
– reference: Belhajjame, K., Cresswell, S., Gil, Y., Golden, R., Groth, P., Klyne, G., McCusker, J., Miles, S., Myers, J., Sahoo, S.: The prov data model and abstract syntax notation (2011). http://www.w3.org/TR/2011/WD-prov-dm-20111215/
– reference: Hategan, M., Wozniak, J., Maheshwari, K.: Coasters: Uniform resource provisioning and access for clouds and grids. In. In: 4th IEEE Int. Conf. on Utility and Cloud Computing, pp. 114–121 (2011)
– reference: Reynolds, C.J., Winter, S.C., Terstyánszky, G., Kiss, T., Greenwell, P., Acs, S., Kacsuk, P.: Scientific workflow makespan reduction through cloud augmented desktop grids. In: IEEE 3rd International Conference on Cloud Computing Technology and Science, pp. 18–23 (2011)
– reference: Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-g: a computation management agent for multi-institutional grids. In: 10th IEEE Int. Symposium on High Performance Distributed Computing, pp. 55–63 (2001)
– reference: Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers Inc. (2003)
– reference: Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D., Taylor, I., Goode, M., Silva, F., Al-Shakarchi, E., Mehta, G., Jones, A., Deelman, E.: A general approach to real-time workflow monitoring. In: Supercomputing (SC) Companion: High Performance Computing, Networking, Storage and Analysis (SCC), pp. 108–118 (2012)
– reference: Chirigati, F., Silva, V., Ogasawara, E., de Oliveira, D., Dias, J., Porto, F., Valduriez, P., Mattoso, M.: Evaluating parameter sweep workflows in high performance computing. In: 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, pp. 2:1–2:10 (2012)
– reference: Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems. In: 8th Heterogeneous Computing Workshop, p. 30 (1999)
– reference: Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: Dynamic query scheduling in data integration systems. In: International Conference on Data Engineering (ICDE), pp. 425–434 (2000)
– reference: de Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: Scicumulus: A lightweight cloud middleware to explore many task computing paradigm in scientific workflows. In: 3rd Int. Conf. on Cloud Computing (CLOUD), pp. 378–385 (2010)
– reference: Görlach, K., Sonntag, M., Karastoyanova, D., Leymann, F., Reiter, M.: Conventional workflow technology for scientific simulation. In: Guide to e-Science, pp. 323–352 (2011)
– reference: Ostermann, S., Plankensteiner, K., Prodan, R., Fahringer, T.: Groudsim: An event-based simulation framework for computational grids and clouds. In: European Conf. on Parallel Processing (Euro-Par) Workshops, pp. 305–313 (2011)
– reference: de OliveiraDOgasawaraEOcañaKBaiãoFMattosoMAn adaptive parallel execution strategy for cloud-based scientific workflowsConcurrency and Computation: Practice & Experience201224131531155010.1002/cpe.1880
– reference: Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer (2011)
– reference: KacsukPP-grade portal family for grid infrastructuresConcurrency and Computation: Practice and Experience201123323524510.1002/cpe.1654
– reference: Korf, I., Yandell, M., Bedell, J.A.: BLAST - an essential guide to the basic local alignment search tool. O’Reilly (2003)
– reference: Pautasso, C., Alonso, G.: Parallel computing patterns for grid workflows (2006)
– reference: Wieder, P., Butler, J.M., Theilmann, W., Yahyapour, R.: Service Level Agreements for Cloud Computing. Springer (2011)
– reference: DuanRProdanRLiXMulti-objective game theoretic schedulingof bag-of-tasks workflows on hybrid cloudsIEEE Transactions on Cloud Computing201421294210.1109/TCC.2014.2303077
– reference: Karuna, K., Mangala, N., Janaki, C., Shashi, S., Subrata, C.: Galaxy workflow integration on garuda grid. In: IEEE Int. Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 194–196 (2012)
– reference: Taylor, I., Shields, M., Wang, I., Harrison, A.: The triana workflow environment: Architecture and applications. In: Workflows for e-Science, pp. 320–339. Springer (2007)
– ident: 9329_CR117
  doi: 10.1109/CloudCom.2011.13
– ident: 9329_CR17
  doi: 10.1109/ICDE.2000.839442
– ident: 9329_CR47
  doi: 10.1007/978-1-84628-757-2_27
– ident: 9329_CR68
– volume: 25
  start-page: 2327
  issue: 16
  year: 2013
  ident: 9329_CR102
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.3032
– ident: 9329_CR119
  doi: 10.1007/978-3-319-11268-8_13
– volume: 7
  start-page: 49
  issue: 3
  year: 2003
  ident: 9329_CR129
  publication-title: Trans. SDPS
– volume: 15
  start-page: S12
  issue: S-1
  year: 2014
  ident: 9329_CR28
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-S1-S12
– ident: 9329_CR24
  doi: 10.1109/SC.Companion.2012.29
– ident: 9329_CR79
  doi: 10.1109/WETICE.2012.51
– ident: 9329_CR109
  doi: 10.1109/GRID.2009.5353075
– ident: 9329_CR142
  doi: 10.14806/ej.19.B.727
– ident: 9329_CR125
  doi: 10.1007/978-1-84628-757-2_20
– ident: 9329_CR110
  doi: 10.1007/978-1-4419-8834-8
– ident: 9329_CR3
– volume: 13
  start-page: 77
  issue: 1
  year: 2012
  ident: 9329_CR5
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-13-77
– ident: 9329_CR9
  doi: 10.1109/SSDM.2004.1311241
– ident: 9329_CR59
– ident: 9329_CR64
  doi: 10.1007/978-3-319-11268-8_2
– ident: 9329_CR23
  doi: 10.1109/eScience.2013.40
– ident: 9329_CR19
– volume: 10
  start-page: 521
  issue: 3
  year: 2012
  ident: 9329_CR33
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-012-9227-2
– ident: 9329_CR42
  doi: 10.1016/j.future.2014.10.008
– volume: 29
  start-page: 1816
  issue: 7
  year: 2013
  ident: 9329_CR106
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2012.12.019
– volume: 11
  start-page: 1
  issue: 8
  year: 2010
  ident: 9329_CR60
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-8-r86
– volume: 11
  start-page: 429
  issue: 3
  year: 2013
  ident: 9329_CR113
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-013-9261-8
– ident: 9329_CR61
  doi: 10.1109/eScience.2012.6404442
– ident: 9329_CR107
  doi: 10.1145/1376616.1376726
– ident: 9329_CR112
  doi: 10.1109/WORKS.2006.5282349
– ident: 9329_CR34
  doi: 10.1109/CLOUD.2010.64
– ident: 9329_CR40
  doi: 10.1109/SC.2008.5217932
– volume: 2
  start-page: 29
  issue: 1
  year: 2014
  ident: 9329_CR46
  publication-title: IEEE Transactions on Cloud Computing
  doi: 10.1109/TCC.2014.2303077
– ident: 9329_CR114
  doi: 10.1109/CCGRID.2007.76
– ident: 9329_CR67
  doi: 10.1109/UCC.2011.25
– volume: 11
  start-page: 361
  issue: 3
  year: 2013
  ident: 9329_CR65
  publication-title: Journal of Grid Computing
  doi: 10.1007/s10723-013-9266-3
– ident: 9329_CR10
– ident: 9329_CR80
  doi: 10.1109/SC.1998.10018
– ident: 9329_CR62
  doi: 10.1007/978-3-642-34222-6_12
– volume: 34
  start-page: 631
  issue: 7
  year: 2004
  ident: 9329_CR71
  publication-title: Software - Practice and Experience (SPE)
  doi: 10.1002/spe.584
– ident: 9329_CR88
  doi: 10.1109/SC.Companion.2012.131
– volume: 74
  start-page: 2152
  issue: 3
  year: 2014
  ident: 9329_CR49
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2013.12.004
– volume: 10
  start-page: 601
  issue: 4
  year: 2012
  ident: 9329_CR78
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-012-9240-5
– volume: 15
  start-page: 11
  issue: 2
  year: 2011
  ident: 9329_CR95
  publication-title: IEEE Internet Computing
  doi: 10.1109/MIC.2011.44
– ident: 9329_CR133
– ident: 9329_CR124
  doi: 10.1109/CCGrid.2012.134
– volume: 4
  start-page: 1328
  issue: 12
  year: 2011
  ident: 9329_CR101
  publication-title: Proceedings of the VLDB Endowment (PVLDB)
  doi: 10.14778/3402755.3402766
– ident: 9329_CR121
  doi: 10.1145/1272366.1272383
– ident: 9329_CR22
  doi: 10.1007/978-3-642-31500-8_2
– ident: 9329_CR75
  doi: 10.1007/978-0-85729-049-6_4
– volume: 1
  start-page: 7
  year: 2010
  ident: 9329_CR143
  publication-title: Journal of Internet Services and Applications
  doi: 10.1007/s13174-010-0007-6
– ident: 9329_CR144
  doi: 10.1109/SERVICES.2007.63
– ident: 9329_CR66
– volume: 20
  start-page: 587
  year: 2008
  ident: 9329_CR81
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.1228
– ident: 9329_CR108
  doi: 10.1007/978-3-642-21878-1_38
– ident: 9329_CR56
  doi: 10.1109/ICPRIME.2013.6496507
– ident: 9329_CR1
– ident: 9329_CR120
  doi: 10.1007/978-3-319-11268-8_10
– ident: 9329_CR141
  doi: 10.1109/IPDPS.2010.5470453
– ident: 9329_CR86
  doi: 10.1007/978-3-319-11268-8_4
– ident: 9329_CR16
  doi: 10.1109/CCGRID.2005.1558639
– ident: 9329_CR29
  doi: 10.1109/SC.Companion.2012.28
– volume: 5
  start-page: 164
  year: 1989
  ident: 9329_CR51
  publication-title: Cladistics
– ident: 9329_CR27
– ident: 9329_CR12
  doi: 10.1007/978-3-319-11268-8_3
– volume: 11
  start-page: S4
  issue: Suppl 12
  year: 2010
  ident: 9329_CR6
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-11-S12-S4
– volume: 20
  start-page: 3045
  issue: 17
  year: 2004
  ident: 9329_CR104
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth361
– ident: 9329_CR21
  doi: 10.1109/CCGrid.2012.57
– volume: 24
  start-page: 1531
  issue: 13
  year: 2012
  ident: 9329_CR35
  publication-title: Concurrency and Computation: Practice & Experience
  doi: 10.1002/cpe.1880
– ident: 9329_CR30
  doi: 10.1145/2457317.2457365
– ident: 9329_CR84
  doi: 10.1007/978-3-319-11268-8_12
– ident: 9329_CR92
  doi: 10.1109/SC.2012.38
– ident: 9329_CR91
  doi: 10.1109/HCW.1999.765094
– ident: 9329_CR83
  doi: 10.1007/978-3-319-11268-8_19
– ident: 9329_CR94
  doi: 10.1504/IJBPIM.2010.033176
– ident: 9329_CR45
  doi: 10.1109/BigData.2013.6691567
– volume: 36
  start-page: 338
  year: 2014
  ident: 9329_CR57
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.09.018
– ident: 9329_CR131
  doi: 10.1016/j.procs.2012.04.179
– ident: 9329_CR15
  doi: 10.1007/978-3-642-23291-6_4
– volume: 37
  start-page: 633
  issue: 9
  year: 2011
  ident: 9329_CR135
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2011.05.005
– volume: 10
  start-page: 11
  issue: 3
  year: 2008
  ident: 9329_CR53
  publication-title: Computing in Science and Engineering
  doi: 10.1109/MCSE.2008.79
– ident: 9329_CR58
  doi: 10.1007/978-3-319-11268-8_11
– ident: 9329_CR50
  doi: 10.1007/978-3-319-11268-8_7
– volume: 18
  start-page: 1039
  issue: 10
  year: 2006
  ident: 9329_CR90
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.994
– volume: 41
  start-page: 98
  issue: 4
  year: 2011
  ident: 9329_CR26
  publication-title: ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications
  doi: 10.1145/2043164.2018448
– ident: 9329_CR87
  doi: 10.1109/DCS.1988.12507
– ident: 9329_CR32
  doi: 10.1109/SERVICES.2011.32
– ident: 9329_CR70
  doi: 10.1109/SC.Companion.2012.228
– ident: 9329_CR44
  doi: 10.1109/eScience.2012.6404431
– ident: 9329_CR82
  doi: 10.1007/978-3-319-11268-8_17
– ident: 9329_CR116
  doi: 10.1109/CCGRID.2007.101
– volume: 41
  start-page: 557
  issue: Webserver-Issue
  year: 2013
  ident: 9329_CR136
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt328
– ident: 9329_CR8
  doi: 10.1007/11890850_14
– volume: 53
  start-page: 173
  issue: 4
  year: 2011
  ident: 9329_CR18
  publication-title: IT - Inf. Technol.
  doi: 10.1524/itit.2011.0640
– volume: 37
  start-page: 46
  year: 2014
  ident: 9329_CR126
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2014.02.016
– ident: 9329_CR122
  doi: 10.1145/1341811.1341822
– ident: 9329_CR76
  doi: 10.1145/1996130.1996173
– ident: 9329_CR7
  doi: 10.1145/2443416.2443417
– volume: 13
  start-page: 219
  issue: 3
  year: 2005
  ident: 9329_CR41
  publication-title: Sci. Program.
– ident: 9329_CR118
  doi: 10.1109/HPCC.2011.55
– ident: 9329_CR123
– ident: 9329_CR13
  doi: 10.1007/978-3-540-68111-3_78
– ident: 9329_CR73
– ident: 9329_CR99
  doi: 10.1007/978-3-642-22825-4_9
– ident: 9329_CR31
  doi: 10.1145/2110497.2110501
– ident: 9329_CR97
  doi: 10.1109/eScience.2011.15
– ident: 9329_CR72
  doi: 10.1145/1272996.1273005
– ident: 9329_CR52
– ident: 9329_CR4
– volume: 4
  start-page: 73
  issue: 2
  year: 2009
  ident: 9329_CR74
  publication-title: Int. J. Comput. Sci. Eng.
  doi: 10.1504/IJCSE.2009.026999
– volume: 25
  start-page: 528
  issue: 5
  year: 2009
  ident: 9329_CR38
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2008.06.012
– ident: 9329_CR138
  doi: 10.1109/SERVICES-I.2009.60
– ident: 9329_CR14
– ident: 9329_CR134
  doi: 10.1007/978-1-4614-1614-2
– volume: 23
  start-page: 235
  issue: 3
  year: 2011
  ident: 9329_CR77
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.1654
– volume: 12
  start-page: 1019
  issue: 11
  year: 2000
  ident: 9329_CR20
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/1096-9128(200009)12:11<1019::AID-CPE518>3.0.CO;2-G
– ident: 9329_CR85
– ident: 9329_CR93
  doi: 10.1016/j.future.2014.11.017
– ident: 9329_CR132
  doi: 10.1145/1645164.1645176
– ident: 9329_CR105
  doi: 10.1007/978-3-319-11268-8_16
– ident: 9329_CR137
  doi: 10.1145/2443416.2443421
– ident: 9329_CR43
  doi: 10.1109/DASC.2011.102
– ident: 9329_CR103
  doi: 10.1007/978-1-84628-757-2_19
– ident: 9329_CR48
  doi: 10.1109/CloudCom.2013.48
– ident: 9329_CR36
  doi: 10.1145/2465848.2465852
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  ident: 9329_CR128
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/71.993206
– volume: 3
  start-page: 171
  year: 2005
  ident: 9329_CR139
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-005-9010-8
– ident: 9329_CR145
  doi: 10.1109/SERVICES-1.2008.79
– ident: 9329_CR11
  doi: 10.1109/IPDPS.2008.4536445
– ident: 9329_CR55
  doi: 10.1145/2457317.2457374
– ident: 9329_CR39
  doi: 10.5220/0003958901270134
– ident: 9329_CR98
  doi: 10.1109/ICSAI.2012.6223147
– ident: 9329_CR63
  doi: 10.1007/978-0-85729-439-5_12
– ident: 9329_CR111
  doi: 10.2200/S00414ED1V01Y201204DTM025
– ident: 9329_CR100
  doi: 10.1007/978-3-642-31927-3_16
– ident: 9329_CR115
– ident: 9329_CR25
  doi: 10.1145/2443416.2443418
– ident: 9329_CR54
  doi: 10.1109/HPDC.2001.945176
– ident: 9329_CR127
  doi: 10.1007/978-3-319-11268-8_9
– ident: 9329_CR69
  doi: 10.1109/eScience.2012.6404479
– ident: 9329_CR96
  doi: 10.1007/978-3-642-13818-8_33
– ident: 9329_CR140
  doi: 10.1109/IPDPS.2007.370305
– ident: 9329_CR37
– ident: 9329_CR130
  doi: 10.1109/SC.Companion.2012.26
– ident: 9329_CR2
– ident: 9329_CR89
  doi: 10.1007/978-3-319-14325-5_10
SSID ssj0025802
Score 2.529089
Snippet Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 457
SubjectTerms Clouds
Computation
Computational grids
Computer Science
Data processing
Distributed, Parallel, and Cluster Computing
Handles
Management of Computing and Information Systems
Mathematical models
Parallel processing
Processor Architectures
User Interfaces and Human Computer Interaction
Workflow
Workflow management systems
Workflow software
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c9MEX5ydWp1TYkxLo1qRJHoc69iBDnMreQpumONiH7Ev87710bTdFBX3uNZS7y93vml_uAGoBi7UfJgnBSOcRSqUmgsacJFRozLgYHk2UDpvgnY7o9eR9do97mrPd8yPJNFKvXXbjDcv9YQQxhySiBJuY7YSd1_DQfS6qLCaWREPGLVWO-_lR5ndLfEpGpRdLhVzDmV-ORtOM06r861t3YScDmG5z6RF7sGFG-1DJhze42V4-ANl0u_PJwry748S9CWchKdjsS6GUROTan-nJYPzmrngyh_DUun28bpNsjgLRVIoZ0RgNmYh4Qr0wFlEgZIRFMTc-Ws-PPInW8uphYDQLNOIfEfkhgoi4Hgc0bmjM90dQHo1H5hhcGvg-lt-RlDymzEQyNCLhLKEITDBSSge8XKFKZ03G7ayLgVq1R7aqUagaZVWjhAOXxSuvyw4bvwnX0EqFnO2N3W7eqUF_MhwqW9tRHniLugPV3Iwq25NThZELwW4dC0wHLorHuJvsEUk4MuP5VCHeCayDsoYDV7lpV0v8-F0nf5I-he2G9Y2UFVOF8mwyN2ewpRez_nRynrrzB7_x7AU
  priority: 102
  providerName: Springer Nature
Title A Survey of Data-Intensive Scientific Workflow Management
URI https://link.springer.com/article/10.1007/s10723-015-9329-8
https://www.proquest.com/docview/2259771899
https://www.proquest.com/docview/1816067852
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01144760
Volume 13
WOSCitedRecordID wos000368725500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: P5Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: BENPR
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: RSV
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwEC2xHebCMsOIsClInGZkke7YsX1CzSYOqNWCASEuVuI4AqnpQG-Iv6cqWw9IcOGSS5xFeeXyK9dLFcB-JFIbxlnG0NMFjHNtmeKpZBlXFldcdI8uKZpNyG5X3d7qXrXhNqpklbVPLBx1mlvaIz9Au0Oq0sLw4PDpmVHXKMquVi005mGRqiRQ64aeuGsCLqFKzaGQpJqTYZ3VLH-dk21SEgmGDEYz9W5dmr8nVeR_lPNDlrRYfM5Wvvvaq7Bc0U6_U9rJGsy5wU9YqVs6-NUM_wW6419NhlP36ueZfxKPY9Zo3MtBhbTIpy32rJ-_-DP1zDpcn53-Oz5nVXcFZrlWY2bRRwqVyIwHcaqSSOkEQ2XpQsQ0TAKNGAatOHJWRBZZkUrCGKlF2kojnrYtsoDfsDDIB24DfB6FIQblidYy5cIlOnYqkyLjSFfQf2oPgvrbGluVHqcOGH0zK5pMcBiEwxAcRnnwp7nkqay78dXgfQSsGUcVs887F6b_MHx8NBTxcRkF05YH2zVGppqpIzMDyIO95jTOMUqcxAOXT0YGWVBEZivaHvytLWF2i0_fa_PrB27BjzYZYCGO2YaF8XDidmDJTscPo-EuLB6ddnuXu4VJ4_Hy6uYNWqv5iA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrdReSp8iLbRGgksrq9nEju0DQqtStIhlhQSVUC9u7DgCadnQfSH-VH8j47y2IJUbh57jOE7m8zwyn2cAthKe2TjNc4qaLqSMKUslywTNmbRocVE9OlM2mxCDgTw7U8dL8Kc5C-NplY1OLBV1Vlj_j_wr4g5dlQ6GB7tXv6nvGuWzq00LjQoWh-7mGkO2yc7BHsp3O4r2v59-69G6qwC1TMkptagbuDQiZ2GaSZNIZTBEFC7Gd4lNqHDtYSdNnOWJRW9AmjhFk5p1soRlkUXrh_MuwxPGotDvomP-sw3wuKw4jlx4lp6ImyxqdVRPRJ65xCl6TIrKO3Zw-dyzMP9yce9lZUtjt7_6v32ml_CidqtJt9oHr2DJjV7DatOygtQa7A2oLjmZjefuhhQ52UunKW05_NWgkjpFfAohHxbXZMEOegs_HuUF3sHKqBi5NSAsiWNnYqOUyBh3RqVO5oLnDN0xtA8qgLCRpbZ1aXXf4WOoF0Whvfg1il978WsZwOf2lquqrshDg7cQIO04XxG81-3r4cX48lL7iJaJJJx3AlhvMKFrTTTRC0AEsNleRh3iE0PpyBWziUYvL_HbkkcBfGmQt5jin-t6__ADP8Gz3ulRX_cPBocf4HnkwV8SgdZhZTqeuQ14aufTi8n4Y7mNCPx6bEDeAi2PU3I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_Wboy9NPtk7sfmQZ42RBxbsqTH0DRkLIRAtpE3YcsSLaROSZyM_fc7-Svp2Apjzz4Lc3c6_c730x1AN2aZjhJrCUa6gFAqNRE048RSofHExfBo0nLYBJ9OxWIhZ_Wc003Ddm9KktWdBtelKS96d5ntHVx846HjATGC-EMScQSPqePRu3R9_r3NuJioSIeMO9ocj5qy5p-WuHcwHV07WuQB5vytTFqePqPOf3_3czipgac_qDzlBTwy-UvoNEMd_HqPvwI58Ofb9c789FfWHyZFQlqWeyVUkot895PdLlc__D1_5jV8G119vRyTer4C0VSKgmiMkkyk3NIgyUQaC5lissxNhFaN0kCiFYN-EhvNYo24SKRRguAi62cxzUKNOOANHOer3LwFn8ZRhGl5KiXPKDOpTIywnFmKgAUjqPQgaJSrdN183M3AWKp922SnGoWqUU41SnjwsX3lruq88ZBwFy3Wyrme2ePBRC1v1re3yuV8lMfBru_BeWNSVe_VjcKIhiC4j4mnBx_ax7jLXOkkyc1qu1GIg2LnuCz04FNj5v0Sf_2u03-Sfg9PZ8ORmnyefjmDZ6Fzk5I4cw7HxXprLuCJ3hU3m_W70st_AQFW980
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Data-Intensive+Scientific+Workflow+Management&rft.jtitle=Journal+of+grid+computing&rft.au=Liu%2C+Ji&rft.au=Pacitti%2C+Esther&rft.au=Valduriez%2C+Patrick&rft.au=Mattoso%2C+Marta&rft.date=2015-12-01&rft.pub=Springer+Verlag&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=13&rft.issue=4&rft.spage=457&rft.epage=493&rft_id=info:doi/10.1007%2Fs10723-015-9329-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Alirmm-01144760v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon