Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms
In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 203; číslo 1; s. 14 - 21 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
16.05.2010
Elsevier Elsevier Sequoia S.A |
| Edice: | European Journal of Operational Research |
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive
ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932–942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive
ε -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance). |
|---|---|
| AbstractList | In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932-942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε-constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance). [PUBLICATION ABSTRACT] In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive [epsilon]-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932-942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive [epsilon] -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance). In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive ε-constraint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research 169, 932–942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε -constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance). |
| Author | Florios, Kostas Mavrotas, George Diakoulaki, Danae |
| Author_xml | – sequence: 1 givenname: Kostas surname: Florios fullname: Florios, Kostas – sequence: 2 givenname: George surname: Mavrotas fullname: Mavrotas, George email: mavrotas@chemeng.ntua.gr – sequence: 3 givenname: Danae surname: Diakoulaki fullname: Diakoulaki, Danae |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22505528$$DView record in Pascal Francis http://econpapers.repec.org/article/eeeejores/v_3a203_3ay_3a2010_3ai_3a1_3ap_3a14-21.htm$$DView record in RePEc |
| BookMark | eNp9UU1r3TAQFCWFvqT9Az2ZQm-1K8nf0EsJSRsI9NDkLCR5_Z4cW3Il2ZB_n3UccughgtVKaGdmtXNOzqyzQMhnRjNGWfV9yGBwPuOUthmtMsqLd-TAmpqnVVPRM3KgeV2nnLP6AzkPYaCUspKVBxL_unE19phMyxiNUwPoaFb4tt-1syF6aWxMHqycg9QPyeydGmEKyRKecTKeADej5bi9Hb2cpu1B2i6B1Y0L0lrpHxM5Hp038TSFj-R9L8cAn17yBbm_vrq7_J3e_vl1c_nzNtVF28S0rWquma4LJWXVybyWGlTVKZqrnsm6oKpgeNG80pornfetKsq27SFXdYtfzS_Il50X-_q3QIhicIu3KCk4LVhJy7bBopu9yMMMWszeTNitAFw4UghiFbnkNMf98fnEKCaDwTDmLReCM3GKE3J9fRGUAefRe2m1Ca-cnKNkyTdNvtdp70Lw0L-WIPlmqBjEpi42QwWtBBqKoOY_kDZRbtPdLBrfhv7YoYDTXg14EbQBq6EzHg0XnTNvwZ8AHsXBqA |
| CODEN | EJORDT |
| CitedBy_id | crossref_primary_10_1007_s10732_017_9346_9 crossref_primary_10_1007_s12293_021_00326_9 crossref_primary_10_3390_jrfm17110498 crossref_primary_10_1287_ijoc_2018_0846 crossref_primary_10_1016_j_cor_2022_106012 crossref_primary_10_3390_e24010058 crossref_primary_10_1016_j_isatra_2021_01_053 crossref_primary_10_1007_s11276_022_03069_8 crossref_primary_10_1016_j_amc_2015_08_018 crossref_primary_10_1016_j_ejor_2022_01_047 crossref_primary_10_1016_j_cor_2016_02_006 crossref_primary_10_1109_TCYB_2018_2869674 crossref_primary_10_1007_s10665_014_9742_1 crossref_primary_10_1016_j_ejor_2013_05_045 crossref_primary_10_1016_j_ress_2011_03_005 crossref_primary_10_1007_s12351_016_0240_2 crossref_primary_10_1080_0305215X_2021_1904918 crossref_primary_10_1016_j_cie_2024_110427 crossref_primary_10_1016_j_ejor_2017_01_032 crossref_primary_10_1080_10170669_2012_743643 crossref_primary_10_1016_j_ejor_2013_07_035 crossref_primary_10_1007_s10479_013_1387_3 crossref_primary_10_1016_j_ejor_2016_10_015 crossref_primary_10_3390_app13021094 crossref_primary_10_3390_eng5030104 crossref_primary_10_1007_s10257_020_00470_8 crossref_primary_10_1016_j_ejor_2013_11_032 crossref_primary_10_1016_j_amc_2013_03_002 crossref_primary_10_1016_j_tre_2014_01_010 crossref_primary_10_1016_j_asoc_2013_01_014 crossref_primary_10_1111_j_1475_3995_2011_00840_x crossref_primary_10_1080_02331934_2020_1719492 crossref_primary_10_1016_j_cie_2014_05_013 crossref_primary_10_1007_s10799_014_0207_z crossref_primary_10_1016_j_cor_2012_03_010 crossref_primary_10_1016_j_ejor_2015_01_035 crossref_primary_10_1016_j_ejor_2018_12_042 |
| Cites_doi | 10.1023/A:1009682532542 10.1007/s10852-005-9034-x 10.1016/j.ejor.2005.10.013 10.1016/S0305-0548(02)00112-0 10.1016/j.amc.2005.01.038 10.1109/4235.996017 10.1002/(SICI)1520-6750(200002)47:1<57::AID-NAV4>3.0.CO;2-4 10.1016/S0377-2217(97)00077-5 10.1016/j.ejor.2008.07.047 10.1007/s10479-006-0074-z 10.1016/j.tcs.2006.03.007 10.1016/j.ejor.2004.08.029 10.1016/j.ejor.2006.02.033 10.1016/j.ejor.2004.08.005 10.1287/mnsc.48.12.1603.445 10.1016/S0377-2217(03)00420-X 10.1023/A:1008258310679 10.1016/j.ejor.2003.06.015 10.2307/1910129 10.1016/j.ejor.2006.08.002 10.1016/S0305-0548(99)00109-4 10.1109/TEVC.2002.802873 10.1016/j.cor.2006.02.008 10.1023/B:JMMA.0000038617.09620.02 10.1016/j.cor.2006.11.001 10.1109/4235.797969 10.1016/j.cor.2007.09.009 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier B.V. 2015 INIST-CNRS Copyright Elsevier Sequoia S.A. May 16, 2010 |
| Copyright_xml | – notice: 2009 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright Elsevier Sequoia S.A. May 16, 2010 |
| DBID | AAYXX CITATION IQODW DKI X2L 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ejor.2009.06.024 |
| DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Applied Sciences |
| EISSN | 1872-6860 |
| EndPage | 21 |
| ExternalDocumentID | 1897588461 eeeejores_v_3a203_3ay_3a2010_3ai_3a1_3ap_3a14_21_htm 22505528 10_1016_j_ejor_2009_06_024 S0377221709004974 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 02 08R 0R 1 41 6XO 8P AAPBV ABFLS ADALY DKI G- HZ IPNFZ K M MS PQEST STF X X2L 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c498t-9672c1c74baa6da37aceb6db03bf1a740b41b03c26cc2bc3f9b4599fe3b792173 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272073100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Fri Jul 25 07:51:37 EDT 2025 Wed Aug 18 03:50:56 EDT 2021 Mon Jul 21 09:11:42 EDT 2025 Sat Nov 29 01:40:58 EST 2025 Tue Nov 18 20:59:32 EST 2025 Fri Feb 23 02:27:50 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Multiobjective Evolutionary algorithms Branch and bound Knapsack problem Branching Adaptive algorithm Pareto optimum Multicriteria analysis Branch and bound method Evolutionary algorithm Multiobjective programming Parameter variation Coverage Adaptive method Genetic algorithm Heuristic method Metric Objective function Multidimensional system Metamodel Mathematical programming |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c498t-9672c1c74baa6da37aceb6db03bf1a740b41b03c26cc2bc3f9b4599fe3b792173 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| OpenAccessLink | http://doi.org/10.1016/j.ejor.2009.06.024 |
| PQID | 204150598 |
| PQPubID | 45678 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_204150598 repec_primary_eeeejores_v_3a203_3ay_3a2010_3ai_3a1_3ap_3a14_21_htm pascalfrancis_primary_22505528 crossref_primary_10_1016_j_ejor_2009_06_024 crossref_citationtrail_10_1016_j_ejor_2009_06_024 elsevier_sciencedirect_doi_10_1016_j_ejor_2009_06_024 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-05-16 |
| PublicationDateYYYYMMDD | 2010-05-16 |
| PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationSeriesTitle | European Journal of Operational Research |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2010 |
| Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
| References | Bazgan, Hugot, Vanderpooten (bib3) 2009; 36 Kumar, Banerjee (bib23) 2006; 358 Zitzler, Laumanns, Bleuler (bib40) 2004; vol. 535 Ehrgott (bib12) 2006; 147 Khare, Yao, Deb (bib21) 2003; vol. 2632 Deb (bib9) 2001 Nemhauser, Wolsey (bib32) 1999 Li, Zhang, Tsang, Ford (bib27) 2004; vol. 3004 Gomes da Silva, Clímaco, Figueira (bib18) 2007; 35 Visée, Teghem, Pirlot, Ulungu (bib35) 1998; 12 Alves, Clímaco (bib2) 2007; 180 Laumanns, M., Thiele, L., Zitzler, E., 2005. An adaptive scheme to generate the Pareto front based on the epsilon-constraint method. In: Branke, J., Deb, K., Miettinen, K., Steuer, R. (Eds.), Practical Approaches to Multi-Objective Optimization, Dagstuhl Seminar Proceedings, vol. 04461. URN: urn:nbn:de:0030-drops-2465, URL Bazgan, Hugot, Vanderpooten (bib4) 2009; 198 Jaszkiewicz (bib19) 2002; 6 Teghem, Tuyttens, Ulungu (bib34) 2000; 27 Jaszkiewicz (bib20) 2004; 158 Zitzler, E., 1999. Evolutionary algorithms for multiobjective optimization: methods and applications. PhD Thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland. Bleuler, Laumanns, Thiele, Zitzler (bib5) 2003 Alves, Almeida (bib1) 2007; 34 Coello Coello, Van Veldhuizen, Lamont (bib8) 2002 Mavrotas, Diakoulaki (bib30) 1998; 107 Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E., 2003b. The PISA Homepage. Erlebach, Kellerer, Pferschy (bib13) 2002; 48 Gomes da Silva, Clímaco, Figueira (bib16) 2006; 169 Gomes da Silva, Figueira, Clímaco (bib17) 2007; 177 Gandibleux, Freville (bib14) 2000; 6 Zitzler, Laumanns, Thiele (bib39) 2002 . López-Ibáñez, Paquete, Stützle (bib28) 2006; 5 Laumanns, Thiele, Zitzler (bib26) 2006; 169 Klamroth, Wiecek (bib22) 2000; 47 Gomes da Silva, Clímaco, Figueira (bib15) 2004; 3 Captivo, Clímaco, Figueira, Martins, Santos (bib7) 2003; 30 Zitzler, Thiele (bib38) 1999; 3 Land, Doig (bib24) 1960; 28 Martello, Toth (bib29) 1990 Zhang, Ong (bib36) 2004; 159 Dongarra, J.J., 2008. Performance of various computers using standard linear equations software. Linpack Benchmark Report, University of Tennessee Computer Science Technical Report, CS-89-85. Shukla, Deb (bib33) 2007; 181 Deb, Pratap, Agarwal, Meyarivan (bib10) 2002; 6 Mavrotas, Diakoulaki (bib31) 2005; 171 Erlebach (10.1016/j.ejor.2009.06.024_bib13) 2002; 48 Captivo (10.1016/j.ejor.2009.06.024_bib7) 2003; 30 10.1016/j.ejor.2009.06.024_bib11 Laumanns (10.1016/j.ejor.2009.06.024_bib26) 2006; 169 Li (10.1016/j.ejor.2009.06.024_bib27) 2004; vol. 3004 Zhang (10.1016/j.ejor.2009.06.024_bib36) 2004; 159 Zitzler (10.1016/j.ejor.2009.06.024_bib39) 2002 Zitzler (10.1016/j.ejor.2009.06.024_bib40) 2004; vol. 535 Gomes da Silva (10.1016/j.ejor.2009.06.024_bib16) 2006; 169 Klamroth (10.1016/j.ejor.2009.06.024_bib22) 2000; 47 Land (10.1016/j.ejor.2009.06.024_bib24) 1960; 28 Gomes da Silva (10.1016/j.ejor.2009.06.024_bib17) 2007; 177 10.1016/j.ejor.2009.06.024_bib37 Jaszkiewicz (10.1016/j.ejor.2009.06.024_bib20) 2004; 158 Deb (10.1016/j.ejor.2009.06.024_bib10) 2002; 6 Gomes da Silva (10.1016/j.ejor.2009.06.024_bib18) 2007; 35 Shukla (10.1016/j.ejor.2009.06.024_bib33) 2007; 181 Martello (10.1016/j.ejor.2009.06.024_bib29) 1990 Ehrgott (10.1016/j.ejor.2009.06.024_bib12) 2006; 147 Alves (10.1016/j.ejor.2009.06.024_bib2) 2007; 180 Zitzler (10.1016/j.ejor.2009.06.024_bib38) 1999; 3 Nemhauser (10.1016/j.ejor.2009.06.024_bib32) 1999 10.1016/j.ejor.2009.06.024_bib6 Bazgan (10.1016/j.ejor.2009.06.024_bib4) 2009; 198 Jaszkiewicz (10.1016/j.ejor.2009.06.024_bib19) 2002; 6 Kumar (10.1016/j.ejor.2009.06.024_bib23) 2006; 358 Mavrotas (10.1016/j.ejor.2009.06.024_bib30) 1998; 107 Alves (10.1016/j.ejor.2009.06.024_bib1) 2007; 34 10.1016/j.ejor.2009.06.024_bib25 Teghem (10.1016/j.ejor.2009.06.024_bib34) 2000; 27 Bleuler (10.1016/j.ejor.2009.06.024_bib5) 2003 Gomes da Silva (10.1016/j.ejor.2009.06.024_bib15) 2004; 3 Bazgan (10.1016/j.ejor.2009.06.024_bib3) 2009; 36 Gandibleux (10.1016/j.ejor.2009.06.024_bib14) 2000; 6 Khare (10.1016/j.ejor.2009.06.024_bib21) 2003; vol. 2632 Visée (10.1016/j.ejor.2009.06.024_bib35) 1998; 12 Deb (10.1016/j.ejor.2009.06.024_bib9) 2001 Mavrotas (10.1016/j.ejor.2009.06.024_bib31) 2005; 171 Coello Coello (10.1016/j.ejor.2009.06.024_bib8) 2002 López-Ibáñez (10.1016/j.ejor.2009.06.024_bib28) 2006; 5 |
| References_xml | – volume: vol. 2632 start-page: 376 year: 2003 end-page: 390 ident: bib21 article-title: Performance scaling of multi-objective evolutionary algorithms publication-title: EMO 2003 – volume: 12 start-page: 139 year: 1998 end-page: 155 ident: bib35 article-title: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem publication-title: Journal of Global Optimization – volume: 169 start-page: 373 year: 2006 end-page: 391 ident: bib16 article-title: A scatter search method for bi-criteria {0,1} knapsack problems publication-title: European Journal of Operational Research – year: 2002 ident: bib8 article-title: Evolutionary Algorithms for Solving Multi-Objective Problems – volume: 48 start-page: 1603 year: 2002 end-page: 1612 ident: bib13 article-title: Approximating multiobjective knapsack problems publication-title: Management Science – volume: 158 start-page: 418 year: 2004 end-page: 433 ident: bib20 article-title: On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study publication-title: European Journal of Operational Research – volume: 358 start-page: 104 year: 2006 end-page: 120 ident: bib23 article-title: Analysis of a multiobjective evolutionary algorithm on the 0–1 knapsack problem publication-title: Theoretical Computer Science – volume: 34 start-page: 3458 year: 2007 end-page: 3470 ident: bib1 article-title: MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem publication-title: Computers and Operations Research – volume: 36 start-page: 260 year: 2009 end-page: 279 ident: bib3 article-title: Solving efficiently the 0–1 multi-objective knapsack problem publication-title: Computers and Operations Research – volume: 6 start-page: 361 year: 2000 end-page: 383 ident: bib14 article-title: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: The two objectives case publication-title: Journal of Heuristics – reference: Laumanns, M., Thiele, L., Zitzler, E., 2005. An adaptive scheme to generate the Pareto front based on the epsilon-constraint method. In: Branke, J., Deb, K., Miettinen, K., Steuer, R. (Eds.), Practical Approaches to Multi-Objective Optimization, Dagstuhl Seminar Proceedings, vol. 04461. URN: urn:nbn:de:0030-drops-2465, URL: – year: 1990 ident: bib29 article-title: Knapsack Problems – volume: vol. 535 start-page: 3 year: 2004 end-page: 37 ident: bib40 article-title: A tutorial on evolutionary multiobjective optimization publication-title: EU/ME & PM2O 2002 – volume: 47 start-page: 57 year: 2000 end-page: 76 ident: bib22 article-title: Dynamic programming approaches to the multiple criteria knapsack problem publication-title: Naval Research Logistics – start-page: 494 year: 2003 end-page: 508 ident: bib5 article-title: PISA – A platform and programming language independent interface for search algorithms publication-title: Evolutionary Multi-Criterion Optimization – volume: 198 start-page: 47 year: 2009 end-page: 56 ident: bib4 article-title: Implementing an efficient fptas for the 0–1 multi-objective knapsack problem publication-title: European Journal of Operational Research – volume: 171 start-page: 53 year: 2005 end-page: 71 ident: bib31 article-title: Multi-criteria branch and bound: A vector maximization algorithm for mixed 0–1 multiple objective linear programming publication-title: Applied Mathematics and Computation – reference: Zitzler, E., 1999. Evolutionary algorithms for multiobjective optimization: methods and applications. PhD Thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland. – volume: 30 start-page: 1865 year: 2003 end-page: 1886 ident: bib7 article-title: Solving bicriteria 0–1 knapsack problems using a labeling algorithm publication-title: Computers and Operations Research – volume: 147 start-page: 343 year: 2006 end-page: 360 ident: bib12 article-title: A discussion of scalarization techniques for multiple objective integer programming publication-title: Annals of Operational Research – volume: vol. 3004 start-page: 145 year: 2004 end-page: 154 ident: bib27 article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack problem publication-title: EvoCOP 2004 – reference: Dongarra, J.J., 2008. Performance of various computers using standard linear equations software. Linpack Benchmark Report, University of Tennessee Computer Science Technical Report, CS-89-85. – volume: 27 start-page: 621 year: 2000 end-page: 634 ident: bib34 article-title: An interactive heuristic method for multi-objective combinatorial optimization publication-title: Computers and Operations Research – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bib38 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach publication-title: IEEE Transactions on Evolutionary Computation – volume: 159 start-page: 545 year: 2004 end-page: 557 ident: bib36 article-title: Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic publication-title: European Journal of Operational Research – volume: 6 start-page: 402 year: 2002 end-page: 412 ident: bib19 article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem – A comparative experiment publication-title: IEEE Transactions on Evolutionary Computation – volume: 5 start-page: 111 year: 2006 end-page: 137 ident: bib28 article-title: Hybrid population-based algorithms for the bi-objective quadratic assignment problem publication-title: Journal of Mathematical Modelling and Algorithms – volume: 181 start-page: 1630 year: 2007 end-page: 1652 ident: bib33 article-title: On finding multiple pareto-optimal solutions using classical and evolutionary generating methods publication-title: European Journal of Operational Research – volume: 3 start-page: 183 year: 2004 end-page: 208 ident: bib15 article-title: A scatter search method for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation publication-title: Journal of Mathematical Modelling and Algorithms – volume: 28 start-page: 497 year: 1960 end-page: 520 ident: bib24 article-title: An automatic method of solving discrete programming problems publication-title: Econometrica – year: 2001 ident: bib9 article-title: Multi-Objective Optimization Using Evolutionary Algorithms – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – start-page: 19 year: 2002 end-page: 26 ident: bib39 article-title: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization publication-title: Evolutionary Methods for Design Optimization and Control – volume: 177 start-page: 1656 year: 2007 end-page: 1677 ident: bib17 article-title: Integrating partial optimization with scatter search for solving bi-criteria {0,1} knapsack problems publication-title: European Journal of Operational Research – volume: 180 start-page: 99 year: 2007 end-page: 115 ident: bib2 article-title: A review of interactive methods for multiobjective integer and mixed-integer programming publication-title: European Journal of Operational Research – reference: Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E., 2003b. The PISA Homepage. – volume: 35 start-page: 2292 year: 2007 end-page: 2306 ident: bib18 article-title: Core problems in bi-criteria {0,1}-knapsack problems publication-title: Computers and Operations Research – volume: 107 start-page: 530 year: 1998 end-page: 541 ident: bib30 article-title: A branch and bound algorithm for mixed zero-one multiple objective linear programming publication-title: European Journal of Operational Research – year: 1999 ident: bib32 article-title: Integer and Combinatorial Optimization – reference: . – volume: 169 start-page: 932 year: 2006 end-page: 942 ident: bib26 article-title: An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method publication-title: European Journal of Operational Research – ident: 10.1016/j.ejor.2009.06.024_bib6 – volume: 6 start-page: 361 year: 2000 ident: 10.1016/j.ejor.2009.06.024_bib14 article-title: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: The two objectives case publication-title: Journal of Heuristics doi: 10.1023/A:1009682532542 – year: 2002 ident: 10.1016/j.ejor.2009.06.024_bib8 – volume: 5 start-page: 111 year: 2006 ident: 10.1016/j.ejor.2009.06.024_bib28 article-title: Hybrid population-based algorithms for the bi-objective quadratic assignment problem publication-title: Journal of Mathematical Modelling and Algorithms doi: 10.1007/s10852-005-9034-x – volume: 177 start-page: 1656 year: 2007 ident: 10.1016/j.ejor.2009.06.024_bib17 article-title: Integrating partial optimization with scatter search for solving bi-criteria {0,1} knapsack problems publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.10.013 – volume: 30 start-page: 1865 year: 2003 ident: 10.1016/j.ejor.2009.06.024_bib7 article-title: Solving bicriteria 0–1 knapsack problems using a labeling algorithm publication-title: Computers and Operations Research doi: 10.1016/S0305-0548(02)00112-0 – volume: 171 start-page: 53 year: 2005 ident: 10.1016/j.ejor.2009.06.024_bib31 article-title: Multi-criteria branch and bound: A vector maximization algorithm for mixed 0–1 multiple objective linear programming publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2005.01.038 – start-page: 494 year: 2003 ident: 10.1016/j.ejor.2009.06.024_bib5 article-title: PISA – A platform and programming language independent interface for search algorithms – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.ejor.2009.06.024_bib10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – ident: 10.1016/j.ejor.2009.06.024_bib25 – volume: 47 start-page: 57 year: 2000 ident: 10.1016/j.ejor.2009.06.024_bib22 article-title: Dynamic programming approaches to the multiple criteria knapsack problem publication-title: Naval Research Logistics doi: 10.1002/(SICI)1520-6750(200002)47:1<57::AID-NAV4>3.0.CO;2-4 – volume: 107 start-page: 530 year: 1998 ident: 10.1016/j.ejor.2009.06.024_bib30 article-title: A branch and bound algorithm for mixed zero-one multiple objective linear programming publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(97)00077-5 – volume: 198 start-page: 47 year: 2009 ident: 10.1016/j.ejor.2009.06.024_bib4 article-title: Implementing an efficient fptas for the 0–1 multi-objective knapsack problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2008.07.047 – volume: 147 start-page: 343 year: 2006 ident: 10.1016/j.ejor.2009.06.024_bib12 article-title: A discussion of scalarization techniques for multiple objective integer programming publication-title: Annals of Operational Research doi: 10.1007/s10479-006-0074-z – volume: 358 start-page: 104 year: 2006 ident: 10.1016/j.ejor.2009.06.024_bib23 article-title: Analysis of a multiobjective evolutionary algorithm on the 0–1 knapsack problem publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2006.03.007 – volume: vol. 535 start-page: 3 year: 2004 ident: 10.1016/j.ejor.2009.06.024_bib40 article-title: A tutorial on evolutionary multiobjective optimization – ident: 10.1016/j.ejor.2009.06.024_bib37 – volume: 169 start-page: 932 year: 2006 ident: 10.1016/j.ejor.2009.06.024_bib26 article-title: An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.08.029 – volume: 180 start-page: 99 year: 2007 ident: 10.1016/j.ejor.2009.06.024_bib2 article-title: A review of interactive methods for multiobjective integer and mixed-integer programming publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.02.033 – volume: 169 start-page: 373 year: 2006 ident: 10.1016/j.ejor.2009.06.024_bib16 article-title: A scatter search method for bi-criteria {0,1} knapsack problems publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.08.005 – year: 1999 ident: 10.1016/j.ejor.2009.06.024_bib32 – volume: 48 start-page: 1603 issue: 12 year: 2002 ident: 10.1016/j.ejor.2009.06.024_bib13 article-title: Approximating multiobjective knapsack problems publication-title: Management Science doi: 10.1287/mnsc.48.12.1603.445 – volume: 159 start-page: 545 year: 2004 ident: 10.1016/j.ejor.2009.06.024_bib36 article-title: Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(03)00420-X – volume: 12 start-page: 139 year: 1998 ident: 10.1016/j.ejor.2009.06.024_bib35 article-title: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem publication-title: Journal of Global Optimization doi: 10.1023/A:1008258310679 – volume: 158 start-page: 418 year: 2004 ident: 10.1016/j.ejor.2009.06.024_bib20 article-title: On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2003.06.015 – volume: 28 start-page: 497 issue: 3 year: 1960 ident: 10.1016/j.ejor.2009.06.024_bib24 article-title: An automatic method of solving discrete programming problems publication-title: Econometrica doi: 10.2307/1910129 – volume: vol. 3004 start-page: 145 year: 2004 ident: 10.1016/j.ejor.2009.06.024_bib27 article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack problem – volume: 181 start-page: 1630 year: 2007 ident: 10.1016/j.ejor.2009.06.024_bib33 article-title: On finding multiple pareto-optimal solutions using classical and evolutionary generating methods publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.002 – year: 2001 ident: 10.1016/j.ejor.2009.06.024_bib9 – volume: 27 start-page: 621 year: 2000 ident: 10.1016/j.ejor.2009.06.024_bib34 article-title: An interactive heuristic method for multi-objective combinatorial optimization publication-title: Computers and Operations Research doi: 10.1016/S0305-0548(99)00109-4 – volume: 6 start-page: 402 issue: 4 year: 2002 ident: 10.1016/j.ejor.2009.06.024_bib19 article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem – A comparative experiment publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2002.802873 – year: 1990 ident: 10.1016/j.ejor.2009.06.024_bib29 – volume: vol. 2632 start-page: 376 year: 2003 ident: 10.1016/j.ejor.2009.06.024_bib21 article-title: Performance scaling of multi-objective evolutionary algorithms – volume: 34 start-page: 3458 year: 2007 ident: 10.1016/j.ejor.2009.06.024_bib1 article-title: MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem publication-title: Computers and Operations Research doi: 10.1016/j.cor.2006.02.008 – volume: 3 start-page: 183 year: 2004 ident: 10.1016/j.ejor.2009.06.024_bib15 article-title: A scatter search method for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation publication-title: Journal of Mathematical Modelling and Algorithms doi: 10.1023/B:JMMA.0000038617.09620.02 – start-page: 19 year: 2002 ident: 10.1016/j.ejor.2009.06.024_bib39 article-title: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization – volume: 35 start-page: 2292 year: 2007 ident: 10.1016/j.ejor.2009.06.024_bib18 article-title: Core problems in bi-criteria {0,1}-knapsack problems publication-title: Computers and Operations Research doi: 10.1016/j.cor.2006.11.001 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.ejor.2009.06.024_bib38 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – volume: 36 start-page: 260 year: 2009 ident: 10.1016/j.ejor.2009.06.024_bib3 article-title: Solving efficiently the 0–1 multi-objective knapsack problem publication-title: Computers and Operations Research doi: 10.1016/j.cor.2007.09.009 – ident: 10.1016/j.ejor.2009.06.024_bib11 |
| SSID | ssj0001515 |
| Score | 2.2087502 |
| Snippet | In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature, with three... |
| SourceID | proquest repec pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14 |
| SubjectTerms | Applied sciences Approximation Branch & bound algorithms Branch and bound Branch and bound Knapsack problem Multiobjective Evolutionary algorithms Evolutionary algorithms Exact sciences and technology Flows in networks. Combinatorial problems Genetic algorithms Heuristic Knapsack problem Mathematical programming Multiobjective Operational research and scientific management Operational research. Management science Studies |
| Title | Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms |
| URI | https://dx.doi.org/10.1016/j.ejor.2009.06.024 http://econpapers.repec.org/article/eeeejores/v_3a203_3ay_3a2010_3ai_3a1_3ap_3a14-21.htm https://www.proquest.com/docview/204150598 |
| Volume | 203 |
| WOSCitedRecordID | wos000272073100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKixAIcRkgymDyA28lU2M7Fz8ONMR1QmJIfYsc16X3VElajZ_Ev-Q4ttO0YxN7oFLS1G2cpOdzzueTc0HoNSUi4GEceoFg0tMljT3OWODJIQgcVIaiwypQ-Et0dhYPBvxbq_XbxcJs5tFyGV9c8NV_FTW0gbB16OwNxF13Cg2wDUKHNYgd1v8k-O_ZvDISVK6CWTo1dzT9V1YtUhNCXRei7M2WYlUIOevZqjJFb11ZDhZ1KlcdpmUcuBYumFFt7Nlrdzsx_5nlk3JsU57_zcJv2S405M7uaBMMjbfYgU6Mu9_nDNhqTfO_ik2elaJhvK9590TMsvVczFycvFBN-4V59G7CK13cVhR5hJgITndPJn16CXzmDmtCTq2uNsHVl7SAMUhMj9U0y21K0vC4T9hW57nn_HuqsHZQdL5v00T3oWt18kQ7ABJ2C3VIFPC4jTonH08Hn2q1r5lh9cjKXo6N0DLOhPtnchULur8SBch2ZIqq7Mx6OrlaKdkgP-eP0AM7a8EnBm2PUUstD9AdFzRxgB664iDY6ooDdK-R6fIJKi0q8S4q3-A9TGKHSewwiStM4iYmcQOTGDCJm5jEW0w-RT_en56_--DZgh-eZDwuPR5GRPoyYqkQ4VDQSEiVhsO0T9ORLyLWT5kPHyTRzv6ppCOesoDzkaJpxOEvp89Qe5kt1XOEFVex7EsWAQdkAaFprGgEqlxKBZxa0i7ynQASabPh6wudJ1eLvot69T4rkwvm2l8HTq6JZbOGpSYA02v3O9oBQX0oomcrAYm76NChIrHjuIAOgInDVAm-fVsBpd5NwQsOoYpkk1ABAwvWv6otOAcqJrD4sKz0O0uIn4zLxYsbXekhursd2C9Ru8zX6hW6LTflpMiP7Dj5AzIF9wQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+multiobjective%2C+multiconstraint+knapsack+problems+using+mathematical+programming+and+evolutionary+algorithms&rft.jtitle=European+journal+of+operational+research&rft.au=Florios%2C+Kostas&rft.au=Mavrotas%2C+George&rft.au=Diakoulaki%2C+Danae&rft.date=2010-05-16&rft.issn=0377-2217&rft.volume=203&rft.issue=1&rft.spage=14&rft.epage=21&rft_id=info:doi/10.1016%2Fj.ejor.2009.06.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2009_06_024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |