Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms

In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 203; no. 1; pp. 14 - 21
Main Authors: Florios, Kostas, Mavrotas, George, Diakoulaki, Danae
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 16.05.2010
Elsevier
Elsevier Sequoia S.A
Series:European Journal of Operational Research
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932–942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance).
AbstractList In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932-942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε-constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance). [PUBLICATION ABSTRACT]
In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932–942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance).
In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive [epsilon]-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932-942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive [epsilon] -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance).
Author Florios, Kostas
Mavrotas, George
Diakoulaki, Danae
Author_xml – sequence: 1
  givenname: Kostas
  surname: Florios
  fullname: Florios, Kostas
– sequence: 2
  givenname: George
  surname: Mavrotas
  fullname: Mavrotas, George
  email: mavrotas@chemeng.ntua.gr
– sequence: 3
  givenname: Danae
  surname: Diakoulaki
  fullname: Diakoulaki, Danae
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22505528$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeejores/v_3a203_3ay_3a2010_3ai_3a1_3ap_3a14-21.htm$$DView record in RePEc
BookMark eNp9UU1r3TAQFCWFvqT9Az2ZQm-1K8nf0EsJSRsI9NDkLCR5_Z4cW3Il2ZB_n3UccughgtVKaGdmtXNOzqyzQMhnRjNGWfV9yGBwPuOUthmtMsqLd-TAmpqnVVPRM3KgeV2nnLP6AzkPYaCUspKVBxL_unE19phMyxiNUwPoaFb4tt-1syF6aWxMHqycg9QPyeydGmEKyRKecTKeADej5bi9Hb2cpu1B2i6B1Y0L0lrpHxM5Hp038TSFj-R9L8cAn17yBbm_vrq7_J3e_vl1c_nzNtVF28S0rWquma4LJWXVybyWGlTVKZqrnsm6oKpgeNG80pornfetKsq27SFXdYtfzS_Il50X-_q3QIhicIu3KCk4LVhJy7bBopu9yMMMWszeTNitAFw4UghiFbnkNMf98fnEKCaDwTDmLReCM3GKE3J9fRGUAefRe2m1Ca-cnKNkyTdNvtdp70Lw0L-WIPlmqBjEpi42QwWtBBqKoOY_kDZRbtPdLBrfhv7YoYDTXg14EbQBq6EzHg0XnTNvwZ8AHsXBqA
CODEN EJORDT
CitedBy_id crossref_primary_10_1007_s10732_017_9346_9
crossref_primary_10_1007_s12293_021_00326_9
crossref_primary_10_3390_jrfm17110498
crossref_primary_10_1287_ijoc_2018_0846
crossref_primary_10_1016_j_cor_2022_106012
crossref_primary_10_3390_e24010058
crossref_primary_10_1016_j_isatra_2021_01_053
crossref_primary_10_1007_s11276_022_03069_8
crossref_primary_10_1016_j_amc_2015_08_018
crossref_primary_10_1016_j_ejor_2022_01_047
crossref_primary_10_1016_j_cor_2016_02_006
crossref_primary_10_1109_TCYB_2018_2869674
crossref_primary_10_1007_s10665_014_9742_1
crossref_primary_10_1016_j_ejor_2013_05_045
crossref_primary_10_1016_j_ress_2011_03_005
crossref_primary_10_1007_s12351_016_0240_2
crossref_primary_10_1080_0305215X_2021_1904918
crossref_primary_10_1016_j_cie_2024_110427
crossref_primary_10_1016_j_ejor_2017_01_032
crossref_primary_10_1080_10170669_2012_743643
crossref_primary_10_1016_j_ejor_2013_07_035
crossref_primary_10_1007_s10479_013_1387_3
crossref_primary_10_1016_j_ejor_2016_10_015
crossref_primary_10_3390_app13021094
crossref_primary_10_3390_eng5030104
crossref_primary_10_1007_s10257_020_00470_8
crossref_primary_10_1016_j_ejor_2013_11_032
crossref_primary_10_1016_j_amc_2013_03_002
crossref_primary_10_1016_j_tre_2014_01_010
crossref_primary_10_1016_j_asoc_2013_01_014
crossref_primary_10_1111_j_1475_3995_2011_00840_x
crossref_primary_10_1080_02331934_2020_1719492
crossref_primary_10_1016_j_cie_2014_05_013
crossref_primary_10_1007_s10799_014_0207_z
crossref_primary_10_1016_j_cor_2012_03_010
crossref_primary_10_1016_j_ejor_2015_01_035
crossref_primary_10_1016_j_ejor_2018_12_042
Cites_doi 10.1023/A:1009682532542
10.1007/s10852-005-9034-x
10.1016/j.ejor.2005.10.013
10.1016/S0305-0548(02)00112-0
10.1016/j.amc.2005.01.038
10.1109/4235.996017
10.1002/(SICI)1520-6750(200002)47:1<57::AID-NAV4>3.0.CO;2-4
10.1016/S0377-2217(97)00077-5
10.1016/j.ejor.2008.07.047
10.1007/s10479-006-0074-z
10.1016/j.tcs.2006.03.007
10.1016/j.ejor.2004.08.029
10.1016/j.ejor.2006.02.033
10.1016/j.ejor.2004.08.005
10.1287/mnsc.48.12.1603.445
10.1016/S0377-2217(03)00420-X
10.1023/A:1008258310679
10.1016/j.ejor.2003.06.015
10.2307/1910129
10.1016/j.ejor.2006.08.002
10.1016/S0305-0548(99)00109-4
10.1109/TEVC.2002.802873
10.1016/j.cor.2006.02.008
10.1023/B:JMMA.0000038617.09620.02
10.1016/j.cor.2006.11.001
10.1109/4235.797969
10.1016/j.cor.2007.09.009
ContentType Journal Article
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. May 16, 2010
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. May 16, 2010
DBID AAYXX
CITATION
IQODW
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2009.06.024
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 21
ExternalDocumentID 1897588461
eeeejores_v_3a203_3ay_3a2010_3ai_3a1_3ap_3a14_21_htm
22505528
10_1016_j_ejor_2009_06_024
S0377221709004974
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c498t-9672c1c74baa6da37aceb6db03bf1a740b41b03c26cc2bc3f9b4599fe3b792173
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272073100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Fri Jul 25 07:51:37 EDT 2025
Wed Aug 18 03:50:56 EDT 2021
Mon Jul 21 09:11:42 EDT 2025
Sat Nov 29 01:40:58 EST 2025
Tue Nov 18 20:59:32 EST 2025
Fri Feb 23 02:27:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multiobjective
Evolutionary algorithms
Branch and bound
Knapsack problem
Branching
Adaptive algorithm
Pareto optimum
Multicriteria analysis
Branch and bound method
Evolutionary algorithm
Multiobjective programming
Parameter variation
Coverage
Adaptive method
Genetic algorithm
Heuristic method
Metric
Objective function
Multidimensional system
Metamodel
Mathematical programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c498t-9672c1c74baa6da37aceb6db03bf1a740b41b03c26cc2bc3f9b4599fe3b792173
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink http://doi.org/10.1016/j.ejor.2009.06.024
PQID 204150598
PQPubID 45678
PageCount 8
ParticipantIDs proquest_journals_204150598
repec_primary_eeeejores_v_3a203_3ay_3a2010_3ai_3a1_3ap_3a14_21_htm
pascalfrancis_primary_22505528
crossref_primary_10_1016_j_ejor_2009_06_024
crossref_citationtrail_10_1016_j_ejor_2009_06_024
elsevier_sciencedirect_doi_10_1016_j_ejor_2009_06_024
PublicationCentury 2000
PublicationDate 2010-05-16
PublicationDateYYYYMMDD 2010-05-16
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Bazgan, Hugot, Vanderpooten (bib3) 2009; 36
Kumar, Banerjee (bib23) 2006; 358
Zitzler, Laumanns, Bleuler (bib40) 2004; vol. 535
Ehrgott (bib12) 2006; 147
Khare, Yao, Deb (bib21) 2003; vol. 2632
Deb (bib9) 2001
Nemhauser, Wolsey (bib32) 1999
Li, Zhang, Tsang, Ford (bib27) 2004; vol. 3004
Gomes da Silva, Clímaco, Figueira (bib18) 2007; 35
Visée, Teghem, Pirlot, Ulungu (bib35) 1998; 12
Alves, Clímaco (bib2) 2007; 180
Laumanns, M., Thiele, L., Zitzler, E., 2005. An adaptive scheme to generate the Pareto front based on the epsilon-constraint method. In: Branke, J., Deb, K., Miettinen, K., Steuer, R. (Eds.), Practical Approaches to Multi-Objective Optimization, Dagstuhl Seminar Proceedings, vol. 04461. URN: urn:nbn:de:0030-drops-2465, URL
Bazgan, Hugot, Vanderpooten (bib4) 2009; 198
Jaszkiewicz (bib19) 2002; 6
Teghem, Tuyttens, Ulungu (bib34) 2000; 27
Jaszkiewicz (bib20) 2004; 158
Zitzler, E., 1999. Evolutionary algorithms for multiobjective optimization: methods and applications. PhD Thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland.
Bleuler, Laumanns, Thiele, Zitzler (bib5) 2003
Alves, Almeida (bib1) 2007; 34
Coello Coello, Van Veldhuizen, Lamont (bib8) 2002
Mavrotas, Diakoulaki (bib30) 1998; 107
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E., 2003b. The PISA Homepage.
Erlebach, Kellerer, Pferschy (bib13) 2002; 48
Gomes da Silva, Clímaco, Figueira (bib16) 2006; 169
Gomes da Silva, Figueira, Clímaco (bib17) 2007; 177
Gandibleux, Freville (bib14) 2000; 6
Zitzler, Laumanns, Thiele (bib39) 2002
.
López-Ibáñez, Paquete, Stützle (bib28) 2006; 5
Laumanns, Thiele, Zitzler (bib26) 2006; 169
Klamroth, Wiecek (bib22) 2000; 47
Gomes da Silva, Clímaco, Figueira (bib15) 2004; 3
Captivo, Clímaco, Figueira, Martins, Santos (bib7) 2003; 30
Zitzler, Thiele (bib38) 1999; 3
Land, Doig (bib24) 1960; 28
Martello, Toth (bib29) 1990
Zhang, Ong (bib36) 2004; 159
Dongarra, J.J., 2008. Performance of various computers using standard linear equations software. Linpack Benchmark Report, University of Tennessee Computer Science Technical Report, CS-89-85.
Shukla, Deb (bib33) 2007; 181
Deb, Pratap, Agarwal, Meyarivan (bib10) 2002; 6
Mavrotas, Diakoulaki (bib31) 2005; 171
Erlebach (10.1016/j.ejor.2009.06.024_bib13) 2002; 48
Captivo (10.1016/j.ejor.2009.06.024_bib7) 2003; 30
10.1016/j.ejor.2009.06.024_bib11
Laumanns (10.1016/j.ejor.2009.06.024_bib26) 2006; 169
Li (10.1016/j.ejor.2009.06.024_bib27) 2004; vol. 3004
Zhang (10.1016/j.ejor.2009.06.024_bib36) 2004; 159
Zitzler (10.1016/j.ejor.2009.06.024_bib39) 2002
Zitzler (10.1016/j.ejor.2009.06.024_bib40) 2004; vol. 535
Gomes da Silva (10.1016/j.ejor.2009.06.024_bib16) 2006; 169
Klamroth (10.1016/j.ejor.2009.06.024_bib22) 2000; 47
Land (10.1016/j.ejor.2009.06.024_bib24) 1960; 28
Gomes da Silva (10.1016/j.ejor.2009.06.024_bib17) 2007; 177
10.1016/j.ejor.2009.06.024_bib37
Jaszkiewicz (10.1016/j.ejor.2009.06.024_bib20) 2004; 158
Deb (10.1016/j.ejor.2009.06.024_bib10) 2002; 6
Gomes da Silva (10.1016/j.ejor.2009.06.024_bib18) 2007; 35
Shukla (10.1016/j.ejor.2009.06.024_bib33) 2007; 181
Martello (10.1016/j.ejor.2009.06.024_bib29) 1990
Ehrgott (10.1016/j.ejor.2009.06.024_bib12) 2006; 147
Alves (10.1016/j.ejor.2009.06.024_bib2) 2007; 180
Zitzler (10.1016/j.ejor.2009.06.024_bib38) 1999; 3
Nemhauser (10.1016/j.ejor.2009.06.024_bib32) 1999
10.1016/j.ejor.2009.06.024_bib6
Bazgan (10.1016/j.ejor.2009.06.024_bib4) 2009; 198
Jaszkiewicz (10.1016/j.ejor.2009.06.024_bib19) 2002; 6
Kumar (10.1016/j.ejor.2009.06.024_bib23) 2006; 358
Mavrotas (10.1016/j.ejor.2009.06.024_bib30) 1998; 107
Alves (10.1016/j.ejor.2009.06.024_bib1) 2007; 34
10.1016/j.ejor.2009.06.024_bib25
Teghem (10.1016/j.ejor.2009.06.024_bib34) 2000; 27
Bleuler (10.1016/j.ejor.2009.06.024_bib5) 2003
Gomes da Silva (10.1016/j.ejor.2009.06.024_bib15) 2004; 3
Bazgan (10.1016/j.ejor.2009.06.024_bib3) 2009; 36
Gandibleux (10.1016/j.ejor.2009.06.024_bib14) 2000; 6
Khare (10.1016/j.ejor.2009.06.024_bib21) 2003; vol. 2632
Visée (10.1016/j.ejor.2009.06.024_bib35) 1998; 12
Deb (10.1016/j.ejor.2009.06.024_bib9) 2001
Mavrotas (10.1016/j.ejor.2009.06.024_bib31) 2005; 171
Coello Coello (10.1016/j.ejor.2009.06.024_bib8) 2002
López-Ibáñez (10.1016/j.ejor.2009.06.024_bib28) 2006; 5
References_xml – volume: vol. 2632
  start-page: 376
  year: 2003
  end-page: 390
  ident: bib21
  article-title: Performance scaling of multi-objective evolutionary algorithms
  publication-title: EMO 2003
– volume: 12
  start-page: 139
  year: 1998
  end-page: 155
  ident: bib35
  article-title: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem
  publication-title: Journal of Global Optimization
– volume: 169
  start-page: 373
  year: 2006
  end-page: 391
  ident: bib16
  article-title: A scatter search method for bi-criteria {0,1} knapsack problems
  publication-title: European Journal of Operational Research
– year: 2002
  ident: bib8
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– volume: 48
  start-page: 1603
  year: 2002
  end-page: 1612
  ident: bib13
  article-title: Approximating multiobjective knapsack problems
  publication-title: Management Science
– volume: 158
  start-page: 418
  year: 2004
  end-page: 433
  ident: bib20
  article-title: On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study
  publication-title: European Journal of Operational Research
– volume: 358
  start-page: 104
  year: 2006
  end-page: 120
  ident: bib23
  article-title: Analysis of a multiobjective evolutionary algorithm on the 0–1 knapsack problem
  publication-title: Theoretical Computer Science
– volume: 34
  start-page: 3458
  year: 2007
  end-page: 3470
  ident: bib1
  article-title: MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem
  publication-title: Computers and Operations Research
– volume: 36
  start-page: 260
  year: 2009
  end-page: 279
  ident: bib3
  article-title: Solving efficiently the 0–1 multi-objective knapsack problem
  publication-title: Computers and Operations Research
– volume: 6
  start-page: 361
  year: 2000
  end-page: 383
  ident: bib14
  article-title: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: The two objectives case
  publication-title: Journal of Heuristics
– reference: Laumanns, M., Thiele, L., Zitzler, E., 2005. An adaptive scheme to generate the Pareto front based on the epsilon-constraint method. In: Branke, J., Deb, K., Miettinen, K., Steuer, R. (Eds.), Practical Approaches to Multi-Objective Optimization, Dagstuhl Seminar Proceedings, vol. 04461. URN: urn:nbn:de:0030-drops-2465, URL:
– year: 1990
  ident: bib29
  article-title: Knapsack Problems
– volume: vol. 535
  start-page: 3
  year: 2004
  end-page: 37
  ident: bib40
  article-title: A tutorial on evolutionary multiobjective optimization
  publication-title: EU/ME & PM2O 2002
– volume: 47
  start-page: 57
  year: 2000
  end-page: 76
  ident: bib22
  article-title: Dynamic programming approaches to the multiple criteria knapsack problem
  publication-title: Naval Research Logistics
– start-page: 494
  year: 2003
  end-page: 508
  ident: bib5
  article-title: PISA – A platform and programming language independent interface for search algorithms
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 198
  start-page: 47
  year: 2009
  end-page: 56
  ident: bib4
  article-title: Implementing an efficient fptas for the 0–1 multi-objective knapsack problem
  publication-title: European Journal of Operational Research
– volume: 171
  start-page: 53
  year: 2005
  end-page: 71
  ident: bib31
  article-title: Multi-criteria branch and bound: A vector maximization algorithm for mixed 0–1 multiple objective linear programming
  publication-title: Applied Mathematics and Computation
– reference: Zitzler, E., 1999. Evolutionary algorithms for multiobjective optimization: methods and applications. PhD Thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland.
– volume: 30
  start-page: 1865
  year: 2003
  end-page: 1886
  ident: bib7
  article-title: Solving bicriteria 0–1 knapsack problems using a labeling algorithm
  publication-title: Computers and Operations Research
– volume: 147
  start-page: 343
  year: 2006
  end-page: 360
  ident: bib12
  article-title: A discussion of scalarization techniques for multiple objective integer programming
  publication-title: Annals of Operational Research
– volume: vol. 3004
  start-page: 145
  year: 2004
  end-page: 154
  ident: bib27
  article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack problem
  publication-title: EvoCOP 2004
– reference: Dongarra, J.J., 2008. Performance of various computers using standard linear equations software. Linpack Benchmark Report, University of Tennessee Computer Science Technical Report, CS-89-85.
– volume: 27
  start-page: 621
  year: 2000
  end-page: 634
  ident: bib34
  article-title: An interactive heuristic method for multi-objective combinatorial optimization
  publication-title: Computers and Operations Research
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib38
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 159
  start-page: 545
  year: 2004
  end-page: 557
  ident: bib36
  article-title: Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic
  publication-title: European Journal of Operational Research
– volume: 6
  start-page: 402
  year: 2002
  end-page: 412
  ident: bib19
  article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem – A comparative experiment
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 5
  start-page: 111
  year: 2006
  end-page: 137
  ident: bib28
  article-title: Hybrid population-based algorithms for the bi-objective quadratic assignment problem
  publication-title: Journal of Mathematical Modelling and Algorithms
– volume: 181
  start-page: 1630
  year: 2007
  end-page: 1652
  ident: bib33
  article-title: On finding multiple pareto-optimal solutions using classical and evolutionary generating methods
  publication-title: European Journal of Operational Research
– volume: 3
  start-page: 183
  year: 2004
  end-page: 208
  ident: bib15
  article-title: A scatter search method for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation
  publication-title: Journal of Mathematical Modelling and Algorithms
– volume: 28
  start-page: 497
  year: 1960
  end-page: 520
  ident: bib24
  article-title: An automatic method of solving discrete programming problems
  publication-title: Econometrica
– year: 2001
  ident: bib9
  article-title: Multi-Objective Optimization Using Evolutionary Algorithms
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib10
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 19
  year: 2002
  end-page: 26
  ident: bib39
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization
  publication-title: Evolutionary Methods for Design Optimization and Control
– volume: 177
  start-page: 1656
  year: 2007
  end-page: 1677
  ident: bib17
  article-title: Integrating partial optimization with scatter search for solving bi-criteria {0,1} knapsack problems
  publication-title: European Journal of Operational Research
– volume: 180
  start-page: 99
  year: 2007
  end-page: 115
  ident: bib2
  article-title: A review of interactive methods for multiobjective integer and mixed-integer programming
  publication-title: European Journal of Operational Research
– reference: Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E., 2003b. The PISA Homepage.
– volume: 35
  start-page: 2292
  year: 2007
  end-page: 2306
  ident: bib18
  article-title: Core problems in bi-criteria {0,1}-knapsack problems
  publication-title: Computers and Operations Research
– volume: 107
  start-page: 530
  year: 1998
  end-page: 541
  ident: bib30
  article-title: A branch and bound algorithm for mixed zero-one multiple objective linear programming
  publication-title: European Journal of Operational Research
– year: 1999
  ident: bib32
  article-title: Integer and Combinatorial Optimization
– reference: .
– volume: 169
  start-page: 932
  year: 2006
  end-page: 942
  ident: bib26
  article-title: An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method
  publication-title: European Journal of Operational Research
– ident: 10.1016/j.ejor.2009.06.024_bib6
– volume: 6
  start-page: 361
  year: 2000
  ident: 10.1016/j.ejor.2009.06.024_bib14
  article-title: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: The two objectives case
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009682532542
– year: 2002
  ident: 10.1016/j.ejor.2009.06.024_bib8
– volume: 5
  start-page: 111
  year: 2006
  ident: 10.1016/j.ejor.2009.06.024_bib28
  article-title: Hybrid population-based algorithms for the bi-objective quadratic assignment problem
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-005-9034-x
– volume: 177
  start-page: 1656
  year: 2007
  ident: 10.1016/j.ejor.2009.06.024_bib17
  article-title: Integrating partial optimization with scatter search for solving bi-criteria {0,1} knapsack problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.10.013
– volume: 30
  start-page: 1865
  year: 2003
  ident: 10.1016/j.ejor.2009.06.024_bib7
  article-title: Solving bicriteria 0–1 knapsack problems using a labeling algorithm
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(02)00112-0
– volume: 171
  start-page: 53
  year: 2005
  ident: 10.1016/j.ejor.2009.06.024_bib31
  article-title: Multi-criteria branch and bound: A vector maximization algorithm for mixed 0–1 multiple objective linear programming
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2005.01.038
– start-page: 494
  year: 2003
  ident: 10.1016/j.ejor.2009.06.024_bib5
  article-title: PISA – A platform and programming language independent interface for search algorithms
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.ejor.2009.06.024_bib10
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 10.1016/j.ejor.2009.06.024_bib25
– volume: 47
  start-page: 57
  year: 2000
  ident: 10.1016/j.ejor.2009.06.024_bib22
  article-title: Dynamic programming approaches to the multiple criteria knapsack problem
  publication-title: Naval Research Logistics
  doi: 10.1002/(SICI)1520-6750(200002)47:1<57::AID-NAV4>3.0.CO;2-4
– volume: 107
  start-page: 530
  year: 1998
  ident: 10.1016/j.ejor.2009.06.024_bib30
  article-title: A branch and bound algorithm for mixed zero-one multiple objective linear programming
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00077-5
– volume: 198
  start-page: 47
  year: 2009
  ident: 10.1016/j.ejor.2009.06.024_bib4
  article-title: Implementing an efficient fptas for the 0–1 multi-objective knapsack problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.07.047
– volume: 147
  start-page: 343
  year: 2006
  ident: 10.1016/j.ejor.2009.06.024_bib12
  article-title: A discussion of scalarization techniques for multiple objective integer programming
  publication-title: Annals of Operational Research
  doi: 10.1007/s10479-006-0074-z
– volume: 358
  start-page: 104
  year: 2006
  ident: 10.1016/j.ejor.2009.06.024_bib23
  article-title: Analysis of a multiobjective evolutionary algorithm on the 0–1 knapsack problem
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2006.03.007
– volume: vol. 535
  start-page: 3
  year: 2004
  ident: 10.1016/j.ejor.2009.06.024_bib40
  article-title: A tutorial on evolutionary multiobjective optimization
– ident: 10.1016/j.ejor.2009.06.024_bib37
– volume: 169
  start-page: 932
  year: 2006
  ident: 10.1016/j.ejor.2009.06.024_bib26
  article-title: An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.08.029
– volume: 180
  start-page: 99
  year: 2007
  ident: 10.1016/j.ejor.2009.06.024_bib2
  article-title: A review of interactive methods for multiobjective integer and mixed-integer programming
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.02.033
– volume: 169
  start-page: 373
  year: 2006
  ident: 10.1016/j.ejor.2009.06.024_bib16
  article-title: A scatter search method for bi-criteria {0,1} knapsack problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.08.005
– year: 1999
  ident: 10.1016/j.ejor.2009.06.024_bib32
– volume: 48
  start-page: 1603
  issue: 12
  year: 2002
  ident: 10.1016/j.ejor.2009.06.024_bib13
  article-title: Approximating multiobjective knapsack problems
  publication-title: Management Science
  doi: 10.1287/mnsc.48.12.1603.445
– volume: 159
  start-page: 545
  year: 2004
  ident: 10.1016/j.ejor.2009.06.024_bib36
  article-title: Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(03)00420-X
– volume: 12
  start-page: 139
  year: 1998
  ident: 10.1016/j.ejor.2009.06.024_bib35
  article-title: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008258310679
– volume: 158
  start-page: 418
  year: 2004
  ident: 10.1016/j.ejor.2009.06.024_bib20
  article-title: On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2003.06.015
– volume: 28
  start-page: 497
  issue: 3
  year: 1960
  ident: 10.1016/j.ejor.2009.06.024_bib24
  article-title: An automatic method of solving discrete programming problems
  publication-title: Econometrica
  doi: 10.2307/1910129
– volume: vol. 3004
  start-page: 145
  year: 2004
  ident: 10.1016/j.ejor.2009.06.024_bib27
  article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack problem
– volume: 181
  start-page: 1630
  year: 2007
  ident: 10.1016/j.ejor.2009.06.024_bib33
  article-title: On finding multiple pareto-optimal solutions using classical and evolutionary generating methods
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.002
– year: 2001
  ident: 10.1016/j.ejor.2009.06.024_bib9
– volume: 27
  start-page: 621
  year: 2000
  ident: 10.1016/j.ejor.2009.06.024_bib34
  article-title: An interactive heuristic method for multi-objective combinatorial optimization
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(99)00109-4
– volume: 6
  start-page: 402
  issue: 4
  year: 2002
  ident: 10.1016/j.ejor.2009.06.024_bib19
  article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem – A comparative experiment
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2002.802873
– year: 1990
  ident: 10.1016/j.ejor.2009.06.024_bib29
– volume: vol. 2632
  start-page: 376
  year: 2003
  ident: 10.1016/j.ejor.2009.06.024_bib21
  article-title: Performance scaling of multi-objective evolutionary algorithms
– volume: 34
  start-page: 3458
  year: 2007
  ident: 10.1016/j.ejor.2009.06.024_bib1
  article-title: MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2006.02.008
– volume: 3
  start-page: 183
  year: 2004
  ident: 10.1016/j.ejor.2009.06.024_bib15
  article-title: A scatter search method for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1023/B:JMMA.0000038617.09620.02
– start-page: 19
  year: 2002
  ident: 10.1016/j.ejor.2009.06.024_bib39
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization
– volume: 35
  start-page: 2292
  year: 2007
  ident: 10.1016/j.ejor.2009.06.024_bib18
  article-title: Core problems in bi-criteria {0,1}-knapsack problems
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2006.11.001
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.ejor.2009.06.024_bib38
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 36
  start-page: 260
  year: 2009
  ident: 10.1016/j.ejor.2009.06.024_bib3
  article-title: Solving efficiently the 0–1 multi-objective knapsack problem
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2007.09.009
– ident: 10.1016/j.ejor.2009.06.024_bib11
SSID ssj0001515
Score 2.2088501
Snippet In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three...
SourceID proquest
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms Applied sciences
Approximation
Branch & bound algorithms
Branch and bound
Branch and bound Knapsack problem Multiobjective Evolutionary algorithms
Evolutionary algorithms
Exact sciences and technology
Flows in networks. Combinatorial problems
Genetic algorithms
Heuristic
Knapsack problem
Mathematical programming
Multiobjective
Operational research and scientific management
Operational research. Management science
Studies
Title Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms
URI https://dx.doi.org/10.1016/j.ejor.2009.06.024
http://econpapers.repec.org/article/eeeejores/v_3a203_3ay_3a2010_3ai_3a1_3ap_3a14-21.htm
https://www.proquest.com/docview/204150598
Volume 203
WOSCitedRecordID wos000272073100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhAIcRkgymDKA-KlpEqci-PHgTZxGQNpndS3yHYdeluTpWk1fil_h-PYztINJnigUtLUqXM7n53j4_Odg9BroqJ4eSF3KWXSVRNzLvcT5goZMo5JFkSjmih8RI6Pk-GQfut0flouzHpOFovk4oIW_1XUUAbCVtTZfxB3c1AogG0QOqxB7LD-K8Gf5PPaSFC7CuZ8qns09SjrEqEUQpUXourNFqxYMjHrmawyy96qthycNaFcFU1LO3CdWTKjXJurV-52bP49LyfV2IQ8_52F32i7UFBau6MJMDS-xA4cRLv7fc5BW23U_C9sXeYVaxnvG717wmb5as5mlifPZNt-oafeNb1SG9UsseZEnq_yCeud9PdbfWBAiIuxpnf2pe6jE4LdONFpCGwnjr3gGlp1l6w5qtfeFNpoMe3LaV6asKVx39N87s2w3Mdf08PTo6N0cDAcbO7Vo6iEEsX2jf03xbmr0pmpaX-T2-UW2sYkoskW2t7_eDD81CgJSo-sJ7jM_Rk-l3Y9vHpNf9KZ7hdsCUjIdAqWjTHSdikLKVqq0uARemDGOM6-xuZj1JGLHXTHUix20EObSsQxb5YddK8VF_MJqgyGnU0Mv3WuINixCHYsgp0awU4bwU4LwQ4g2Gkj2LlE8FN0engweP_BNelBXBHSpHJpTLDwBQk5Y_GIBYQJyeMR9wKe-YyEHg99-CGwogZwEWSUhxGlmQw4ofDIg2doa5Ev5HPkSOiS4tjjCYUB-ggLHnksGfGIZFkwihLaRb4VQCpM7Hx1o_PUOklOUyU0ldSVpspTFIdd1GvqFDpyzI3_jqxcU6P7ap02BcDeWG9vAwTNqbAa20Q46aJdi4rUtPolHAD0dhhYwd53NVCaahI-cAq5TNdpwKBVwfpHvQXXELAJLD4shfoOU-yn4-rsxY2n2EV3L5v9S7RVlSv5Ct0W62qyLPdMu_gFoAkC4Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+multiobjective%2C+multiconstraint+knapsack+problems+using+mathematical+programming+and+evolutionary+algorithms&rft.jtitle=European+journal+of+operational+research&rft.au=Florios%2C+Kostas&rft.au=Mavrotas%2C+George&rft.au=Diakoulaki%2C+Danae&rft.date=2010-05-16&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=203&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1016%2Fj.ejor.2009.06.024&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1897588461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon