Adaptive relevance matrices in learning vector quantization

We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward a general adaptive metric. By introducing a full matrix of relevance factors in the distance measure, correlations between different features...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computation Ročník 21; číslo 12; s. 3532
Hlavní autori: Schneider, Petra, Biehl, Michael, Hammer, Barbara
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.12.2009
Predmet:
ISSN:0899-7667
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward a general adaptive metric. By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account and automated, and general metric adaptation takes place during training. In comparison to the weighted Euclidean metric used in RLVQ and its variations, a full matrix is more powerful to represent the internal structure of the data appropriately. Large margin generalization bounds can be transferred to this case, leading to bounds that are independent of the input dimensionality. This also holds for local metrics attached to each prototype, which corresponds to piecewise quadratic decision boundaries. The algorithm is tested in comparison to alternative learning vector quantization schemes using an artificial data set, a benchmark multiclass problem from the UCI repository, and a problem from bioinformatics, the recognition of splice sites for C. elegans.
AbstractList We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward a general adaptive metric. By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account and automated, and general metric adaptation takes place during training. In comparison to the weighted Euclidean metric used in RLVQ and its variations, a full matrix is more powerful to represent the internal structure of the data appropriately. Large margin generalization bounds can be transferred to this case, leading to bounds that are independent of the input dimensionality. This also holds for local metrics attached to each prototype, which corresponds to piecewise quadratic decision boundaries. The algorithm is tested in comparison to alternative learning vector quantization schemes using an artificial data set, a benchmark multiclass problem from the UCI repository, and a problem from bioinformatics, the recognition of splice sites for C. elegans.We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward a general adaptive metric. By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account and automated, and general metric adaptation takes place during training. In comparison to the weighted Euclidean metric used in RLVQ and its variations, a full matrix is more powerful to represent the internal structure of the data appropriately. Large margin generalization bounds can be transferred to this case, leading to bounds that are independent of the input dimensionality. This also holds for local metrics attached to each prototype, which corresponds to piecewise quadratic decision boundaries. The algorithm is tested in comparison to alternative learning vector quantization schemes using an artificial data set, a benchmark multiclass problem from the UCI repository, and a problem from bioinformatics, the recognition of splice sites for C. elegans.
We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward a general adaptive metric. By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account and automated, and general metric adaptation takes place during training. In comparison to the weighted Euclidean metric used in RLVQ and its variations, a full matrix is more powerful to represent the internal structure of the data appropriately. Large margin generalization bounds can be transferred to this case, leading to bounds that are independent of the input dimensionality. This also holds for local metrics attached to each prototype, which corresponds to piecewise quadratic decision boundaries. The algorithm is tested in comparison to alternative learning vector quantization schemes using an artificial data set, a benchmark multiclass problem from the UCI repository, and a problem from bioinformatics, the recognition of splice sites for C. elegans.
Author Schneider, Petra
Biehl, Michael
Hammer, Barbara
Author_xml – sequence: 1
  givenname: Petra
  surname: Schneider
  fullname: Schneider, Petra
  email: p.schneider@rug.nl
  organization: Institute of Mathematics and Computing Science, University of Groningen, 9700 AK Groningen, The Netherlands. p.schneider@rug.nl
– sequence: 2
  givenname: Michael
  surname: Biehl
  fullname: Biehl, Michael
– sequence: 3
  givenname: Barbara
  surname: Hammer
  fullname: Hammer, Barbara
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19764875$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLxDAURrMYcR76CwTpzlXHmybNA1fD4AsG3Oi6JOmtRNp0JkkH9Nc74Lg6fHD44CzJLIwBCbmhsKZUVPcB3biuAPRplqBKDWpGFqC0LqUQck6WKX0BgKBQX5I51VJwJesFedi0Zp_9EYuIPR5NcFgMJkfvMBU-FD2aGHz4LI7o8hiLw2RC9j8m-zFckYvO9Amvz1yRj6fH9-1LuXt7ft1udqXjWuXSWqGs5lJp5JwDKEFbxowUbVUrpasKdeeEZdqorhZoLQXDmIZOUlYjxWpF7v5-93E8TJhyM_jksO9NwHFKjWScMiUpnMzbsznZAdtmH_1g4nfz31v9AnO6V-s
CitedBy_id crossref_primary_10_1016_j_neucom_2020_03_025
crossref_primary_10_1007_s00521_013_1535_3
crossref_primary_10_1016_j_ic_2017_08_004
crossref_primary_10_1016_j_neucom_2014_03_003
crossref_primary_10_1016_j_patcog_2024_110497
crossref_primary_10_1016_j_compbiomed_2025_110180
crossref_primary_10_1007_s11063_013_9278_9
crossref_primary_10_1016_j_neucom_2014_11_082
crossref_primary_10_1109_TCYB_2022_3178412
crossref_primary_10_1016_j_cie_2024_110272
crossref_primary_10_3389_fncom_2016_00117
crossref_primary_10_1136_bmjopen_2021_055068
crossref_primary_10_1007_s00259_025_07114_4
crossref_primary_10_1016_j_neucom_2011_09_031
crossref_primary_10_1007_s42979_023_01782_5
crossref_primary_10_1017_S1743921316012928
crossref_primary_10_1016_j_isprsjprs_2010_11_001
crossref_primary_10_1016_j_patcog_2016_10_011
crossref_primary_10_1515_jaiscr_2017_0005
crossref_primary_10_1109_TETCI_2024_3515009
crossref_primary_10_1016_j_neucom_2017_01_105
crossref_primary_10_3390_s22249689
crossref_primary_10_1007_s13369_024_08742_y
crossref_primary_10_1515_auto_2017_0123
crossref_primary_10_1016_j_neucom_2017_11_072
crossref_primary_10_1016_j_neucom_2018_11_095
crossref_primary_10_1007_s41060_018_0163_5
crossref_primary_10_1016_j_neucom_2017_11_074
crossref_primary_10_1016_j_neucom_2023_126632
crossref_primary_10_1371_journal_pone_0059401
crossref_primary_10_1007_s00521_021_06018_2
crossref_primary_10_1016_j_artmed_2012_07_001
crossref_primary_10_1080_19393555_2024_2378747
crossref_primary_10_1016_j_geoderma_2019_01_018
crossref_primary_10_1210_clinem_dgae604
crossref_primary_10_1016_j_neucom_2015_12_108
crossref_primary_10_1016_j_neucom_2015_12_109
crossref_primary_10_1016_j_neucom_2017_06_084
crossref_primary_10_1016_j_neunet_2021_04_024
crossref_primary_10_3390_s21134405
crossref_primary_10_1007_s00521_018_03966_0
crossref_primary_10_1016_j_neucom_2013_07_049
crossref_primary_10_1007_s12652_020_02218_1
crossref_primary_10_1016_j_renene_2016_05_092
crossref_primary_10_1007_s00500_014_1496_1
crossref_primary_10_3390_app9194036
crossref_primary_10_1109_TIP_2019_2948472
crossref_primary_10_1016_j_neucom_2011_11_029
crossref_primary_10_1007_s00521_020_05517_y
crossref_primary_10_1007_s13218_015_0372_1
crossref_primary_10_1007_s11063_014_9394_1
crossref_primary_10_1007_s12541_017_0113_5
crossref_primary_10_3390_e25030540
crossref_primary_10_1080_08839514_2023_2198846
crossref_primary_10_1016_j_patcog_2010_10_024
crossref_primary_10_1038_s41598_025_94692_w
crossref_primary_10_1109_TPAMI_2024_3466315
crossref_primary_10_1136_annrheumdis_2014_206921
crossref_primary_10_1007_s42979_024_03067_x
crossref_primary_10_1016_j_neucom_2024_127367
crossref_primary_10_1109_TNSRE_2019_2907200
crossref_primary_10_1007_s00138_016_0781_7
crossref_primary_10_1016_j_neucom_2019_12_131
crossref_primary_10_1016_j_artmed_2013_11_003
crossref_primary_10_1007_s40846_017_0353_y
crossref_primary_10_1162_NECO_a_00358
crossref_primary_10_3390_e23101357
crossref_primary_10_1016_j_nicl_2020_102199
crossref_primary_10_1016_j_neucom_2014_12_002
crossref_primary_10_1007_s11831_025_10267_y
crossref_primary_10_1016_j_imavis_2016_10_006
crossref_primary_10_1007_s00521_019_04299_2
crossref_primary_10_1016_j_neucom_2013_11_049
crossref_primary_10_1016_j_pmcj_2023_101752
crossref_primary_10_1109_TCBB_2014_2377750
crossref_primary_10_1210_jc_2011_1565
crossref_primary_10_1016_j_neucom_2013_11_048
crossref_primary_10_1007_s00521_019_04080_5
crossref_primary_10_1016_j_neucom_2024_128100
crossref_primary_10_1162_NECO_a_00872
crossref_primary_10_1016_j_neucom_2013_05_054
crossref_primary_10_1016_j_neucom_2009_11_017
crossref_primary_10_1016_j_neucom_2010_12_015
crossref_primary_10_1016_j_artmed_2024_102786
crossref_primary_10_1162_NECO_a_00250
crossref_primary_10_1186_s12888_025_06536_6
crossref_primary_10_1016_j_neucom_2021_05_105
crossref_primary_10_1016_j_neucom_2014_12_096
crossref_primary_10_1109_TNSRE_2023_3295453
crossref_primary_10_1016_j_neucom_2022_06_035
crossref_primary_10_1016_j_cmpb_2020_105708
crossref_primary_10_1109_ACCESS_2021_3087231
crossref_primary_10_1007_s11265_020_01520_7
crossref_primary_10_1016_j_neunet_2017_05_006
crossref_primary_10_1080_03081079_2012_723209
crossref_primary_10_1016_j_neunet_2011_10_001
crossref_primary_10_1109_TNNLS_2013_2251470
crossref_primary_10_1016_j_procs_2025_07_080
crossref_primary_10_1016_j_neucom_2023_02_040
crossref_primary_10_1016_j_jsbmb_2023_106445
crossref_primary_10_1016_j_eswa_2015_04_034
crossref_primary_10_1007_s10851_012_0356_9
crossref_primary_10_1016_j_neucom_2010_10_016
crossref_primary_10_1016_j_neucom_2011_10_018
crossref_primary_10_1002_wcs_1378
crossref_primary_10_1016_j_neunet_2022_07_004
crossref_primary_10_1016_j_cmpb_2022_107042
crossref_primary_10_1109_TNNLS_2020_2978514
crossref_primary_10_1016_j_neunet_2011_05_013
crossref_primary_10_1002_2050_7038_13046
crossref_primary_10_1016_j_neucom_2014_10_092
crossref_primary_10_1007_s00180_016_0678_y
crossref_primary_10_1109_ACCESS_2018_2890544
crossref_primary_10_1007_s13218_012_0188_1
crossref_primary_10_1109_TSMC_2015_2468192
crossref_primary_10_1109_ACCESS_2019_2947581
crossref_primary_10_1111_apt_15710
crossref_primary_10_1109_TSMC_2017_2761360
crossref_primary_10_1016_j_neucom_2014_10_008
crossref_primary_10_1038_s41467_022_28795_7
crossref_primary_10_1016_j_ascom_2022_100555
crossref_primary_10_1007_s11227_018_2684_z
crossref_primary_10_1016_j_neucom_2025_129405
crossref_primary_10_1016_j_neucom_2016_06_038
crossref_primary_10_1016_j_neunet_2012_04_010
crossref_primary_10_1016_j_neucom_2018_12_076
crossref_primary_10_1371_journal_pone_0117157
crossref_primary_10_1007_s00787_021_01893_5
crossref_primary_10_1109_TNN_2010_2042729
crossref_primary_10_1016_j_neucom_2021_04_129
crossref_primary_10_1016_j_tcs_2018_04_045
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/neco.2009.11-08-908
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 19764875
Genre Journal Article
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
41~
53G
6IK
AAFWJ
AAJGR
AALMD
ABAZT
ABDBF
ABDNZ
ABEFU
ABIVO
ABJNI
ABVLG
ACGFO
ACUHS
ACYGS
ADIYS
ADMLS
AEGXH
AEILP
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
NPM
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
7X8
ID FETCH-LOGICAL-c498t-bb68b94789e44400861d33a76d2588922e9fc6b39a8f56ebb10a3390f7135e1e2
IEDL.DBID 7X8
ISICitedReferencesCount 226
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272200100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-7667
IngestDate Thu Sep 04 20:21:17 EDT 2025
Mon Jul 21 06:02:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-bb68b94789e44400861d33a76d2588922e9fc6b39a8f56ebb10a3390f7135e1e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19764875
PQID 734138710
PQPubID 23479
ParticipantIDs proquest_miscellaneous_734138710
pubmed_primary_19764875
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2009
SSID ssj0006105
Score 2.4611006
Snippet We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3532
SubjectTerms Algorithms
Artificial Intelligence
Automatic Data Processing
Brain - physiology
Humans
Information Theory
Learning - physiology
Probability Learning
Title Adaptive relevance matrices in learning vector quantization
URI https://www.ncbi.nlm.nih.gov/pubmed/19764875
https://www.proquest.com/docview/734138710
Volume 21
WOSCitedRecordID wos000272200100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZWChvCkveWC1Gj_ihxhQhagYoOoAqFtkJw5iIG1J29-PnbgwIQaWbJai893n787n-wCuqTAy5ybFTNkEc5bn2PiDDKfSlKZglrZvq14f5WikJhM9jr05dWyrXGNiA9TFNA818r4McOvZfXI7m-MgGhUuV6OCxiZ0mGcyIS7l5GdYuIgdjD6lwFIIGYcOEUH7lc_t2mGVbYVQJ-p3itkcNcPuP39yD3Yjx0SD1in2YcNVB9Bd6zegGM6HcDMozCzAHQrKKU0vAPpoRva7Gr1XKCpKvKFVU9pH86Xfhvhu8whehvfPdw84iingnGu1wNYKZTWXSjvOechkSMGYkaKgqVKaUqfLXFimjSpT4awliWFMJ2XQ8HPE0WPYqqaVOwXkIaH0O884tZxrKy2X1inptBXSs0nSA7S2TuadNdxAmMpNl3X2bZ8enLQWzmbtUI2MeF4Ukqezvxefww6NKg4JuYBO6QPVXcJ2vlq8159XjRP472j89AWwprry
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+relevance+matrices+in+learning+vector+quantization&rft.jtitle=Neural+computation&rft.au=Schneider%2C+Petra&rft.au=Biehl%2C+Michael&rft.au=Hammer%2C+Barbara&rft.date=2009-12-01&rft.issn=0899-7667&rft.volume=21&rft.issue=12&rft.spage=3532&rft_id=info:doi/10.1162%2Fneco.2009.11-08-908&rft_id=info%3Apmid%2F19764875&rft_id=info%3Apmid%2F19764875&rft.externalDocID=19764875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon