The MapReduce-based approach to improve the shortest path computation in large-scale road networks: the case of A algorithm

This paper deals with an efficient parallel and distributed framework for intensive computation with A* algorithm based on MapReduce concept. The A* algorithm is one of the most popular graph traversal algorithm used in route guidance. It requires exponential time computation and very costly hardwar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of big data Ročník 5; číslo 1; s. 1 - 24
Hlavní autoři: Adoni, Wilfried Yves Hamilton, Nahhal, Tarik, Aghezzaf, Brahim, Elbyed, Abdeltif
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 03.05.2018
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2196-1115, 2196-1115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with an efficient parallel and distributed framework for intensive computation with A* algorithm based on MapReduce concept. The A* algorithm is one of the most popular graph traversal algorithm used in route guidance. It requires exponential time computation and very costly hardware to compute the shortest path on large-scale networks. Thus, it is necessary to reduce the time complexity while exploiting a low cost commodity hardwares. To cope with this situation, we propose a novel approach that reduces the A* algorithm into a set of Map and Reduce tasks for running the path computation on Hadoop MapReduce framework. An application on real road networks illustrates the feasibility and reliability of the proposed framework. The experiments performed on a 6-node Hadoop cluster proves that the proposed approach outperforms A* algorithm and achieves significant gain in terms of computation time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2196-1115
2196-1115
DOI:10.1186/s40537-018-0125-8