Water wave optimization: A new nature-inspired metaheuristic

Nature-inspired computing has been a hot topic in scientific and engineering fields in recent years. Inspired by the shallow water wave theory, the paper presents a novel metaheuristic method, named water wave optimization (WWO), for global optimization problems. We show how the beautiful phenomena...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & operations research Ročník 55; s. 1 - 11
Hlavní autor: Zheng, Yu-Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.03.2015
Pergamon Press Inc
Témata:
ISSN:0305-0548, 1873-765X, 0305-0548
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nature-inspired computing has been a hot topic in scientific and engineering fields in recent years. Inspired by the shallow water wave theory, the paper presents a novel metaheuristic method, named water wave optimization (WWO), for global optimization problems. We show how the beautiful phenomena of water waves, such as propagation, refraction, and breaking, can be used to derive effective mechanisms for searching in a high-dimensional solution space. In general, the algorithmic framework of WWO is simple, and easy to implement with a small-size population and only a few control parameters. We have tested WWO on a diverse set of benchmark problems, and applied WWO to a real-world high-speed train scheduling problem in China. The computational results demonstrate that WWO is very competitive with state-of-the-art evolutionary algorithms including invasive weed optimization (IWO), biogeography-based optimization (BBO), bat algorithm (BA), etc. The new metaheuristic is expected to have wide applications in real-world engineering optimization problems.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2014.10.008