A Survey of Data-Intensive Scientific Workflow Management

Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of grid computing Jg. 13; H. 4; S. 457 - 493
Hauptverfasser: Liu, Ji, Pacitti, Esther, Valduriez, Patrick, Mattoso, Marta
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.12.2015
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:1570-7873, 1572-9184
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, more and more computer-based scientific experiments need to handle massive amounts of data. Their data processing consists of multiple computational steps and dependencies within them. A data-intensive scientific workflow is useful for modeling such process. Since the sequential execution of data-intensive scientific workflows may take much time, Scientific Workflow Management Systems ( SWfMSs ) should enable the parallel execution of data-intensive scientific workflows and exploit the resources distributed in different infrastructures such as grid and cloud. This paper provides a survey of data-intensive scientific workflow management in SWfMSs and their parallelization techniques. Based on a SWfMS functional architecture, we give a comparative analysis of the existing solutions. Finally, we identify research issues for improving the execution of data-intensive scientific workflows in a multisite cloud.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1570-7873
1572-9184
DOI:10.1007/s10723-015-9329-8